mirror of
https://github.com/AUTOMATIC1111/stable-diffusion-webui.git
synced 2025-01-04 13:55:06 +08:00
3e068de0dc
using the order from before the rework
11d23e8ca5
65 lines
3.1 KiB
Python
65 lines
3.1 KiB
Python
from PIL import Image
|
|
|
|
from modules import scripts_postprocessing, ui_components
|
|
import gradio as gr
|
|
|
|
|
|
def center_crop(image: Image, w: int, h: int):
|
|
iw, ih = image.size
|
|
if ih / h < iw / w:
|
|
sw = w * ih / h
|
|
box = (iw - sw) / 2, 0, iw - (iw - sw) / 2, ih
|
|
else:
|
|
sh = h * iw / w
|
|
box = 0, (ih - sh) / 2, iw, ih - (ih - sh) / 2
|
|
return image.resize((w, h), Image.Resampling.LANCZOS, box)
|
|
|
|
|
|
def multicrop_pic(image: Image, mindim, maxdim, minarea, maxarea, objective, threshold):
|
|
iw, ih = image.size
|
|
err = lambda w, h: 1 - (lambda x: x if x < 1 else 1 / x)(iw / ih / (w / h))
|
|
wh = max(((w, h) for w in range(mindim, maxdim + 1, 64) for h in range(mindim, maxdim + 1, 64)
|
|
if minarea <= w * h <= maxarea and err(w, h) <= threshold),
|
|
key=lambda wh: (wh[0] * wh[1], -err(*wh))[::1 if objective == 'Maximize area' else -1],
|
|
default=None
|
|
)
|
|
return wh and center_crop(image, *wh)
|
|
|
|
|
|
class ScriptPostprocessingAutosizedCrop(scripts_postprocessing.ScriptPostprocessing):
|
|
name = "Auto-sized crop"
|
|
order = 4020
|
|
|
|
def ui(self):
|
|
with ui_components.InputAccordion(False, label="Auto-sized crop") as enable:
|
|
gr.Markdown('Each image is center-cropped with an automatically chosen width and height.')
|
|
with gr.Row():
|
|
mindim = gr.Slider(minimum=64, maximum=2048, step=8, label="Dimension lower bound", value=384, elem_id="postprocess_multicrop_mindim")
|
|
maxdim = gr.Slider(minimum=64, maximum=2048, step=8, label="Dimension upper bound", value=768, elem_id="postprocess_multicrop_maxdim")
|
|
with gr.Row():
|
|
minarea = gr.Slider(minimum=64 * 64, maximum=2048 * 2048, step=1, label="Area lower bound", value=64 * 64, elem_id="postprocess_multicrop_minarea")
|
|
maxarea = gr.Slider(minimum=64 * 64, maximum=2048 * 2048, step=1, label="Area upper bound", value=640 * 640, elem_id="postprocess_multicrop_maxarea")
|
|
with gr.Row():
|
|
objective = gr.Radio(["Maximize area", "Minimize error"], value="Maximize area", label="Resizing objective", elem_id="postprocess_multicrop_objective")
|
|
threshold = gr.Slider(minimum=0, maximum=1, step=0.01, label="Error threshold", value=0.1, elem_id="postprocess_multicrop_threshold")
|
|
|
|
return {
|
|
"enable": enable,
|
|
"mindim": mindim,
|
|
"maxdim": maxdim,
|
|
"minarea": minarea,
|
|
"maxarea": maxarea,
|
|
"objective": objective,
|
|
"threshold": threshold,
|
|
}
|
|
|
|
def process(self, pp: scripts_postprocessing.PostprocessedImage, enable, mindim, maxdim, minarea, maxarea, objective, threshold):
|
|
if not enable:
|
|
return
|
|
|
|
cropped = multicrop_pic(pp.image, mindim, maxdim, minarea, maxarea, objective, threshold)
|
|
if cropped is not None:
|
|
pp.image = cropped
|
|
else:
|
|
print(f"skipped {pp.image.width}x{pp.image.height} image (can't find suitable size within error threshold)")
|