mirror of
https://github.com/AUTOMATIC1111/stable-diffusion-webui.git
synced 2025-01-04 13:55:06 +08:00
374 lines
16 KiB
Python
374 lines
16 KiB
Python
### Impls of the SD3 core diffusion model and VAE
|
|
|
|
import torch
|
|
import math
|
|
import einops
|
|
from modules.models.sd3.mmdit import MMDiT
|
|
from PIL import Image
|
|
|
|
|
|
#################################################################################################
|
|
### MMDiT Model Wrapping
|
|
#################################################################################################
|
|
|
|
|
|
class ModelSamplingDiscreteFlow(torch.nn.Module):
|
|
"""Helper for sampler scheduling (ie timestep/sigma calculations) for Discrete Flow models"""
|
|
def __init__(self, shift=1.0):
|
|
super().__init__()
|
|
self.shift = shift
|
|
timesteps = 1000
|
|
ts = self.sigma(torch.arange(1, timesteps + 1, 1))
|
|
self.register_buffer('sigmas', ts)
|
|
|
|
@property
|
|
def sigma_min(self):
|
|
return self.sigmas[0]
|
|
|
|
@property
|
|
def sigma_max(self):
|
|
return self.sigmas[-1]
|
|
|
|
def timestep(self, sigma):
|
|
return sigma * 1000
|
|
|
|
def sigma(self, timestep: torch.Tensor):
|
|
timestep = timestep / 1000.0
|
|
if self.shift == 1.0:
|
|
return timestep
|
|
return self.shift * timestep / (1 + (self.shift - 1) * timestep)
|
|
|
|
def calculate_denoised(self, sigma, model_output, model_input):
|
|
sigma = sigma.view(sigma.shape[:1] + (1,) * (model_output.ndim - 1))
|
|
return model_input - model_output * sigma
|
|
|
|
def noise_scaling(self, sigma, noise, latent_image, max_denoise=False):
|
|
return sigma * noise + (1.0 - sigma) * latent_image
|
|
|
|
|
|
class BaseModel(torch.nn.Module):
|
|
"""Wrapper around the core MM-DiT model"""
|
|
def __init__(self, shift=1.0, device=None, dtype=torch.float32, state_dict=None, prefix=""):
|
|
super().__init__()
|
|
# Important configuration values can be quickly determined by checking shapes in the source file
|
|
# Some of these will vary between models (eg 2B vs 8B primarily differ in their depth, but also other details change)
|
|
patch_size = state_dict[f"{prefix}x_embedder.proj.weight"].shape[2]
|
|
depth = state_dict[f"{prefix}x_embedder.proj.weight"].shape[0] // 64
|
|
num_patches = state_dict[f"{prefix}pos_embed"].shape[1]
|
|
pos_embed_max_size = round(math.sqrt(num_patches))
|
|
adm_in_channels = state_dict[f"{prefix}y_embedder.mlp.0.weight"].shape[1]
|
|
context_shape = state_dict[f"{prefix}context_embedder.weight"].shape
|
|
context_embedder_config = {
|
|
"target": "torch.nn.Linear",
|
|
"params": {
|
|
"in_features": context_shape[1],
|
|
"out_features": context_shape[0]
|
|
}
|
|
}
|
|
self.diffusion_model = MMDiT(input_size=None, pos_embed_scaling_factor=None, pos_embed_offset=None, pos_embed_max_size=pos_embed_max_size, patch_size=patch_size, in_channels=16, depth=depth, num_patches=num_patches, adm_in_channels=adm_in_channels, context_embedder_config=context_embedder_config, device=device, dtype=dtype)
|
|
self.model_sampling = ModelSamplingDiscreteFlow(shift=shift)
|
|
|
|
def apply_model(self, x, sigma, c_crossattn=None, y=None):
|
|
dtype = self.get_dtype()
|
|
timestep = self.model_sampling.timestep(sigma).float()
|
|
model_output = self.diffusion_model(x.to(dtype), timestep, context=c_crossattn.to(dtype), y=y.to(dtype)).float()
|
|
return self.model_sampling.calculate_denoised(sigma, model_output, x)
|
|
|
|
def forward(self, *args, **kwargs):
|
|
return self.apply_model(*args, **kwargs)
|
|
|
|
def get_dtype(self):
|
|
return self.diffusion_model.dtype
|
|
|
|
|
|
class CFGDenoiser(torch.nn.Module):
|
|
"""Helper for applying CFG Scaling to diffusion outputs"""
|
|
def __init__(self, model):
|
|
super().__init__()
|
|
self.model = model
|
|
|
|
def forward(self, x, timestep, cond, uncond, cond_scale):
|
|
# Run cond and uncond in a batch together
|
|
batched = self.model.apply_model(torch.cat([x, x]), torch.cat([timestep, timestep]), c_crossattn=torch.cat([cond["c_crossattn"], uncond["c_crossattn"]]), y=torch.cat([cond["y"], uncond["y"]]))
|
|
# Then split and apply CFG Scaling
|
|
pos_out, neg_out = batched.chunk(2)
|
|
scaled = neg_out + (pos_out - neg_out) * cond_scale
|
|
return scaled
|
|
|
|
|
|
class SD3LatentFormat:
|
|
"""Latents are slightly shifted from center - this class must be called after VAE Decode to correct for the shift"""
|
|
def __init__(self):
|
|
self.scale_factor = 1.5305
|
|
self.shift_factor = 0.0609
|
|
|
|
def process_in(self, latent):
|
|
return (latent - self.shift_factor) * self.scale_factor
|
|
|
|
def process_out(self, latent):
|
|
return (latent / self.scale_factor) + self.shift_factor
|
|
|
|
def decode_latent_to_preview(self, x0):
|
|
"""Quick RGB approximate preview of sd3 latents"""
|
|
factors = torch.tensor([
|
|
[-0.0645, 0.0177, 0.1052], [ 0.0028, 0.0312, 0.0650],
|
|
[ 0.1848, 0.0762, 0.0360], [ 0.0944, 0.0360, 0.0889],
|
|
[ 0.0897, 0.0506, -0.0364], [-0.0020, 0.1203, 0.0284],
|
|
[ 0.0855, 0.0118, 0.0283], [-0.0539, 0.0658, 0.1047],
|
|
[-0.0057, 0.0116, 0.0700], [-0.0412, 0.0281, -0.0039],
|
|
[ 0.1106, 0.1171, 0.1220], [-0.0248, 0.0682, -0.0481],
|
|
[ 0.0815, 0.0846, 0.1207], [-0.0120, -0.0055, -0.0867],
|
|
[-0.0749, -0.0634, -0.0456], [-0.1418, -0.1457, -0.1259]
|
|
], device="cpu")
|
|
latent_image = x0[0].permute(1, 2, 0).cpu() @ factors
|
|
|
|
latents_ubyte = (((latent_image + 1) / 2)
|
|
.clamp(0, 1) # change scale from -1..1 to 0..1
|
|
.mul(0xFF) # to 0..255
|
|
.byte()).cpu()
|
|
|
|
return Image.fromarray(latents_ubyte.numpy())
|
|
|
|
|
|
#################################################################################################
|
|
### K-Diffusion Sampling
|
|
#################################################################################################
|
|
|
|
|
|
def append_dims(x, target_dims):
|
|
"""Appends dimensions to the end of a tensor until it has target_dims dimensions."""
|
|
dims_to_append = target_dims - x.ndim
|
|
return x[(...,) + (None,) * dims_to_append]
|
|
|
|
|
|
def to_d(x, sigma, denoised):
|
|
"""Converts a denoiser output to a Karras ODE derivative."""
|
|
return (x - denoised) / append_dims(sigma, x.ndim)
|
|
|
|
|
|
@torch.no_grad()
|
|
@torch.autocast("cuda", dtype=torch.float16)
|
|
def sample_euler(model, x, sigmas, extra_args=None):
|
|
"""Implements Algorithm 2 (Euler steps) from Karras et al. (2022)."""
|
|
extra_args = {} if extra_args is None else extra_args
|
|
s_in = x.new_ones([x.shape[0]])
|
|
for i in range(len(sigmas) - 1):
|
|
sigma_hat = sigmas[i]
|
|
denoised = model(x, sigma_hat * s_in, **extra_args)
|
|
d = to_d(x, sigma_hat, denoised)
|
|
dt = sigmas[i + 1] - sigma_hat
|
|
# Euler method
|
|
x = x + d * dt
|
|
return x
|
|
|
|
|
|
#################################################################################################
|
|
### VAE
|
|
#################################################################################################
|
|
|
|
|
|
def Normalize(in_channels, num_groups=32, dtype=torch.float32, device=None):
|
|
return torch.nn.GroupNorm(num_groups=num_groups, num_channels=in_channels, eps=1e-6, affine=True, dtype=dtype, device=device)
|
|
|
|
|
|
class ResnetBlock(torch.nn.Module):
|
|
def __init__(self, *, in_channels, out_channels=None, dtype=torch.float32, device=None):
|
|
super().__init__()
|
|
self.in_channels = in_channels
|
|
out_channels = in_channels if out_channels is None else out_channels
|
|
self.out_channels = out_channels
|
|
|
|
self.norm1 = Normalize(in_channels, dtype=dtype, device=device)
|
|
self.conv1 = torch.nn.Conv2d(in_channels, out_channels, kernel_size=3, stride=1, padding=1, dtype=dtype, device=device)
|
|
self.norm2 = Normalize(out_channels, dtype=dtype, device=device)
|
|
self.conv2 = torch.nn.Conv2d(out_channels, out_channels, kernel_size=3, stride=1, padding=1, dtype=dtype, device=device)
|
|
if self.in_channels != self.out_channels:
|
|
self.nin_shortcut = torch.nn.Conv2d(in_channels, out_channels, kernel_size=1, stride=1, padding=0, dtype=dtype, device=device)
|
|
else:
|
|
self.nin_shortcut = None
|
|
self.swish = torch.nn.SiLU(inplace=True)
|
|
|
|
def forward(self, x):
|
|
hidden = x
|
|
hidden = self.norm1(hidden)
|
|
hidden = self.swish(hidden)
|
|
hidden = self.conv1(hidden)
|
|
hidden = self.norm2(hidden)
|
|
hidden = self.swish(hidden)
|
|
hidden = self.conv2(hidden)
|
|
if self.in_channels != self.out_channels:
|
|
x = self.nin_shortcut(x)
|
|
return x + hidden
|
|
|
|
|
|
class AttnBlock(torch.nn.Module):
|
|
def __init__(self, in_channels, dtype=torch.float32, device=None):
|
|
super().__init__()
|
|
self.norm = Normalize(in_channels, dtype=dtype, device=device)
|
|
self.q = torch.nn.Conv2d(in_channels, in_channels, kernel_size=1, stride=1, padding=0, dtype=dtype, device=device)
|
|
self.k = torch.nn.Conv2d(in_channels, in_channels, kernel_size=1, stride=1, padding=0, dtype=dtype, device=device)
|
|
self.v = torch.nn.Conv2d(in_channels, in_channels, kernel_size=1, stride=1, padding=0, dtype=dtype, device=device)
|
|
self.proj_out = torch.nn.Conv2d(in_channels, in_channels, kernel_size=1, stride=1, padding=0, dtype=dtype, device=device)
|
|
|
|
def forward(self, x):
|
|
hidden = self.norm(x)
|
|
q = self.q(hidden)
|
|
k = self.k(hidden)
|
|
v = self.v(hidden)
|
|
b, c, h, w = q.shape
|
|
q, k, v = [einops.rearrange(x, "b c h w -> b 1 (h w) c").contiguous() for x in (q, k, v)]
|
|
hidden = torch.nn.functional.scaled_dot_product_attention(q, k, v) # scale is dim ** -0.5 per default
|
|
hidden = einops.rearrange(hidden, "b 1 (h w) c -> b c h w", h=h, w=w, c=c, b=b)
|
|
hidden = self.proj_out(hidden)
|
|
return x + hidden
|
|
|
|
|
|
class Downsample(torch.nn.Module):
|
|
def __init__(self, in_channels, dtype=torch.float32, device=None):
|
|
super().__init__()
|
|
self.conv = torch.nn.Conv2d(in_channels, in_channels, kernel_size=3, stride=2, padding=0, dtype=dtype, device=device)
|
|
|
|
def forward(self, x):
|
|
pad = (0,1,0,1)
|
|
x = torch.nn.functional.pad(x, pad, mode="constant", value=0)
|
|
x = self.conv(x)
|
|
return x
|
|
|
|
|
|
class Upsample(torch.nn.Module):
|
|
def __init__(self, in_channels, dtype=torch.float32, device=None):
|
|
super().__init__()
|
|
self.conv = torch.nn.Conv2d(in_channels, in_channels, kernel_size=3, stride=1, padding=1, dtype=dtype, device=device)
|
|
|
|
def forward(self, x):
|
|
x = torch.nn.functional.interpolate(x, scale_factor=2.0, mode="nearest")
|
|
x = self.conv(x)
|
|
return x
|
|
|
|
|
|
class VAEEncoder(torch.nn.Module):
|
|
def __init__(self, ch=128, ch_mult=(1,2,4,4), num_res_blocks=2, in_channels=3, z_channels=16, dtype=torch.float32, device=None):
|
|
super().__init__()
|
|
self.num_resolutions = len(ch_mult)
|
|
self.num_res_blocks = num_res_blocks
|
|
# downsampling
|
|
self.conv_in = torch.nn.Conv2d(in_channels, ch, kernel_size=3, stride=1, padding=1, dtype=dtype, device=device)
|
|
in_ch_mult = (1,) + tuple(ch_mult)
|
|
self.in_ch_mult = in_ch_mult
|
|
self.down = torch.nn.ModuleList()
|
|
for i_level in range(self.num_resolutions):
|
|
block = torch.nn.ModuleList()
|
|
attn = torch.nn.ModuleList()
|
|
block_in = ch*in_ch_mult[i_level]
|
|
block_out = ch*ch_mult[i_level]
|
|
for _ in range(num_res_blocks):
|
|
block.append(ResnetBlock(in_channels=block_in, out_channels=block_out, dtype=dtype, device=device))
|
|
block_in = block_out
|
|
down = torch.nn.Module()
|
|
down.block = block
|
|
down.attn = attn
|
|
if i_level != self.num_resolutions - 1:
|
|
down.downsample = Downsample(block_in, dtype=dtype, device=device)
|
|
self.down.append(down)
|
|
# middle
|
|
self.mid = torch.nn.Module()
|
|
self.mid.block_1 = ResnetBlock(in_channels=block_in, out_channels=block_in, dtype=dtype, device=device)
|
|
self.mid.attn_1 = AttnBlock(block_in, dtype=dtype, device=device)
|
|
self.mid.block_2 = ResnetBlock(in_channels=block_in, out_channels=block_in, dtype=dtype, device=device)
|
|
# end
|
|
self.norm_out = Normalize(block_in, dtype=dtype, device=device)
|
|
self.conv_out = torch.nn.Conv2d(block_in, 2 * z_channels, kernel_size=3, stride=1, padding=1, dtype=dtype, device=device)
|
|
self.swish = torch.nn.SiLU(inplace=True)
|
|
|
|
def forward(self, x):
|
|
# downsampling
|
|
hs = [self.conv_in(x)]
|
|
for i_level in range(self.num_resolutions):
|
|
for i_block in range(self.num_res_blocks):
|
|
h = self.down[i_level].block[i_block](hs[-1])
|
|
hs.append(h)
|
|
if i_level != self.num_resolutions-1:
|
|
hs.append(self.down[i_level].downsample(hs[-1]))
|
|
# middle
|
|
h = hs[-1]
|
|
h = self.mid.block_1(h)
|
|
h = self.mid.attn_1(h)
|
|
h = self.mid.block_2(h)
|
|
# end
|
|
h = self.norm_out(h)
|
|
h = self.swish(h)
|
|
h = self.conv_out(h)
|
|
return h
|
|
|
|
|
|
class VAEDecoder(torch.nn.Module):
|
|
def __init__(self, ch=128, out_ch=3, ch_mult=(1, 2, 4, 4), num_res_blocks=2, resolution=256, z_channels=16, dtype=torch.float32, device=None):
|
|
super().__init__()
|
|
self.num_resolutions = len(ch_mult)
|
|
self.num_res_blocks = num_res_blocks
|
|
block_in = ch * ch_mult[self.num_resolutions - 1]
|
|
curr_res = resolution // 2 ** (self.num_resolutions - 1)
|
|
# z to block_in
|
|
self.conv_in = torch.nn.Conv2d(z_channels, block_in, kernel_size=3, stride=1, padding=1, dtype=dtype, device=device)
|
|
# middle
|
|
self.mid = torch.nn.Module()
|
|
self.mid.block_1 = ResnetBlock(in_channels=block_in, out_channels=block_in, dtype=dtype, device=device)
|
|
self.mid.attn_1 = AttnBlock(block_in, dtype=dtype, device=device)
|
|
self.mid.block_2 = ResnetBlock(in_channels=block_in, out_channels=block_in, dtype=dtype, device=device)
|
|
# upsampling
|
|
self.up = torch.nn.ModuleList()
|
|
for i_level in reversed(range(self.num_resolutions)):
|
|
block = torch.nn.ModuleList()
|
|
block_out = ch * ch_mult[i_level]
|
|
for _ in range(self.num_res_blocks + 1):
|
|
block.append(ResnetBlock(in_channels=block_in, out_channels=block_out, dtype=dtype, device=device))
|
|
block_in = block_out
|
|
up = torch.nn.Module()
|
|
up.block = block
|
|
if i_level != 0:
|
|
up.upsample = Upsample(block_in, dtype=dtype, device=device)
|
|
curr_res = curr_res * 2
|
|
self.up.insert(0, up) # prepend to get consistent order
|
|
# end
|
|
self.norm_out = Normalize(block_in, dtype=dtype, device=device)
|
|
self.conv_out = torch.nn.Conv2d(block_in, out_ch, kernel_size=3, stride=1, padding=1, dtype=dtype, device=device)
|
|
self.swish = torch.nn.SiLU(inplace=True)
|
|
|
|
def forward(self, z):
|
|
# z to block_in
|
|
hidden = self.conv_in(z)
|
|
# middle
|
|
hidden = self.mid.block_1(hidden)
|
|
hidden = self.mid.attn_1(hidden)
|
|
hidden = self.mid.block_2(hidden)
|
|
# upsampling
|
|
for i_level in reversed(range(self.num_resolutions)):
|
|
for i_block in range(self.num_res_blocks + 1):
|
|
hidden = self.up[i_level].block[i_block](hidden)
|
|
if i_level != 0:
|
|
hidden = self.up[i_level].upsample(hidden)
|
|
# end
|
|
hidden = self.norm_out(hidden)
|
|
hidden = self.swish(hidden)
|
|
hidden = self.conv_out(hidden)
|
|
return hidden
|
|
|
|
|
|
class SDVAE(torch.nn.Module):
|
|
def __init__(self, dtype=torch.float32, device=None):
|
|
super().__init__()
|
|
self.encoder = VAEEncoder(dtype=dtype, device=device)
|
|
self.decoder = VAEDecoder(dtype=dtype, device=device)
|
|
|
|
@torch.autocast("cuda", dtype=torch.float16)
|
|
def decode(self, latent):
|
|
return self.decoder(latent)
|
|
|
|
@torch.autocast("cuda", dtype=torch.float16)
|
|
def encode(self, image):
|
|
hidden = self.encoder(image)
|
|
mean, logvar = torch.chunk(hidden, 2, dim=1)
|
|
logvar = torch.clamp(logvar, -30.0, 20.0)
|
|
std = torch.exp(0.5 * logvar)
|
|
return mean + std * torch.randn_like(mean)
|