mirror of
https://github.com/AUTOMATIC1111/stable-diffusion-webui.git
synced 2025-01-18 04:10:11 +08:00
faed465a0b
Get ESRGAN, SCUNet, and SwinIR working correctly on MPS by ensuring memory is contiguous for tensor views before sending to MPS device.
162 lines
5.7 KiB
Python
162 lines
5.7 KiB
Python
import contextlib
|
|
import os
|
|
|
|
import numpy as np
|
|
import torch
|
|
from PIL import Image
|
|
from basicsr.utils.download_util import load_file_from_url
|
|
from tqdm import tqdm
|
|
|
|
from modules import modelloader, devices
|
|
from modules.shared import cmd_opts, opts
|
|
from modules.swinir_model_arch import SwinIR as net
|
|
from modules.swinir_model_arch_v2 import Swin2SR as net2
|
|
from modules.upscaler import Upscaler, UpscalerData
|
|
|
|
precision_scope = (
|
|
torch.autocast if cmd_opts.precision == "autocast" else contextlib.nullcontext
|
|
)
|
|
|
|
|
|
class UpscalerSwinIR(Upscaler):
|
|
def __init__(self, dirname):
|
|
self.name = "SwinIR"
|
|
self.model_url = "https://github.com/JingyunLiang/SwinIR/releases/download/v0.0" \
|
|
"/003_realSR_BSRGAN_DFOWMFC_s64w8_SwinIR" \
|
|
"-L_x4_GAN.pth "
|
|
self.model_name = "SwinIR 4x"
|
|
self.user_path = dirname
|
|
super().__init__()
|
|
scalers = []
|
|
model_files = self.find_models(ext_filter=[".pt", ".pth"])
|
|
for model in model_files:
|
|
if "http" in model:
|
|
name = self.model_name
|
|
else:
|
|
name = modelloader.friendly_name(model)
|
|
model_data = UpscalerData(name, model, self)
|
|
scalers.append(model_data)
|
|
self.scalers = scalers
|
|
|
|
def do_upscale(self, img, model_file):
|
|
model = self.load_model(model_file)
|
|
if model is None:
|
|
return img
|
|
model = model.to(devices.device_swinir)
|
|
img = upscale(img, model)
|
|
try:
|
|
torch.cuda.empty_cache()
|
|
except:
|
|
pass
|
|
return img
|
|
|
|
def load_model(self, path, scale=4):
|
|
if "http" in path:
|
|
dl_name = "%s%s" % (self.model_name.replace(" ", "_"), ".pth")
|
|
filename = load_file_from_url(url=path, model_dir=self.model_path, file_name=dl_name, progress=True)
|
|
else:
|
|
filename = path
|
|
if filename is None or not os.path.exists(filename):
|
|
return None
|
|
if filename.endswith(".v2.pth"):
|
|
model = net2(
|
|
upscale=scale,
|
|
in_chans=3,
|
|
img_size=64,
|
|
window_size=8,
|
|
img_range=1.0,
|
|
depths=[6, 6, 6, 6, 6, 6],
|
|
embed_dim=180,
|
|
num_heads=[6, 6, 6, 6, 6, 6],
|
|
mlp_ratio=2,
|
|
upsampler="nearest+conv",
|
|
resi_connection="1conv",
|
|
)
|
|
params = None
|
|
else:
|
|
model = net(
|
|
upscale=scale,
|
|
in_chans=3,
|
|
img_size=64,
|
|
window_size=8,
|
|
img_range=1.0,
|
|
depths=[6, 6, 6, 6, 6, 6, 6, 6, 6],
|
|
embed_dim=240,
|
|
num_heads=[8, 8, 8, 8, 8, 8, 8, 8, 8],
|
|
mlp_ratio=2,
|
|
upsampler="nearest+conv",
|
|
resi_connection="3conv",
|
|
)
|
|
params = "params_ema"
|
|
|
|
pretrained_model = torch.load(filename)
|
|
if params is not None:
|
|
model.load_state_dict(pretrained_model[params], strict=True)
|
|
else:
|
|
model.load_state_dict(pretrained_model, strict=True)
|
|
if not cmd_opts.no_half:
|
|
model = model.half()
|
|
return model
|
|
|
|
|
|
def upscale(
|
|
img,
|
|
model,
|
|
tile=opts.SWIN_tile,
|
|
tile_overlap=opts.SWIN_tile_overlap,
|
|
window_size=8,
|
|
scale=4,
|
|
):
|
|
img = np.array(img)
|
|
img = img[:, :, ::-1]
|
|
img = np.moveaxis(img, 2, 0) / 255
|
|
img = torch.from_numpy(img).float()
|
|
img = devices.mps_contiguous_to(img.unsqueeze(0), devices.device_swinir)
|
|
with torch.no_grad(), precision_scope("cuda"):
|
|
_, _, h_old, w_old = img.size()
|
|
h_pad = (h_old // window_size + 1) * window_size - h_old
|
|
w_pad = (w_old // window_size + 1) * window_size - w_old
|
|
img = torch.cat([img, torch.flip(img, [2])], 2)[:, :, : h_old + h_pad, :]
|
|
img = torch.cat([img, torch.flip(img, [3])], 3)[:, :, :, : w_old + w_pad]
|
|
output = inference(img, model, tile, tile_overlap, window_size, scale)
|
|
output = output[..., : h_old * scale, : w_old * scale]
|
|
output = output.data.squeeze().float().cpu().clamp_(0, 1).numpy()
|
|
if output.ndim == 3:
|
|
output = np.transpose(
|
|
output[[2, 1, 0], :, :], (1, 2, 0)
|
|
) # CHW-RGB to HCW-BGR
|
|
output = (output * 255.0).round().astype(np.uint8) # float32 to uint8
|
|
return Image.fromarray(output, "RGB")
|
|
|
|
|
|
def inference(img, model, tile, tile_overlap, window_size, scale):
|
|
# test the image tile by tile
|
|
b, c, h, w = img.size()
|
|
tile = min(tile, h, w)
|
|
assert tile % window_size == 0, "tile size should be a multiple of window_size"
|
|
sf = scale
|
|
|
|
stride = tile - tile_overlap
|
|
h_idx_list = list(range(0, h - tile, stride)) + [h - tile]
|
|
w_idx_list = list(range(0, w - tile, stride)) + [w - tile]
|
|
E = torch.zeros(b, c, h * sf, w * sf, dtype=torch.half, device=devices.device_swinir).type_as(img)
|
|
W = torch.zeros_like(E, dtype=torch.half, device=devices.device_swinir)
|
|
|
|
with tqdm(total=len(h_idx_list) * len(w_idx_list), desc="SwinIR tiles") as pbar:
|
|
for h_idx in h_idx_list:
|
|
for w_idx in w_idx_list:
|
|
in_patch = img[..., h_idx: h_idx + tile, w_idx: w_idx + tile]
|
|
out_patch = model(in_patch)
|
|
out_patch_mask = torch.ones_like(out_patch)
|
|
|
|
E[
|
|
..., h_idx * sf: (h_idx + tile) * sf, w_idx * sf: (w_idx + tile) * sf
|
|
].add_(out_patch)
|
|
W[
|
|
..., h_idx * sf: (h_idx + tile) * sf, w_idx * sf: (w_idx + tile) * sf
|
|
].add_(out_patch_mask)
|
|
pbar.update(1)
|
|
output = E.div_(W)
|
|
|
|
return output
|