mirror of
https://github.com/AUTOMATIC1111/stable-diffusion-webui.git
synced 2025-01-18 12:20:11 +08:00
494 lines
23 KiB
Python
494 lines
23 KiB
Python
### This file contains impls for underlying related models (CLIP, T5, etc)
|
|
|
|
import torch
|
|
import math
|
|
from torch import nn
|
|
from transformers import CLIPTokenizer, T5TokenizerFast
|
|
|
|
|
|
#################################################################################################
|
|
### Core/Utility
|
|
#################################################################################################
|
|
|
|
|
|
def attention(q, k, v, heads, mask=None):
|
|
"""Convenience wrapper around a basic attention operation"""
|
|
b, _, dim_head = q.shape
|
|
dim_head //= heads
|
|
q, k, v = [t.view(b, -1, heads, dim_head).transpose(1, 2) for t in (q, k, v)]
|
|
out = torch.nn.functional.scaled_dot_product_attention(q, k, v, attn_mask=mask, dropout_p=0.0, is_causal=False)
|
|
return out.transpose(1, 2).reshape(b, -1, heads * dim_head)
|
|
|
|
|
|
class Mlp(nn.Module):
|
|
""" MLP as used in Vision Transformer, MLP-Mixer and related networks"""
|
|
def __init__(self, in_features, hidden_features=None, out_features=None, act_layer=nn.GELU, bias=True, dtype=None, device=None):
|
|
super().__init__()
|
|
out_features = out_features or in_features
|
|
hidden_features = hidden_features or in_features
|
|
|
|
self.fc1 = nn.Linear(in_features, hidden_features, bias=bias, dtype=dtype, device=device)
|
|
self.act = act_layer
|
|
self.fc2 = nn.Linear(hidden_features, out_features, bias=bias, dtype=dtype, device=device)
|
|
|
|
def forward(self, x):
|
|
x = self.fc1(x)
|
|
x = self.act(x)
|
|
x = self.fc2(x)
|
|
return x
|
|
|
|
|
|
#################################################################################################
|
|
### CLIP
|
|
#################################################################################################
|
|
|
|
|
|
class CLIPAttention(torch.nn.Module):
|
|
def __init__(self, embed_dim, heads, dtype, device):
|
|
super().__init__()
|
|
self.heads = heads
|
|
self.q_proj = nn.Linear(embed_dim, embed_dim, bias=True, dtype=dtype, device=device)
|
|
self.k_proj = nn.Linear(embed_dim, embed_dim, bias=True, dtype=dtype, device=device)
|
|
self.v_proj = nn.Linear(embed_dim, embed_dim, bias=True, dtype=dtype, device=device)
|
|
self.out_proj = nn.Linear(embed_dim, embed_dim, bias=True, dtype=dtype, device=device)
|
|
|
|
def forward(self, x, mask=None):
|
|
q = self.q_proj(x)
|
|
k = self.k_proj(x)
|
|
v = self.v_proj(x)
|
|
out = attention(q, k, v, self.heads, mask)
|
|
return self.out_proj(out)
|
|
|
|
|
|
ACTIVATIONS = {
|
|
"quick_gelu": lambda a: a * torch.sigmoid(1.702 * a),
|
|
"gelu": torch.nn.functional.gelu,
|
|
}
|
|
|
|
class CLIPLayer(torch.nn.Module):
|
|
def __init__(self, embed_dim, heads, intermediate_size, intermediate_activation, dtype, device):
|
|
super().__init__()
|
|
self.layer_norm1 = nn.LayerNorm(embed_dim, dtype=dtype, device=device)
|
|
self.self_attn = CLIPAttention(embed_dim, heads, dtype, device)
|
|
self.layer_norm2 = nn.LayerNorm(embed_dim, dtype=dtype, device=device)
|
|
#self.mlp = CLIPMLP(embed_dim, intermediate_size, intermediate_activation, dtype, device)
|
|
self.mlp = Mlp(embed_dim, intermediate_size, embed_dim, act_layer=ACTIVATIONS[intermediate_activation], dtype=dtype, device=device)
|
|
|
|
def forward(self, x, mask=None):
|
|
x += self.self_attn(self.layer_norm1(x), mask)
|
|
x += self.mlp(self.layer_norm2(x))
|
|
return x
|
|
|
|
|
|
class CLIPEncoder(torch.nn.Module):
|
|
def __init__(self, num_layers, embed_dim, heads, intermediate_size, intermediate_activation, dtype, device):
|
|
super().__init__()
|
|
self.layers = torch.nn.ModuleList([CLIPLayer(embed_dim, heads, intermediate_size, intermediate_activation, dtype, device) for i in range(num_layers)])
|
|
|
|
def forward(self, x, mask=None, intermediate_output=None):
|
|
if intermediate_output is not None:
|
|
if intermediate_output < 0:
|
|
intermediate_output = len(self.layers) + intermediate_output
|
|
intermediate = None
|
|
for i, layer in enumerate(self.layers):
|
|
x = layer(x, mask)
|
|
if i == intermediate_output:
|
|
intermediate = x.clone()
|
|
return x, intermediate
|
|
|
|
|
|
class CLIPEmbeddings(torch.nn.Module):
|
|
def __init__(self, embed_dim, vocab_size=49408, num_positions=77, dtype=None, device=None):
|
|
super().__init__()
|
|
self.token_embedding = torch.nn.Embedding(vocab_size, embed_dim, dtype=dtype, device=device)
|
|
self.position_embedding = torch.nn.Embedding(num_positions, embed_dim, dtype=dtype, device=device)
|
|
|
|
def forward(self, input_tokens):
|
|
return self.token_embedding(input_tokens) + self.position_embedding.weight
|
|
|
|
|
|
class CLIPTextModel_(torch.nn.Module):
|
|
def __init__(self, config_dict, dtype, device):
|
|
num_layers = config_dict["num_hidden_layers"]
|
|
embed_dim = config_dict["hidden_size"]
|
|
heads = config_dict["num_attention_heads"]
|
|
intermediate_size = config_dict["intermediate_size"]
|
|
intermediate_activation = config_dict["hidden_act"]
|
|
super().__init__()
|
|
self.embeddings = CLIPEmbeddings(embed_dim, dtype=torch.float32, device=device)
|
|
self.encoder = CLIPEncoder(num_layers, embed_dim, heads, intermediate_size, intermediate_activation, dtype, device)
|
|
self.final_layer_norm = nn.LayerNorm(embed_dim, dtype=dtype, device=device)
|
|
|
|
def forward(self, input_tokens, intermediate_output=None, final_layer_norm_intermediate=True):
|
|
x = self.embeddings(input_tokens)
|
|
causal_mask = torch.empty(x.shape[1], x.shape[1], dtype=x.dtype, device=x.device).fill_(float("-inf")).triu_(1)
|
|
x, i = self.encoder(x, mask=causal_mask, intermediate_output=intermediate_output)
|
|
x = self.final_layer_norm(x)
|
|
if i is not None and final_layer_norm_intermediate:
|
|
i = self.final_layer_norm(i)
|
|
pooled_output = x[torch.arange(x.shape[0], device=x.device), input_tokens.to(dtype=torch.int, device=x.device).argmax(dim=-1),]
|
|
return x, i, pooled_output
|
|
|
|
|
|
class CLIPTextModel(torch.nn.Module):
|
|
def __init__(self, config_dict, dtype, device):
|
|
super().__init__()
|
|
self.num_layers = config_dict["num_hidden_layers"]
|
|
self.text_model = CLIPTextModel_(config_dict, dtype, device)
|
|
embed_dim = config_dict["hidden_size"]
|
|
self.text_projection = nn.Linear(embed_dim, embed_dim, bias=False, dtype=dtype, device=device)
|
|
self.text_projection.weight.copy_(torch.eye(embed_dim))
|
|
self.dtype = dtype
|
|
|
|
def get_input_embeddings(self):
|
|
return self.text_model.embeddings.token_embedding
|
|
|
|
def set_input_embeddings(self, embeddings):
|
|
self.text_model.embeddings.token_embedding = embeddings
|
|
|
|
def forward(self, *args, **kwargs):
|
|
x = self.text_model(*args, **kwargs)
|
|
out = self.text_projection(x[2])
|
|
return (x[0], x[1], out, x[2])
|
|
|
|
|
|
class SDTokenizer:
|
|
def __init__(self, max_length=77, pad_with_end=True, tokenizer=None, has_start_token=True, pad_to_max_length=True, min_length=None):
|
|
self.tokenizer = tokenizer
|
|
self.max_length = max_length
|
|
self.min_length = min_length
|
|
empty = self.tokenizer('')["input_ids"]
|
|
if has_start_token:
|
|
self.tokens_start = 1
|
|
self.start_token = empty[0]
|
|
self.end_token = empty[1]
|
|
else:
|
|
self.tokens_start = 0
|
|
self.start_token = None
|
|
self.end_token = empty[0]
|
|
self.pad_with_end = pad_with_end
|
|
self.pad_to_max_length = pad_to_max_length
|
|
vocab = self.tokenizer.get_vocab()
|
|
self.inv_vocab = {v: k for k, v in vocab.items()}
|
|
self.max_word_length = 8
|
|
|
|
|
|
def tokenize_with_weights(self, text:str):
|
|
"""Tokenize the text, with weight values - presume 1.0 for all and ignore other features here. The details aren't relevant for a reference impl, and weights themselves has weak effect on SD3."""
|
|
if self.pad_with_end:
|
|
pad_token = self.end_token
|
|
else:
|
|
pad_token = 0
|
|
batch = []
|
|
if self.start_token is not None:
|
|
batch.append((self.start_token, 1.0))
|
|
to_tokenize = text.replace("\n", " ").split(' ')
|
|
to_tokenize = [x for x in to_tokenize if x != ""]
|
|
for word in to_tokenize:
|
|
batch.extend([(t, 1) for t in self.tokenizer(word)["input_ids"][self.tokens_start:-1]])
|
|
batch.append((self.end_token, 1.0))
|
|
if self.pad_to_max_length:
|
|
batch.extend([(pad_token, 1.0)] * (self.max_length - len(batch)))
|
|
if self.min_length is not None and len(batch) < self.min_length:
|
|
batch.extend([(pad_token, 1.0)] * (self.min_length - len(batch)))
|
|
return [batch]
|
|
|
|
|
|
class SDXLClipGTokenizer(SDTokenizer):
|
|
def __init__(self, tokenizer):
|
|
super().__init__(pad_with_end=False, tokenizer=tokenizer)
|
|
|
|
|
|
class SD3Tokenizer:
|
|
def __init__(self):
|
|
clip_tokenizer = CLIPTokenizer.from_pretrained("openai/clip-vit-large-patch14")
|
|
self.clip_l = SDTokenizer(tokenizer=clip_tokenizer)
|
|
self.clip_g = SDXLClipGTokenizer(clip_tokenizer)
|
|
self.t5xxl = T5XXLTokenizer()
|
|
|
|
def tokenize_with_weights(self, text:str):
|
|
out = {}
|
|
out["g"] = self.clip_g.tokenize_with_weights(text)
|
|
out["l"] = self.clip_l.tokenize_with_weights(text)
|
|
out["t5xxl"] = self.t5xxl.tokenize_with_weights(text)
|
|
return out
|
|
|
|
|
|
class ClipTokenWeightEncoder:
|
|
def encode_token_weights(self, token_weight_pairs):
|
|
tokens = [a[0] for a in token_weight_pairs[0]]
|
|
out, pooled = self([tokens])
|
|
if pooled is not None:
|
|
first_pooled = pooled[0:1].cpu()
|
|
else:
|
|
first_pooled = pooled
|
|
output = [out[0:1]]
|
|
return torch.cat(output, dim=-2).cpu(), first_pooled
|
|
|
|
|
|
class SDClipModel(torch.nn.Module, ClipTokenWeightEncoder):
|
|
"""Uses the CLIP transformer encoder for text (from huggingface)"""
|
|
LAYERS = ["last", "pooled", "hidden"]
|
|
def __init__(self, device="cpu", max_length=77, layer="last", layer_idx=None, textmodel_json_config=None, dtype=None, model_class=CLIPTextModel,
|
|
special_tokens=None, layer_norm_hidden_state=True, return_projected_pooled=True):
|
|
super().__init__()
|
|
assert layer in self.LAYERS
|
|
self.transformer = model_class(textmodel_json_config, dtype, device)
|
|
self.num_layers = self.transformer.num_layers
|
|
self.max_length = max_length
|
|
self.transformer = self.transformer.eval()
|
|
for param in self.parameters():
|
|
param.requires_grad = False
|
|
self.layer = layer
|
|
self.layer_idx = None
|
|
self.special_tokens = special_tokens if special_tokens is not None else {"start": 49406, "end": 49407, "pad": 49407}
|
|
self.logit_scale = torch.nn.Parameter(torch.tensor(4.6055))
|
|
self.layer_norm_hidden_state = layer_norm_hidden_state
|
|
self.return_projected_pooled = return_projected_pooled
|
|
if layer == "hidden":
|
|
assert layer_idx is not None
|
|
assert abs(layer_idx) < self.num_layers
|
|
self.set_clip_options({"layer": layer_idx})
|
|
self.options_default = (self.layer, self.layer_idx, self.return_projected_pooled)
|
|
|
|
def set_clip_options(self, options):
|
|
layer_idx = options.get("layer", self.layer_idx)
|
|
self.return_projected_pooled = options.get("projected_pooled", self.return_projected_pooled)
|
|
if layer_idx is None or abs(layer_idx) > self.num_layers:
|
|
self.layer = "last"
|
|
else:
|
|
self.layer = "hidden"
|
|
self.layer_idx = layer_idx
|
|
|
|
def forward(self, tokens):
|
|
backup_embeds = self.transformer.get_input_embeddings()
|
|
device = backup_embeds.weight.device
|
|
tokens = torch.LongTensor(tokens).to(device)
|
|
outputs = self.transformer(tokens, intermediate_output=self.layer_idx, final_layer_norm_intermediate=self.layer_norm_hidden_state)
|
|
self.transformer.set_input_embeddings(backup_embeds)
|
|
if self.layer == "last":
|
|
z = outputs[0]
|
|
else:
|
|
z = outputs[1]
|
|
pooled_output = None
|
|
if len(outputs) >= 3:
|
|
if not self.return_projected_pooled and len(outputs) >= 4 and outputs[3] is not None:
|
|
pooled_output = outputs[3].float()
|
|
elif outputs[2] is not None:
|
|
pooled_output = outputs[2].float()
|
|
return z.float(), pooled_output
|
|
|
|
|
|
class SDXLClipG(SDClipModel):
|
|
"""Wraps the CLIP-G model into the SD-CLIP-Model interface"""
|
|
def __init__(self, config, device="cpu", layer="penultimate", layer_idx=None, dtype=None):
|
|
if layer == "penultimate":
|
|
layer="hidden"
|
|
layer_idx=-2
|
|
super().__init__(device=device, layer=layer, layer_idx=layer_idx, textmodel_json_config=config, dtype=dtype, special_tokens={"start": 49406, "end": 49407, "pad": 0}, layer_norm_hidden_state=False)
|
|
|
|
|
|
class T5XXLModel(SDClipModel):
|
|
"""Wraps the T5-XXL model into the SD-CLIP-Model interface for convenience"""
|
|
def __init__(self, config, device="cpu", layer="last", layer_idx=None, dtype=None):
|
|
super().__init__(device=device, layer=layer, layer_idx=layer_idx, textmodel_json_config=config, dtype=dtype, special_tokens={"end": 1, "pad": 0}, model_class=T5)
|
|
|
|
|
|
#################################################################################################
|
|
### T5 implementation, for the T5-XXL text encoder portion, largely pulled from upstream impl
|
|
#################################################################################################
|
|
|
|
|
|
class T5XXLTokenizer(SDTokenizer):
|
|
"""Wraps the T5 Tokenizer from HF into the SDTokenizer interface"""
|
|
def __init__(self):
|
|
super().__init__(pad_with_end=False, tokenizer=T5TokenizerFast.from_pretrained("google/t5-v1_1-xxl"), has_start_token=False, pad_to_max_length=False, max_length=99999999, min_length=77)
|
|
|
|
|
|
class T5LayerNorm(torch.nn.Module):
|
|
def __init__(self, hidden_size, eps=1e-6, dtype=None, device=None):
|
|
super().__init__()
|
|
self.weight = torch.nn.Parameter(torch.ones(hidden_size, dtype=dtype, device=device))
|
|
self.variance_epsilon = eps
|
|
|
|
def forward(self, x):
|
|
variance = x.pow(2).mean(-1, keepdim=True)
|
|
x = x * torch.rsqrt(variance + self.variance_epsilon)
|
|
return self.weight.to(device=x.device, dtype=x.dtype) * x
|
|
|
|
|
|
class T5DenseGatedActDense(torch.nn.Module):
|
|
def __init__(self, model_dim, ff_dim, dtype, device):
|
|
super().__init__()
|
|
self.wi_0 = nn.Linear(model_dim, ff_dim, bias=False, dtype=dtype, device=device)
|
|
self.wi_1 = nn.Linear(model_dim, ff_dim, bias=False, dtype=dtype, device=device)
|
|
self.wo = nn.Linear(ff_dim, model_dim, bias=False, dtype=dtype, device=device)
|
|
|
|
def forward(self, x):
|
|
hidden_gelu = torch.nn.functional.gelu(self.wi_0(x), approximate="tanh")
|
|
hidden_linear = self.wi_1(x)
|
|
x = hidden_gelu * hidden_linear
|
|
x = self.wo(x)
|
|
return x
|
|
|
|
|
|
class T5LayerFF(torch.nn.Module):
|
|
def __init__(self, model_dim, ff_dim, dtype, device):
|
|
super().__init__()
|
|
self.DenseReluDense = T5DenseGatedActDense(model_dim, ff_dim, dtype, device)
|
|
self.layer_norm = T5LayerNorm(model_dim, dtype=dtype, device=device)
|
|
|
|
def forward(self, x):
|
|
forwarded_states = self.layer_norm(x)
|
|
forwarded_states = self.DenseReluDense(forwarded_states)
|
|
x += forwarded_states
|
|
return x
|
|
|
|
|
|
class T5Attention(torch.nn.Module):
|
|
def __init__(self, model_dim, inner_dim, num_heads, relative_attention_bias, dtype, device):
|
|
super().__init__()
|
|
# Mesh TensorFlow initialization to avoid scaling before softmax
|
|
self.q = nn.Linear(model_dim, inner_dim, bias=False, dtype=dtype, device=device)
|
|
self.k = nn.Linear(model_dim, inner_dim, bias=False, dtype=dtype, device=device)
|
|
self.v = nn.Linear(model_dim, inner_dim, bias=False, dtype=dtype, device=device)
|
|
self.o = nn.Linear(inner_dim, model_dim, bias=False, dtype=dtype, device=device)
|
|
self.num_heads = num_heads
|
|
self.relative_attention_bias = None
|
|
if relative_attention_bias:
|
|
self.relative_attention_num_buckets = 32
|
|
self.relative_attention_max_distance = 128
|
|
self.relative_attention_bias = torch.nn.Embedding(self.relative_attention_num_buckets, self.num_heads, device=device)
|
|
|
|
@staticmethod
|
|
def _relative_position_bucket(relative_position, bidirectional=True, num_buckets=32, max_distance=128):
|
|
"""
|
|
Adapted from Mesh Tensorflow:
|
|
https://github.com/tensorflow/mesh/blob/0cb87fe07da627bf0b7e60475d59f95ed6b5be3d/mesh_tensorflow/transformer/transformer_layers.py#L593
|
|
|
|
Translate relative position to a bucket number for relative attention. The relative position is defined as
|
|
memory_position - query_position, i.e. the distance in tokens from the attending position to the attended-to
|
|
position. If bidirectional=False, then positive relative positions are invalid. We use smaller buckets for
|
|
small absolute relative_position and larger buckets for larger absolute relative_positions. All relative
|
|
positions >=max_distance map to the same bucket. All relative positions <=-max_distance map to the same bucket.
|
|
This should allow for more graceful generalization to longer sequences than the model has been trained on
|
|
|
|
Args:
|
|
relative_position: an int32 Tensor
|
|
bidirectional: a boolean - whether the attention is bidirectional
|
|
num_buckets: an integer
|
|
max_distance: an integer
|
|
|
|
Returns:
|
|
a Tensor with the same shape as relative_position, containing int32 values in the range [0, num_buckets)
|
|
"""
|
|
relative_buckets = 0
|
|
if bidirectional:
|
|
num_buckets //= 2
|
|
relative_buckets += (relative_position > 0).to(torch.long) * num_buckets
|
|
relative_position = torch.abs(relative_position)
|
|
else:
|
|
relative_position = -torch.min(relative_position, torch.zeros_like(relative_position))
|
|
# now relative_position is in the range [0, inf)
|
|
# half of the buckets are for exact increments in positions
|
|
max_exact = num_buckets // 2
|
|
is_small = relative_position < max_exact
|
|
# The other half of the buckets are for logarithmically bigger bins in positions up to max_distance
|
|
relative_position_if_large = max_exact + (
|
|
torch.log(relative_position.float() / max_exact)
|
|
/ math.log(max_distance / max_exact)
|
|
* (num_buckets - max_exact)
|
|
).to(torch.long)
|
|
relative_position_if_large = torch.min(relative_position_if_large, torch.full_like(relative_position_if_large, num_buckets - 1))
|
|
relative_buckets += torch.where(is_small, relative_position, relative_position_if_large)
|
|
return relative_buckets
|
|
|
|
def compute_bias(self, query_length, key_length, device):
|
|
"""Compute binned relative position bias"""
|
|
context_position = torch.arange(query_length, dtype=torch.long, device=device)[:, None]
|
|
memory_position = torch.arange(key_length, dtype=torch.long, device=device)[None, :]
|
|
relative_position = memory_position - context_position # shape (query_length, key_length)
|
|
relative_position_bucket = self._relative_position_bucket(
|
|
relative_position, # shape (query_length, key_length)
|
|
bidirectional=True,
|
|
num_buckets=self.relative_attention_num_buckets,
|
|
max_distance=self.relative_attention_max_distance,
|
|
)
|
|
values = self.relative_attention_bias(relative_position_bucket) # shape (query_length, key_length, num_heads)
|
|
values = values.permute([2, 0, 1]).unsqueeze(0) # shape (1, num_heads, query_length, key_length)
|
|
return values
|
|
|
|
def forward(self, x, past_bias=None):
|
|
q = self.q(x)
|
|
k = self.k(x)
|
|
v = self.v(x)
|
|
if self.relative_attention_bias is not None:
|
|
past_bias = self.compute_bias(x.shape[1], x.shape[1], x.device)
|
|
if past_bias is not None:
|
|
mask = past_bias
|
|
out = attention(q, k * ((k.shape[-1] / self.num_heads) ** 0.5), v, self.num_heads, mask)
|
|
return self.o(out), past_bias
|
|
|
|
|
|
class T5LayerSelfAttention(torch.nn.Module):
|
|
def __init__(self, model_dim, inner_dim, ff_dim, num_heads, relative_attention_bias, dtype, device):
|
|
super().__init__()
|
|
self.SelfAttention = T5Attention(model_dim, inner_dim, num_heads, relative_attention_bias, dtype, device)
|
|
self.layer_norm = T5LayerNorm(model_dim, dtype=dtype, device=device)
|
|
|
|
def forward(self, x, past_bias=None):
|
|
output, past_bias = self.SelfAttention(self.layer_norm(x), past_bias=past_bias)
|
|
x += output
|
|
return x, past_bias
|
|
|
|
|
|
class T5Block(torch.nn.Module):
|
|
def __init__(self, model_dim, inner_dim, ff_dim, num_heads, relative_attention_bias, dtype, device):
|
|
super().__init__()
|
|
self.layer = torch.nn.ModuleList()
|
|
self.layer.append(T5LayerSelfAttention(model_dim, inner_dim, ff_dim, num_heads, relative_attention_bias, dtype, device))
|
|
self.layer.append(T5LayerFF(model_dim, ff_dim, dtype, device))
|
|
|
|
def forward(self, x, past_bias=None):
|
|
x, past_bias = self.layer[0](x, past_bias)
|
|
x = self.layer[-1](x)
|
|
return x, past_bias
|
|
|
|
|
|
class T5Stack(torch.nn.Module):
|
|
def __init__(self, num_layers, model_dim, inner_dim, ff_dim, num_heads, vocab_size, dtype, device):
|
|
super().__init__()
|
|
self.embed_tokens = torch.nn.Embedding(vocab_size, model_dim, device=device)
|
|
self.block = torch.nn.ModuleList([T5Block(model_dim, inner_dim, ff_dim, num_heads, relative_attention_bias=(i == 0), dtype=dtype, device=device) for i in range(num_layers)])
|
|
self.final_layer_norm = T5LayerNorm(model_dim, dtype=dtype, device=device)
|
|
|
|
def forward(self, input_ids, intermediate_output=None, final_layer_norm_intermediate=True):
|
|
intermediate = None
|
|
x = self.embed_tokens(input_ids)
|
|
past_bias = None
|
|
for i, layer in enumerate(self.block):
|
|
x, past_bias = layer(x, past_bias)
|
|
if i == intermediate_output:
|
|
intermediate = x.clone()
|
|
x = self.final_layer_norm(x)
|
|
if intermediate is not None and final_layer_norm_intermediate:
|
|
intermediate = self.final_layer_norm(intermediate)
|
|
return x, intermediate
|
|
|
|
|
|
class T5(torch.nn.Module):
|
|
def __init__(self, config_dict, dtype, device):
|
|
super().__init__()
|
|
self.num_layers = config_dict["num_layers"]
|
|
self.encoder = T5Stack(self.num_layers, config_dict["d_model"], config_dict["d_model"], config_dict["d_ff"], config_dict["num_heads"], config_dict["vocab_size"], dtype, device)
|
|
self.dtype = dtype
|
|
|
|
def get_input_embeddings(self):
|
|
return self.encoder.embed_tokens
|
|
|
|
def set_input_embeddings(self, embeddings):
|
|
self.encoder.embed_tokens = embeddings
|
|
|
|
def forward(self, *args, **kwargs):
|
|
return self.encoder(*args, **kwargs)
|