mirror of
https://github.com/AUTOMATIC1111/stable-diffusion-webui.git
synced 2024-12-29 19:05:05 +08:00
169 lines
5.7 KiB
Python
169 lines
5.7 KiB
Python
import importlib
|
|
import logging
|
|
import os
|
|
import sys
|
|
import warnings
|
|
from threading import Thread
|
|
|
|
from modules.timer import startup_timer
|
|
|
|
|
|
def imports():
|
|
logging.getLogger("torch.distributed.nn").setLevel(logging.ERROR) # sshh...
|
|
logging.getLogger("xformers").addFilter(lambda record: 'A matching Triton is not available' not in record.getMessage())
|
|
|
|
import torch # noqa: F401
|
|
startup_timer.record("import torch")
|
|
import pytorch_lightning # noqa: F401
|
|
startup_timer.record("import torch")
|
|
warnings.filterwarnings(action="ignore", category=DeprecationWarning, module="pytorch_lightning")
|
|
warnings.filterwarnings(action="ignore", category=UserWarning, module="torchvision")
|
|
|
|
os.environ.setdefault('GRADIO_ANALYTICS_ENABLED', 'False')
|
|
import gradio # noqa: F401
|
|
startup_timer.record("import gradio")
|
|
|
|
from modules import paths, timer, import_hook, errors # noqa: F401
|
|
startup_timer.record("setup paths")
|
|
|
|
import ldm.modules.encoders.modules # noqa: F401
|
|
startup_timer.record("import ldm")
|
|
|
|
import sgm.modules.encoders.modules # noqa: F401
|
|
startup_timer.record("import sgm")
|
|
|
|
from modules import shared_init
|
|
shared_init.initialize()
|
|
startup_timer.record("initialize shared")
|
|
|
|
from modules import processing, gradio_extensons, ui # noqa: F401
|
|
startup_timer.record("other imports")
|
|
|
|
|
|
def check_versions():
|
|
from modules.shared_cmd_options import cmd_opts
|
|
|
|
if not cmd_opts.skip_version_check:
|
|
from modules import errors
|
|
errors.check_versions()
|
|
|
|
|
|
def initialize():
|
|
from modules import initialize_util
|
|
initialize_util.fix_torch_version()
|
|
initialize_util.fix_asyncio_event_loop_policy()
|
|
initialize_util.validate_tls_options()
|
|
initialize_util.configure_sigint_handler()
|
|
initialize_util.configure_opts_onchange()
|
|
|
|
from modules import sd_models
|
|
sd_models.setup_model()
|
|
startup_timer.record("setup SD model")
|
|
|
|
from modules.shared_cmd_options import cmd_opts
|
|
|
|
from modules import codeformer_model
|
|
warnings.filterwarnings(action="ignore", category=UserWarning, module="torchvision.transforms.functional_tensor")
|
|
codeformer_model.setup_model(cmd_opts.codeformer_models_path)
|
|
startup_timer.record("setup codeformer")
|
|
|
|
from modules import gfpgan_model
|
|
gfpgan_model.setup_model(cmd_opts.gfpgan_models_path)
|
|
startup_timer.record("setup gfpgan")
|
|
|
|
initialize_rest(reload_script_modules=False)
|
|
|
|
|
|
def initialize_rest(*, reload_script_modules=False):
|
|
"""
|
|
Called both from initialize() and when reloading the webui.
|
|
"""
|
|
from modules.shared_cmd_options import cmd_opts
|
|
|
|
from modules import sd_samplers
|
|
sd_samplers.set_samplers()
|
|
startup_timer.record("set samplers")
|
|
|
|
from modules import extensions
|
|
extensions.list_extensions()
|
|
startup_timer.record("list extensions")
|
|
|
|
from modules import initialize_util
|
|
initialize_util.restore_config_state_file()
|
|
startup_timer.record("restore config state file")
|
|
|
|
from modules import shared, upscaler, scripts
|
|
if cmd_opts.ui_debug_mode:
|
|
shared.sd_upscalers = upscaler.UpscalerLanczos().scalers
|
|
scripts.load_scripts()
|
|
return
|
|
|
|
from modules import sd_models
|
|
sd_models.list_models()
|
|
startup_timer.record("list SD models")
|
|
|
|
from modules import localization
|
|
localization.list_localizations(cmd_opts.localizations_dir)
|
|
startup_timer.record("list localizations")
|
|
|
|
with startup_timer.subcategory("load scripts"):
|
|
scripts.load_scripts()
|
|
|
|
if reload_script_modules:
|
|
for module in [module for name, module in sys.modules.items() if name.startswith("modules.ui")]:
|
|
importlib.reload(module)
|
|
startup_timer.record("reload script modules")
|
|
|
|
from modules import modelloader
|
|
modelloader.load_upscalers()
|
|
startup_timer.record("load upscalers")
|
|
|
|
from modules import sd_vae
|
|
sd_vae.refresh_vae_list()
|
|
startup_timer.record("refresh VAE")
|
|
|
|
from modules import textual_inversion
|
|
textual_inversion.textual_inversion.list_textual_inversion_templates()
|
|
startup_timer.record("refresh textual inversion templates")
|
|
|
|
from modules import script_callbacks, sd_hijack_optimizations, sd_hijack
|
|
script_callbacks.on_list_optimizers(sd_hijack_optimizations.list_optimizers)
|
|
sd_hijack.list_optimizers()
|
|
startup_timer.record("scripts list_optimizers")
|
|
|
|
from modules import sd_unet
|
|
sd_unet.list_unets()
|
|
startup_timer.record("scripts list_unets")
|
|
|
|
def load_model():
|
|
"""
|
|
Accesses shared.sd_model property to load model.
|
|
After it's available, if it has been loaded before this access by some extension,
|
|
its optimization may be None because the list of optimizaers has neet been filled
|
|
by that time, so we apply optimization again.
|
|
"""
|
|
from modules import devices
|
|
devices.torch_npu_set_device()
|
|
|
|
shared.sd_model # noqa: B018
|
|
|
|
if sd_hijack.current_optimizer is None:
|
|
sd_hijack.apply_optimizations()
|
|
|
|
devices.first_time_calculation()
|
|
if not shared.cmd_opts.skip_load_model_at_start:
|
|
Thread(target=load_model).start()
|
|
|
|
from modules import shared_items
|
|
shared_items.reload_hypernetworks()
|
|
startup_timer.record("reload hypernetworks")
|
|
|
|
from modules import ui_extra_networks
|
|
ui_extra_networks.initialize()
|
|
ui_extra_networks.register_default_pages()
|
|
|
|
from modules import extra_networks
|
|
extra_networks.initialize()
|
|
extra_networks.register_default_extra_networks()
|
|
startup_timer.record("initialize extra networks")
|