mirror of
https://github.com/AUTOMATIC1111/stable-diffusion-webui.git
synced 2025-01-22 06:10:10 +08:00
a9eef1fbb1
The loopback script did not set masked content to original after first loop. So each loop would apply a fill, or latent mask. This would essentially reset progress each loop. The desired behavior is to use the mask for the first loop, then continue to iterate on the results of the previous loop.
144 lines
5.3 KiB
Python
144 lines
5.3 KiB
Python
import math
|
|
|
|
import gradio as gr
|
|
import modules.scripts as scripts
|
|
from modules import deepbooru, images, processing, shared
|
|
from modules.processing import Processed
|
|
from modules.shared import opts, state
|
|
|
|
|
|
class Script(scripts.Script):
|
|
def title(self):
|
|
return "Loopback"
|
|
|
|
def show(self, is_img2img):
|
|
return is_img2img
|
|
|
|
def ui(self, is_img2img):
|
|
loops = gr.Slider(minimum=1, maximum=32, step=1, label='Loops', value=4, elem_id=self.elem_id("loops"))
|
|
final_denoising_strength = gr.Slider(minimum=0, maximum=1, step=0.01, label='Final denoising strength', value=0.5, elem_id=self.elem_id("final_denoising_strength"))
|
|
denoising_curve = gr.Dropdown(label="Denoising strength curve", choices=["Aggressive", "Linear", "Lazy"], value="Linear")
|
|
append_interrogation = gr.Dropdown(label="Append interrogated prompt at each iteration", choices=["None", "CLIP", "DeepBooru"], value="None")
|
|
|
|
return [loops, final_denoising_strength, denoising_curve, append_interrogation]
|
|
|
|
def run(self, p, loops, final_denoising_strength, denoising_curve, append_interrogation):
|
|
processing.fix_seed(p)
|
|
batch_count = p.n_iter
|
|
p.extra_generation_params = {
|
|
"Final denoising strength": final_denoising_strength,
|
|
"Denoising curve": denoising_curve
|
|
}
|
|
|
|
p.batch_size = 1
|
|
p.n_iter = 1
|
|
|
|
info = None
|
|
initial_seed = None
|
|
initial_info = None
|
|
initial_denoising_strength = p.denoising_strength
|
|
|
|
grids = []
|
|
all_images = []
|
|
original_init_image = p.init_images
|
|
original_prompt = p.prompt
|
|
original_inpainting_fill = p.inpainting_fill
|
|
state.job_count = loops * batch_count
|
|
|
|
initial_color_corrections = [processing.setup_color_correction(p.init_images[0])]
|
|
|
|
def calculate_denoising_strength(loop):
|
|
strength = initial_denoising_strength
|
|
|
|
if loops == 1:
|
|
return strength
|
|
|
|
progress = loop / (loops - 1)
|
|
match denoising_curve:
|
|
case "Aggressive":
|
|
strength = math.sin((progress) * math.pi * 0.5)
|
|
|
|
case "Lazy":
|
|
strength = 1 - math.cos((progress) * math.pi * 0.5)
|
|
|
|
case _:
|
|
strength = progress
|
|
|
|
change = (final_denoising_strength - initial_denoising_strength) * strength
|
|
return initial_denoising_strength + change
|
|
|
|
history = []
|
|
|
|
for n in range(batch_count):
|
|
# Reset to original init image at the start of each batch
|
|
p.init_images = original_init_image
|
|
|
|
# Reset to original denoising strength
|
|
p.denoising_strength = initial_denoising_strength
|
|
|
|
last_image = None
|
|
|
|
for i in range(loops):
|
|
p.n_iter = 1
|
|
p.batch_size = 1
|
|
p.do_not_save_grid = True
|
|
|
|
if opts.img2img_color_correction:
|
|
p.color_corrections = initial_color_corrections
|
|
|
|
if append_interrogation != "None":
|
|
p.prompt = original_prompt + ", " if original_prompt != "" else ""
|
|
if append_interrogation == "CLIP":
|
|
p.prompt += shared.interrogator.interrogate(p.init_images[0])
|
|
elif append_interrogation == "DeepBooru":
|
|
p.prompt += deepbooru.model.tag(p.init_images[0])
|
|
|
|
state.job = f"Iteration {i + 1}/{loops}, batch {n + 1}/{batch_count}"
|
|
|
|
processed = processing.process_images(p)
|
|
|
|
# Generation cancelled.
|
|
if state.interrupted:
|
|
break
|
|
|
|
if initial_seed is None:
|
|
initial_seed = processed.seed
|
|
initial_info = processed.info
|
|
|
|
p.seed = processed.seed + 1
|
|
p.denoising_strength = calculate_denoising_strength(i + 1)
|
|
|
|
if state.skipped:
|
|
break
|
|
|
|
last_image = processed.images[0]
|
|
p.init_images = [last_image]
|
|
p.inpainting_fill = 1 # Set "masked content" to "original" for next loop.
|
|
|
|
if batch_count == 1:
|
|
history.append(last_image)
|
|
all_images.append(last_image)
|
|
|
|
if batch_count > 1 and not state.skipped and not state.interrupted:
|
|
history.append(last_image)
|
|
all_images.append(last_image)
|
|
|
|
p.inpainting_fill = original_inpainting_fill
|
|
|
|
if state.interrupted:
|
|
break
|
|
|
|
if len(history) > 1:
|
|
grid = images.image_grid(history, rows=1)
|
|
if opts.grid_save:
|
|
images.save_image(grid, p.outpath_grids, "grid", initial_seed, p.prompt, opts.grid_format, info=info, short_filename=not opts.grid_extended_filename, grid=True, p=p)
|
|
|
|
if opts.return_grid:
|
|
grids.append(grid)
|
|
|
|
all_images = grids + all_images
|
|
|
|
processed = Processed(p, all_images, initial_seed, initial_info)
|
|
|
|
return processed
|