mirror of
https://github.com/AUTOMATIC1111/stable-diffusion-webui.git
synced 2025-01-17 20:00:12 +08:00
96 lines
3.7 KiB
Python
96 lines
3.7 KiB
Python
import logging
|
|
import sys
|
|
|
|
import torch
|
|
from PIL import Image
|
|
|
|
from modules import devices, modelloader, script_callbacks, shared, upscaler_utils
|
|
from modules.upscaler import Upscaler, UpscalerData
|
|
|
|
SWINIR_MODEL_URL = "https://github.com/JingyunLiang/SwinIR/releases/download/v0.0/003_realSR_BSRGAN_DFOWMFC_s64w8_SwinIR-L_x4_GAN.pth"
|
|
|
|
logger = logging.getLogger(__name__)
|
|
|
|
|
|
class UpscalerSwinIR(Upscaler):
|
|
def __init__(self, dirname):
|
|
self._cached_model = None # keep the model when SWIN_torch_compile is on to prevent re-compile every runs
|
|
self._cached_model_config = None # to clear '_cached_model' when changing model (v1/v2) or settings
|
|
self.name = "SwinIR"
|
|
self.model_url = SWINIR_MODEL_URL
|
|
self.model_name = "SwinIR 4x"
|
|
self.user_path = dirname
|
|
super().__init__()
|
|
scalers = []
|
|
model_files = self.find_models(ext_filter=[".pt", ".pth"])
|
|
for model in model_files:
|
|
if model.startswith("http"):
|
|
name = self.model_name
|
|
else:
|
|
name = modelloader.friendly_name(model)
|
|
model_data = UpscalerData(name, model, self)
|
|
scalers.append(model_data)
|
|
self.scalers = scalers
|
|
|
|
def do_upscale(self, img: Image.Image, model_file: str) -> Image.Image:
|
|
current_config = (model_file, shared.opts.SWIN_tile)
|
|
|
|
if self._cached_model_config == current_config:
|
|
model = self._cached_model
|
|
else:
|
|
try:
|
|
model = self.load_model(model_file)
|
|
except Exception as e:
|
|
print(f"Failed loading SwinIR model {model_file}: {e}", file=sys.stderr)
|
|
return img
|
|
self._cached_model = model
|
|
self._cached_model_config = current_config
|
|
|
|
img = upscaler_utils.upscale_2(
|
|
img,
|
|
model,
|
|
tile_size=shared.opts.SWIN_tile,
|
|
tile_overlap=shared.opts.SWIN_tile_overlap,
|
|
scale=model.scale,
|
|
desc="SwinIR",
|
|
)
|
|
devices.torch_gc()
|
|
return img
|
|
|
|
def load_model(self, path, scale=4):
|
|
if path.startswith("http"):
|
|
filename = modelloader.load_file_from_url(
|
|
url=path,
|
|
model_dir=self.model_download_path,
|
|
file_name=f"{self.model_name.replace(' ', '_')}.pth",
|
|
)
|
|
else:
|
|
filename = path
|
|
|
|
model_descriptor = modelloader.load_spandrel_model(
|
|
filename,
|
|
device=self._get_device(),
|
|
prefer_half=(devices.dtype == torch.float16),
|
|
expected_architecture="SwinIR",
|
|
)
|
|
if getattr(shared.opts, 'SWIN_torch_compile', False):
|
|
try:
|
|
model_descriptor.model.compile()
|
|
except Exception:
|
|
logger.warning("Failed to compile SwinIR model, fallback to JIT", exc_info=True)
|
|
return model_descriptor
|
|
|
|
def _get_device(self):
|
|
return devices.get_device_for('swinir')
|
|
|
|
|
|
def on_ui_settings():
|
|
import gradio as gr
|
|
|
|
shared.opts.add_option("SWIN_tile", shared.OptionInfo(192, "Tile size for all SwinIR.", gr.Slider, {"minimum": 16, "maximum": 512, "step": 16}, section=('upscaling', "Upscaling")))
|
|
shared.opts.add_option("SWIN_tile_overlap", shared.OptionInfo(8, "Tile overlap, in pixels for SwinIR. Low values = visible seam.", gr.Slider, {"minimum": 0, "maximum": 48, "step": 1}, section=('upscaling', "Upscaling")))
|
|
shared.opts.add_option("SWIN_torch_compile", shared.OptionInfo(False, "Use torch.compile to accelerate SwinIR.", gr.Checkbox, {"interactive": True}, section=('upscaling', "Upscaling")).info("Takes longer on first run"))
|
|
|
|
|
|
script_callbacks.on_ui_settings(on_ui_settings)
|