mirror of
https://github.com/AUTOMATIC1111/stable-diffusion-webui.git
synced 2025-01-04 13:55:06 +08:00
187 lines
6.4 KiB
Python
187 lines
6.4 KiB
Python
import logging
|
|
import sys
|
|
|
|
import numpy as np
|
|
import torch
|
|
from PIL import Image
|
|
from tqdm import tqdm
|
|
|
|
from modules import modelloader, devices, script_callbacks, shared
|
|
from modules.shared import opts, state
|
|
from modules.upscaler import Upscaler, UpscalerData
|
|
|
|
SWINIR_MODEL_URL = "https://github.com/JingyunLiang/SwinIR/releases/download/v0.0/003_realSR_BSRGAN_DFOWMFC_s64w8_SwinIR-L_x4_GAN.pth"
|
|
|
|
logger = logging.getLogger(__name__)
|
|
|
|
|
|
class UpscalerSwinIR(Upscaler):
|
|
def __init__(self, dirname):
|
|
self._cached_model = None # keep the model when SWIN_torch_compile is on to prevent re-compile every runs
|
|
self._cached_model_config = None # to clear '_cached_model' when changing model (v1/v2) or settings
|
|
self.name = "SwinIR"
|
|
self.model_url = SWINIR_MODEL_URL
|
|
self.model_name = "SwinIR 4x"
|
|
self.user_path = dirname
|
|
super().__init__()
|
|
scalers = []
|
|
model_files = self.find_models(ext_filter=[".pt", ".pth"])
|
|
for model in model_files:
|
|
if model.startswith("http"):
|
|
name = self.model_name
|
|
else:
|
|
name = modelloader.friendly_name(model)
|
|
model_data = UpscalerData(name, model, self)
|
|
scalers.append(model_data)
|
|
self.scalers = scalers
|
|
|
|
def do_upscale(self, img: Image.Image, model_file: str) -> Image.Image:
|
|
current_config = (model_file, opts.SWIN_tile)
|
|
|
|
device = self._get_device()
|
|
|
|
if self._cached_model_config == current_config:
|
|
model = self._cached_model
|
|
else:
|
|
try:
|
|
model = self.load_model(model_file)
|
|
except Exception as e:
|
|
print(f"Failed loading SwinIR model {model_file}: {e}", file=sys.stderr)
|
|
return img
|
|
self._cached_model = model
|
|
self._cached_model_config = current_config
|
|
|
|
img = upscale(
|
|
img,
|
|
model,
|
|
tile=opts.SWIN_tile,
|
|
tile_overlap=opts.SWIN_tile_overlap,
|
|
device=device,
|
|
)
|
|
devices.torch_gc()
|
|
return img
|
|
|
|
def load_model(self, path, scale=4):
|
|
if path.startswith("http"):
|
|
filename = modelloader.load_file_from_url(
|
|
url=path,
|
|
model_dir=self.model_download_path,
|
|
file_name=f"{self.model_name.replace(' ', '_')}.pth",
|
|
)
|
|
else:
|
|
filename = path
|
|
|
|
model = modelloader.load_spandrel_model(
|
|
filename,
|
|
device=self._get_device(),
|
|
dtype=devices.dtype,
|
|
)
|
|
if getattr(opts, 'SWIN_torch_compile', False):
|
|
try:
|
|
model = torch.compile(model)
|
|
except Exception:
|
|
logger.warning("Failed to compile SwinIR model, fallback to JIT", exc_info=True)
|
|
return model
|
|
|
|
def _get_device(self):
|
|
return devices.get_device_for('swinir')
|
|
|
|
|
|
def upscale(
|
|
img,
|
|
model,
|
|
*,
|
|
tile: int,
|
|
tile_overlap: int,
|
|
window_size=8,
|
|
scale=4,
|
|
device,
|
|
):
|
|
|
|
img = np.array(img)
|
|
img = img[:, :, ::-1]
|
|
img = np.moveaxis(img, 2, 0) / 255
|
|
img = torch.from_numpy(img).float()
|
|
img = img.unsqueeze(0).to(device, dtype=devices.dtype)
|
|
with torch.no_grad(), devices.autocast():
|
|
_, _, h_old, w_old = img.size()
|
|
h_pad = (h_old // window_size + 1) * window_size - h_old
|
|
w_pad = (w_old // window_size + 1) * window_size - w_old
|
|
img = torch.cat([img, torch.flip(img, [2])], 2)[:, :, : h_old + h_pad, :]
|
|
img = torch.cat([img, torch.flip(img, [3])], 3)[:, :, :, : w_old + w_pad]
|
|
output = inference(
|
|
img,
|
|
model,
|
|
tile=tile,
|
|
tile_overlap=tile_overlap,
|
|
window_size=window_size,
|
|
scale=scale,
|
|
device=device,
|
|
)
|
|
output = output[..., : h_old * scale, : w_old * scale]
|
|
output = output.data.squeeze().float().cpu().clamp_(0, 1).numpy()
|
|
if output.ndim == 3:
|
|
output = np.transpose(
|
|
output[[2, 1, 0], :, :], (1, 2, 0)
|
|
) # CHW-RGB to HCW-BGR
|
|
output = (output * 255.0).round().astype(np.uint8) # float32 to uint8
|
|
return Image.fromarray(output, "RGB")
|
|
|
|
|
|
def inference(
|
|
img,
|
|
model,
|
|
*,
|
|
tile: int,
|
|
tile_overlap: int,
|
|
window_size: int,
|
|
scale: int,
|
|
device,
|
|
):
|
|
# test the image tile by tile
|
|
b, c, h, w = img.size()
|
|
tile = min(tile, h, w)
|
|
assert tile % window_size == 0, "tile size should be a multiple of window_size"
|
|
sf = scale
|
|
|
|
stride = tile - tile_overlap
|
|
h_idx_list = list(range(0, h - tile, stride)) + [h - tile]
|
|
w_idx_list = list(range(0, w - tile, stride)) + [w - tile]
|
|
E = torch.zeros(b, c, h * sf, w * sf, dtype=devices.dtype, device=device).type_as(img)
|
|
W = torch.zeros_like(E, dtype=devices.dtype, device=device)
|
|
|
|
with tqdm(total=len(h_idx_list) * len(w_idx_list), desc="SwinIR tiles") as pbar:
|
|
for h_idx in h_idx_list:
|
|
if state.interrupted or state.skipped:
|
|
break
|
|
|
|
for w_idx in w_idx_list:
|
|
if state.interrupted or state.skipped:
|
|
break
|
|
|
|
in_patch = img[..., h_idx: h_idx + tile, w_idx: w_idx + tile]
|
|
out_patch = model(in_patch)
|
|
out_patch_mask = torch.ones_like(out_patch)
|
|
|
|
E[
|
|
..., h_idx * sf: (h_idx + tile) * sf, w_idx * sf: (w_idx + tile) * sf
|
|
].add_(out_patch)
|
|
W[
|
|
..., h_idx * sf: (h_idx + tile) * sf, w_idx * sf: (w_idx + tile) * sf
|
|
].add_(out_patch_mask)
|
|
pbar.update(1)
|
|
output = E.div_(W)
|
|
|
|
return output
|
|
|
|
|
|
def on_ui_settings():
|
|
import gradio as gr
|
|
|
|
shared.opts.add_option("SWIN_tile", shared.OptionInfo(192, "Tile size for all SwinIR.", gr.Slider, {"minimum": 16, "maximum": 512, "step": 16}, section=('upscaling', "Upscaling")))
|
|
shared.opts.add_option("SWIN_tile_overlap", shared.OptionInfo(8, "Tile overlap, in pixels for SwinIR. Low values = visible seam.", gr.Slider, {"minimum": 0, "maximum": 48, "step": 1}, section=('upscaling', "Upscaling")))
|
|
shared.opts.add_option("SWIN_torch_compile", shared.OptionInfo(False, "Use torch.compile to accelerate SwinIR.", gr.Checkbox, {"interactive": True}, section=('upscaling', "Upscaling")).info("Takes longer on first run"))
|
|
|
|
|
|
script_callbacks.on_ui_settings(on_ui_settings)
|