mirror of
https://github.com/AUTOMATIC1111/stable-diffusion-webui.git
synced 2025-01-22 06:10:10 +08:00
238adeaffb
update lora code support full module
56 lines
2.1 KiB
Python
56 lines
2.1 KiB
Python
import lyco_helpers
|
|
import network
|
|
|
|
|
|
class ModuleTypeHada(network.ModuleType):
|
|
def create_module(self, net: network.Network, weights: network.NetworkWeights):
|
|
if all(x in weights.w for x in ["hada_w1_a", "hada_w1_b", "hada_w2_a", "hada_w2_b"]):
|
|
return NetworkModuleHada(net, weights)
|
|
|
|
return None
|
|
|
|
|
|
class NetworkModuleHada(network.NetworkModule):
|
|
def __init__(self, net: network.Network, weights: network.NetworkWeights):
|
|
super().__init__(net, weights)
|
|
|
|
if hasattr(self.sd_module, 'weight'):
|
|
self.shape = self.sd_module.weight.shape
|
|
|
|
self.w1a = weights.w["hada_w1_a"]
|
|
self.w1b = weights.w["hada_w1_b"]
|
|
self.dim = self.w1b.shape[0]
|
|
self.w2a = weights.w["hada_w2_a"]
|
|
self.w2b = weights.w["hada_w2_b"]
|
|
|
|
self.t1 = weights.w.get("hada_t1")
|
|
self.t2 = weights.w.get("hada_t2")
|
|
|
|
def calc_updown(self, orig_weight):
|
|
w1a = self.w1a.to(orig_weight.device, dtype=orig_weight.dtype)
|
|
w1b = self.w1b.to(orig_weight.device, dtype=orig_weight.dtype)
|
|
w2a = self.w2a.to(orig_weight.device, dtype=orig_weight.dtype)
|
|
w2b = self.w2b.to(orig_weight.device, dtype=orig_weight.dtype)
|
|
|
|
output_shape = [w1a.size(0), w1b.size(1)]
|
|
|
|
if self.t1 is not None:
|
|
output_shape = [w1a.size(1), w1b.size(1)]
|
|
t1 = self.t1.to(orig_weight.device, dtype=orig_weight.dtype)
|
|
updown1 = lyco_helpers.make_weight_cp(t1, w1a, w1b)
|
|
output_shape += t1.shape[2:]
|
|
else:
|
|
if len(w1b.shape) == 4:
|
|
output_shape += w1b.shape[2:]
|
|
updown1 = lyco_helpers.rebuild_conventional(w1a, w1b, output_shape)
|
|
|
|
if self.t2 is not None:
|
|
t2 = self.t2.to(orig_weight.device, dtype=orig_weight.dtype)
|
|
updown2 = lyco_helpers.make_weight_cp(t2, w2a, w2b)
|
|
else:
|
|
updown2 = lyco_helpers.rebuild_conventional(w2a, w2b, output_shape)
|
|
|
|
updown = updown1 * updown2
|
|
|
|
return self.finalize_updown(updown, orig_weight, output_shape)
|