mirror of
https://github.com/AUTOMATIC1111/stable-diffusion-webui.git
synced 2025-01-18 04:10:11 +08:00
761 lines
30 KiB
Python
761 lines
30 KiB
Python
import numpy as np
|
|
import gradio as gr
|
|
import math
|
|
from modules.ui_components import InputAccordion
|
|
import modules.scripts as scripts
|
|
from modules.torch_utils import float64
|
|
|
|
|
|
class SoftInpaintingSettings:
|
|
def __init__(self,
|
|
mask_blend_power,
|
|
mask_blend_scale,
|
|
inpaint_detail_preservation,
|
|
composite_mask_influence,
|
|
composite_difference_threshold,
|
|
composite_difference_contrast):
|
|
self.mask_blend_power = mask_blend_power
|
|
self.mask_blend_scale = mask_blend_scale
|
|
self.inpaint_detail_preservation = inpaint_detail_preservation
|
|
self.composite_mask_influence = composite_mask_influence
|
|
self.composite_difference_threshold = composite_difference_threshold
|
|
self.composite_difference_contrast = composite_difference_contrast
|
|
|
|
def add_generation_params(self, dest):
|
|
dest[enabled_gen_param_label] = True
|
|
dest[gen_param_labels.mask_blend_power] = self.mask_blend_power
|
|
dest[gen_param_labels.mask_blend_scale] = self.mask_blend_scale
|
|
dest[gen_param_labels.inpaint_detail_preservation] = self.inpaint_detail_preservation
|
|
dest[gen_param_labels.composite_mask_influence] = self.composite_mask_influence
|
|
dest[gen_param_labels.composite_difference_threshold] = self.composite_difference_threshold
|
|
dest[gen_param_labels.composite_difference_contrast] = self.composite_difference_contrast
|
|
|
|
|
|
# ------------------- Methods -------------------
|
|
|
|
def processing_uses_inpainting(p):
|
|
# TODO: Figure out a better way to determine if inpainting is being used by p
|
|
if getattr(p, "image_mask", None) is not None:
|
|
return True
|
|
|
|
if getattr(p, "mask", None) is not None:
|
|
return True
|
|
|
|
if getattr(p, "nmask", None) is not None:
|
|
return True
|
|
|
|
return False
|
|
|
|
|
|
def latent_blend(settings, a, b, t):
|
|
"""
|
|
Interpolates two latent image representations according to the parameter t,
|
|
where the interpolated vectors' magnitudes are also interpolated separately.
|
|
The "detail_preservation" factor biases the magnitude interpolation towards
|
|
the larger of the two magnitudes.
|
|
"""
|
|
import torch
|
|
|
|
# NOTE: We use inplace operations wherever possible.
|
|
|
|
if len(t.shape) == 3:
|
|
# [4][w][h] to [1][4][w][h]
|
|
t2 = t.unsqueeze(0)
|
|
# [4][w][h] to [1][1][w][h] - the [4] seem redundant.
|
|
t3 = t[0].unsqueeze(0).unsqueeze(0)
|
|
else:
|
|
t2 = t
|
|
t3 = t[:, 0][:, None]
|
|
|
|
one_minus_t2 = 1 - t2
|
|
one_minus_t3 = 1 - t3
|
|
|
|
# Linearly interpolate the image vectors.
|
|
a_scaled = a * one_minus_t2
|
|
b_scaled = b * t2
|
|
image_interp = a_scaled
|
|
image_interp.add_(b_scaled)
|
|
result_type = image_interp.dtype
|
|
del a_scaled, b_scaled, t2, one_minus_t2
|
|
|
|
# Calculate the magnitude of the interpolated vectors. (We will remove this magnitude.)
|
|
# 64-bit operations are used here to allow large exponents.
|
|
current_magnitude = torch.norm(image_interp, p=2, dim=1, keepdim=True).to(float64(image_interp)).add_(0.00001)
|
|
|
|
# Interpolate the powered magnitudes, then un-power them (bring them back to a power of 1).
|
|
a_magnitude = torch.norm(a, p=2, dim=1, keepdim=True).to(float64(a)).pow_(settings.inpaint_detail_preservation) * one_minus_t3
|
|
b_magnitude = torch.norm(b, p=2, dim=1, keepdim=True).to(float64(b)).pow_(settings.inpaint_detail_preservation) * t3
|
|
desired_magnitude = a_magnitude
|
|
desired_magnitude.add_(b_magnitude).pow_(1 / settings.inpaint_detail_preservation)
|
|
del a_magnitude, b_magnitude, t3, one_minus_t3
|
|
|
|
# Change the linearly interpolated image vectors' magnitudes to the value we want.
|
|
# This is the last 64-bit operation.
|
|
image_interp_scaling_factor = desired_magnitude
|
|
image_interp_scaling_factor.div_(current_magnitude)
|
|
image_interp_scaling_factor = image_interp_scaling_factor.to(result_type)
|
|
image_interp_scaled = image_interp
|
|
image_interp_scaled.mul_(image_interp_scaling_factor)
|
|
del current_magnitude
|
|
del desired_magnitude
|
|
del image_interp
|
|
del image_interp_scaling_factor
|
|
del result_type
|
|
|
|
return image_interp_scaled
|
|
|
|
|
|
def get_modified_nmask(settings, nmask, sigma):
|
|
"""
|
|
Converts a negative mask representing the transparency of the original latent vectors being overlaid
|
|
to a mask that is scaled according to the denoising strength for this step.
|
|
|
|
Where:
|
|
0 = fully opaque, infinite density, fully masked
|
|
1 = fully transparent, zero density, fully unmasked
|
|
|
|
We bring this transparency to a power, as this allows one to simulate N number of blending operations
|
|
where N can be any positive real value. Using this one can control the balance of influence between
|
|
the denoiser and the original latents according to the sigma value.
|
|
|
|
NOTE: "mask" is not used
|
|
"""
|
|
import torch
|
|
return torch.pow(nmask, (sigma ** settings.mask_blend_power) * settings.mask_blend_scale)
|
|
|
|
|
|
def apply_adaptive_masks(
|
|
settings: SoftInpaintingSettings,
|
|
nmask,
|
|
latent_orig,
|
|
latent_processed,
|
|
overlay_images,
|
|
width, height,
|
|
paste_to):
|
|
import torch
|
|
import modules.processing as proc
|
|
import modules.images as images
|
|
from PIL import Image, ImageOps, ImageFilter
|
|
|
|
# TODO: Bias the blending according to the latent mask, add adjustable parameter for bias control.
|
|
if len(nmask.shape) == 3:
|
|
latent_mask = nmask[0].float()
|
|
else:
|
|
latent_mask = nmask[:, 0].float()
|
|
# convert the original mask into a form we use to scale distances for thresholding
|
|
mask_scalar = 1 - (torch.clamp(latent_mask, min=0, max=1) ** (settings.mask_blend_scale / 2))
|
|
mask_scalar = (0.5 * (1 - settings.composite_mask_influence)
|
|
+ mask_scalar * settings.composite_mask_influence)
|
|
mask_scalar = mask_scalar / (1.00001 - mask_scalar)
|
|
mask_scalar = mask_scalar.cpu().numpy()
|
|
|
|
latent_distance = torch.norm(latent_processed - latent_orig, p=2, dim=1)
|
|
|
|
kernel, kernel_center = get_gaussian_kernel(stddev_radius=1.5, max_radius=2)
|
|
|
|
masks_for_overlay = []
|
|
|
|
for i, (distance_map, overlay_image) in enumerate(zip(latent_distance, overlay_images)):
|
|
converted_mask = distance_map.float().cpu().numpy()
|
|
converted_mask = weighted_histogram_filter(converted_mask, kernel, kernel_center,
|
|
percentile_min=0.9, percentile_max=1, min_width=1)
|
|
converted_mask = weighted_histogram_filter(converted_mask, kernel, kernel_center,
|
|
percentile_min=0.25, percentile_max=0.75, min_width=1)
|
|
|
|
# The distance at which opacity of original decreases to 50%
|
|
if len(mask_scalar.shape) == 3:
|
|
if mask_scalar.shape[0] > i:
|
|
half_weighted_distance = settings.composite_difference_threshold * mask_scalar[i]
|
|
else:
|
|
half_weighted_distance = settings.composite_difference_threshold * mask_scalar[0]
|
|
else:
|
|
half_weighted_distance = settings.composite_difference_threshold * mask_scalar
|
|
|
|
converted_mask = converted_mask / half_weighted_distance
|
|
|
|
converted_mask = 1 / (1 + converted_mask ** settings.composite_difference_contrast)
|
|
converted_mask = smootherstep(converted_mask)
|
|
converted_mask = 1 - converted_mask
|
|
converted_mask = 255. * converted_mask
|
|
converted_mask = converted_mask.astype(np.uint8)
|
|
converted_mask = Image.fromarray(converted_mask)
|
|
converted_mask = images.resize_image(2, converted_mask, width, height)
|
|
converted_mask = proc.create_binary_mask(converted_mask, round=False)
|
|
|
|
# Remove aliasing artifacts using a gaussian blur.
|
|
converted_mask = converted_mask.filter(ImageFilter.GaussianBlur(radius=4))
|
|
|
|
# Expand the mask to fit the whole image if needed.
|
|
if paste_to is not None:
|
|
converted_mask = proc.uncrop(converted_mask,
|
|
(overlay_image.width, overlay_image.height),
|
|
paste_to)
|
|
|
|
masks_for_overlay.append(converted_mask)
|
|
|
|
image_masked = Image.new('RGBa', (overlay_image.width, overlay_image.height))
|
|
image_masked.paste(overlay_image.convert("RGBA").convert("RGBa"),
|
|
mask=ImageOps.invert(converted_mask.convert('L')))
|
|
|
|
overlay_images[i] = image_masked.convert('RGBA')
|
|
|
|
return masks_for_overlay
|
|
|
|
|
|
def apply_masks(
|
|
settings,
|
|
nmask,
|
|
overlay_images,
|
|
width, height,
|
|
paste_to):
|
|
import torch
|
|
import modules.processing as proc
|
|
import modules.images as images
|
|
from PIL import Image, ImageOps, ImageFilter
|
|
|
|
converted_mask = nmask[0].float()
|
|
converted_mask = torch.clamp(converted_mask, min=0, max=1).pow_(settings.mask_blend_scale / 2)
|
|
converted_mask = 255. * converted_mask
|
|
converted_mask = converted_mask.cpu().numpy().astype(np.uint8)
|
|
converted_mask = Image.fromarray(converted_mask)
|
|
converted_mask = images.resize_image(2, converted_mask, width, height)
|
|
converted_mask = proc.create_binary_mask(converted_mask, round=False)
|
|
|
|
# Remove aliasing artifacts using a gaussian blur.
|
|
converted_mask = converted_mask.filter(ImageFilter.GaussianBlur(radius=4))
|
|
|
|
# Expand the mask to fit the whole image if needed.
|
|
if paste_to is not None:
|
|
converted_mask = proc.uncrop(converted_mask,
|
|
(width, height),
|
|
paste_to)
|
|
|
|
masks_for_overlay = []
|
|
|
|
for i, overlay_image in enumerate(overlay_images):
|
|
masks_for_overlay[i] = converted_mask
|
|
|
|
image_masked = Image.new('RGBa', (overlay_image.width, overlay_image.height))
|
|
image_masked.paste(overlay_image.convert("RGBA").convert("RGBa"),
|
|
mask=ImageOps.invert(converted_mask.convert('L')))
|
|
|
|
overlay_images[i] = image_masked.convert('RGBA')
|
|
|
|
return masks_for_overlay
|
|
|
|
|
|
def weighted_histogram_filter(img, kernel, kernel_center, percentile_min=0.0, percentile_max=1.0, min_width=1.0):
|
|
"""
|
|
Generalization convolution filter capable of applying
|
|
weighted mean, median, maximum, and minimum filters
|
|
parametrically using an arbitrary kernel.
|
|
|
|
Args:
|
|
img (nparray):
|
|
The image, a 2-D array of floats, to which the filter is being applied.
|
|
kernel (nparray):
|
|
The kernel, a 2-D array of floats.
|
|
kernel_center (nparray):
|
|
The kernel center coordinate, a 1-D array with two elements.
|
|
percentile_min (float):
|
|
The lower bound of the histogram window used by the filter,
|
|
from 0 to 1.
|
|
percentile_max (float):
|
|
The upper bound of the histogram window used by the filter,
|
|
from 0 to 1.
|
|
min_width (float):
|
|
The minimum size of the histogram window bounds, in weight units.
|
|
Must be greater than 0.
|
|
|
|
Returns:
|
|
(nparray): A filtered copy of the input image "img", a 2-D array of floats.
|
|
"""
|
|
|
|
# Converts an index tuple into a vector.
|
|
def vec(x):
|
|
return np.array(x)
|
|
|
|
kernel_min = -kernel_center
|
|
kernel_max = vec(kernel.shape) - kernel_center
|
|
|
|
def weighted_histogram_filter_single(idx):
|
|
idx = vec(idx)
|
|
min_index = np.maximum(0, idx + kernel_min)
|
|
max_index = np.minimum(vec(img.shape), idx + kernel_max)
|
|
window_shape = max_index - min_index
|
|
|
|
class WeightedElement:
|
|
"""
|
|
An element of the histogram, its weight
|
|
and bounds.
|
|
"""
|
|
|
|
def __init__(self, value, weight):
|
|
self.value: float = value
|
|
self.weight: float = weight
|
|
self.window_min: float = 0.0
|
|
self.window_max: float = 1.0
|
|
|
|
# Collect the values in the image as WeightedElements,
|
|
# weighted by their corresponding kernel values.
|
|
values = []
|
|
for window_tup in np.ndindex(tuple(window_shape)):
|
|
window_index = vec(window_tup)
|
|
image_index = window_index + min_index
|
|
centered_kernel_index = image_index - idx
|
|
kernel_index = centered_kernel_index + kernel_center
|
|
element = WeightedElement(img[tuple(image_index)], kernel[tuple(kernel_index)])
|
|
values.append(element)
|
|
|
|
def sort_key(x: WeightedElement):
|
|
return x.value
|
|
|
|
values.sort(key=sort_key)
|
|
|
|
# Calculate the height of the stack (sum)
|
|
# and each sample's range they occupy in the stack
|
|
sum = 0
|
|
for i in range(len(values)):
|
|
values[i].window_min = sum
|
|
sum += values[i].weight
|
|
values[i].window_max = sum
|
|
|
|
# Calculate what range of this stack ("window")
|
|
# we want to get the weighted average across.
|
|
window_min = sum * percentile_min
|
|
window_max = sum * percentile_max
|
|
window_width = window_max - window_min
|
|
|
|
# Ensure the window is within the stack and at least a certain size.
|
|
if window_width < min_width:
|
|
window_center = (window_min + window_max) / 2
|
|
window_min = window_center - min_width / 2
|
|
window_max = window_center + min_width / 2
|
|
|
|
if window_max > sum:
|
|
window_max = sum
|
|
window_min = sum - min_width
|
|
|
|
if window_min < 0:
|
|
window_min = 0
|
|
window_max = min_width
|
|
|
|
value = 0
|
|
value_weight = 0
|
|
|
|
# Get the weighted average of all the samples
|
|
# that overlap with the window, weighted
|
|
# by the size of their overlap.
|
|
for i in range(len(values)):
|
|
if window_min >= values[i].window_max:
|
|
continue
|
|
if window_max <= values[i].window_min:
|
|
break
|
|
|
|
s = max(window_min, values[i].window_min)
|
|
e = min(window_max, values[i].window_max)
|
|
w = e - s
|
|
|
|
value += values[i].value * w
|
|
value_weight += w
|
|
|
|
return value / value_weight if value_weight != 0 else 0
|
|
|
|
img_out = img.copy()
|
|
|
|
# Apply the kernel operation over each pixel.
|
|
for index in np.ndindex(img.shape):
|
|
img_out[index] = weighted_histogram_filter_single(index)
|
|
|
|
return img_out
|
|
|
|
|
|
def smoothstep(x):
|
|
"""
|
|
The smoothstep function, input should be clamped to 0-1 range.
|
|
Turns a diagonal line (f(x) = x) into a sigmoid-like curve.
|
|
"""
|
|
return x * x * (3 - 2 * x)
|
|
|
|
|
|
def smootherstep(x):
|
|
"""
|
|
The smootherstep function, input should be clamped to 0-1 range.
|
|
Turns a diagonal line (f(x) = x) into a sigmoid-like curve.
|
|
"""
|
|
return x * x * x * (x * (6 * x - 15) + 10)
|
|
|
|
|
|
def get_gaussian_kernel(stddev_radius=1.0, max_radius=2):
|
|
"""
|
|
Creates a Gaussian kernel with thresholded edges.
|
|
|
|
Args:
|
|
stddev_radius (float):
|
|
Standard deviation of the gaussian kernel, in pixels.
|
|
max_radius (int):
|
|
The size of the filter kernel. The number of pixels is (max_radius*2+1) ** 2.
|
|
The kernel is thresholded so that any values one pixel beyond this radius
|
|
is weighted at 0.
|
|
|
|
Returns:
|
|
(nparray, nparray): A kernel array (shape: (N, N)), its center coordinate (shape: (2))
|
|
"""
|
|
|
|
# Evaluates a 0-1 normalized gaussian function for a given square distance from the mean.
|
|
def gaussian(sqr_mag):
|
|
return math.exp(-sqr_mag / (stddev_radius * stddev_radius))
|
|
|
|
# Helper function for converting a tuple to an array.
|
|
def vec(x):
|
|
return np.array(x)
|
|
|
|
"""
|
|
Since a gaussian is unbounded, we need to limit ourselves
|
|
to a finite range.
|
|
We taper the ends off at the end of that range so they equal zero
|
|
while preserving the maximum value of 1 at the mean.
|
|
"""
|
|
zero_radius = max_radius + 1.0
|
|
gauss_zero = gaussian(zero_radius * zero_radius)
|
|
gauss_kernel_scale = 1 / (1 - gauss_zero)
|
|
|
|
def gaussian_kernel_func(coordinate):
|
|
x = coordinate[0] ** 2.0 + coordinate[1] ** 2.0
|
|
x = gaussian(x)
|
|
x -= gauss_zero
|
|
x *= gauss_kernel_scale
|
|
x = max(0.0, x)
|
|
return x
|
|
|
|
size = max_radius * 2 + 1
|
|
kernel_center = max_radius
|
|
kernel = np.zeros((size, size))
|
|
|
|
for index in np.ndindex(kernel.shape):
|
|
kernel[index] = gaussian_kernel_func(vec(index) - kernel_center)
|
|
|
|
return kernel, kernel_center
|
|
|
|
|
|
# ------------------- Constants -------------------
|
|
|
|
|
|
default = SoftInpaintingSettings(1, 0.5, 4, 0, 0.5, 2)
|
|
|
|
enabled_ui_label = "Soft inpainting"
|
|
enabled_gen_param_label = "Soft inpainting enabled"
|
|
enabled_el_id = "soft_inpainting_enabled"
|
|
|
|
ui_labels = SoftInpaintingSettings(
|
|
"Schedule bias",
|
|
"Preservation strength",
|
|
"Transition contrast boost",
|
|
"Mask influence",
|
|
"Difference threshold",
|
|
"Difference contrast")
|
|
|
|
ui_info = SoftInpaintingSettings(
|
|
"Shifts when preservation of original content occurs during denoising.",
|
|
"How strongly partially masked content should be preserved.",
|
|
"Amplifies the contrast that may be lost in partially masked regions.",
|
|
"How strongly the original mask should bias the difference threshold.",
|
|
"How much an image region can change before the original pixels are not blended in anymore.",
|
|
"How sharp the transition should be between blended and not blended.")
|
|
|
|
gen_param_labels = SoftInpaintingSettings(
|
|
"Soft inpainting schedule bias",
|
|
"Soft inpainting preservation strength",
|
|
"Soft inpainting transition contrast boost",
|
|
"Soft inpainting mask influence",
|
|
"Soft inpainting difference threshold",
|
|
"Soft inpainting difference contrast")
|
|
|
|
el_ids = SoftInpaintingSettings(
|
|
"mask_blend_power",
|
|
"mask_blend_scale",
|
|
"inpaint_detail_preservation",
|
|
"composite_mask_influence",
|
|
"composite_difference_threshold",
|
|
"composite_difference_contrast")
|
|
|
|
|
|
# ------------------- Script -------------------
|
|
|
|
|
|
class Script(scripts.Script):
|
|
def __init__(self):
|
|
self.section = "inpaint"
|
|
self.masks_for_overlay = None
|
|
self.overlay_images = None
|
|
|
|
def title(self):
|
|
return "Soft Inpainting"
|
|
|
|
def show(self, is_img2img):
|
|
return scripts.AlwaysVisible if is_img2img else False
|
|
|
|
def ui(self, is_img2img):
|
|
if not is_img2img:
|
|
return
|
|
|
|
with InputAccordion(False, label=enabled_ui_label, elem_id=enabled_el_id) as soft_inpainting_enabled:
|
|
with gr.Group():
|
|
gr.Markdown(
|
|
"""
|
|
Soft inpainting allows you to **seamlessly blend original content with inpainted content** according to the mask opacity.
|
|
**High _Mask blur_** values are recommended!
|
|
""")
|
|
|
|
power = \
|
|
gr.Slider(label=ui_labels.mask_blend_power,
|
|
info=ui_info.mask_blend_power,
|
|
minimum=0,
|
|
maximum=8,
|
|
step=0.1,
|
|
value=default.mask_blend_power,
|
|
elem_id=el_ids.mask_blend_power)
|
|
scale = \
|
|
gr.Slider(label=ui_labels.mask_blend_scale,
|
|
info=ui_info.mask_blend_scale,
|
|
minimum=0,
|
|
maximum=8,
|
|
step=0.05,
|
|
value=default.mask_blend_scale,
|
|
elem_id=el_ids.mask_blend_scale)
|
|
detail = \
|
|
gr.Slider(label=ui_labels.inpaint_detail_preservation,
|
|
info=ui_info.inpaint_detail_preservation,
|
|
minimum=1,
|
|
maximum=32,
|
|
step=0.5,
|
|
value=default.inpaint_detail_preservation,
|
|
elem_id=el_ids.inpaint_detail_preservation)
|
|
|
|
gr.Markdown(
|
|
"""
|
|
### Pixel Composite Settings
|
|
""")
|
|
|
|
mask_inf = \
|
|
gr.Slider(label=ui_labels.composite_mask_influence,
|
|
info=ui_info.composite_mask_influence,
|
|
minimum=0,
|
|
maximum=1,
|
|
step=0.05,
|
|
value=default.composite_mask_influence,
|
|
elem_id=el_ids.composite_mask_influence)
|
|
|
|
dif_thresh = \
|
|
gr.Slider(label=ui_labels.composite_difference_threshold,
|
|
info=ui_info.composite_difference_threshold,
|
|
minimum=0,
|
|
maximum=8,
|
|
step=0.25,
|
|
value=default.composite_difference_threshold,
|
|
elem_id=el_ids.composite_difference_threshold)
|
|
|
|
dif_contr = \
|
|
gr.Slider(label=ui_labels.composite_difference_contrast,
|
|
info=ui_info.composite_difference_contrast,
|
|
minimum=0,
|
|
maximum=8,
|
|
step=0.25,
|
|
value=default.composite_difference_contrast,
|
|
elem_id=el_ids.composite_difference_contrast)
|
|
|
|
with gr.Accordion("Help", open=False):
|
|
gr.Markdown(
|
|
f"""
|
|
### {ui_labels.mask_blend_power}
|
|
|
|
The blending strength of original content is scaled proportionally with the decreasing noise level values at each step (sigmas).
|
|
This ensures that the influence of the denoiser and original content preservation is roughly balanced at each step.
|
|
This balance can be shifted using this parameter, controlling whether earlier or later steps have stronger preservation.
|
|
|
|
- **Below 1**: Stronger preservation near the end (with low sigma)
|
|
- **1**: Balanced (proportional to sigma)
|
|
- **Above 1**: Stronger preservation in the beginning (with high sigma)
|
|
""")
|
|
gr.Markdown(
|
|
f"""
|
|
### {ui_labels.mask_blend_scale}
|
|
|
|
Skews whether partially masked image regions should be more likely to preserve the original content or favor inpainted content.
|
|
This may need to be adjusted depending on the {ui_labels.mask_blend_power}, CFG Scale, prompt and Denoising strength.
|
|
|
|
- **Low values**: Favors generated content.
|
|
- **High values**: Favors original content.
|
|
""")
|
|
gr.Markdown(
|
|
f"""
|
|
### {ui_labels.inpaint_detail_preservation}
|
|
|
|
This parameter controls how the original latent vectors and denoised latent vectors are interpolated.
|
|
With higher values, the magnitude of the resulting blended vector will be closer to the maximum of the two interpolated vectors.
|
|
This can prevent the loss of contrast that occurs with linear interpolation.
|
|
|
|
- **Low values**: Softer blending, details may fade.
|
|
- **High values**: Stronger contrast, may over-saturate colors.
|
|
""")
|
|
|
|
gr.Markdown(
|
|
"""
|
|
## Pixel Composite Settings
|
|
|
|
Masks are generated based on how much a part of the image changed after denoising.
|
|
These masks are used to blend the original and final images together.
|
|
If the difference is low, the original pixels are used instead of the pixels returned by the inpainting process.
|
|
""")
|
|
|
|
gr.Markdown(
|
|
f"""
|
|
### {ui_labels.composite_mask_influence}
|
|
|
|
This parameter controls how much the mask should bias this sensitivity to difference.
|
|
|
|
- **0**: Ignore the mask, only consider differences in image content.
|
|
- **1**: Follow the mask closely despite image content changes.
|
|
""")
|
|
|
|
gr.Markdown(
|
|
f"""
|
|
### {ui_labels.composite_difference_threshold}
|
|
|
|
This value represents the difference at which the original pixels will have less than 50% opacity.
|
|
|
|
- **Low values**: Two images patches must be almost the same in order to retain original pixels.
|
|
- **High values**: Two images patches can be very different and still retain original pixels.
|
|
""")
|
|
|
|
gr.Markdown(
|
|
f"""
|
|
### {ui_labels.composite_difference_contrast}
|
|
|
|
This value represents the contrast between the opacity of the original and inpainted content.
|
|
|
|
- **Low values**: The blend will be more gradual and have longer transitions, but may cause ghosting.
|
|
- **High values**: Ghosting will be less common, but transitions may be very sudden.
|
|
""")
|
|
|
|
self.infotext_fields = [(soft_inpainting_enabled, enabled_gen_param_label),
|
|
(power, gen_param_labels.mask_blend_power),
|
|
(scale, gen_param_labels.mask_blend_scale),
|
|
(detail, gen_param_labels.inpaint_detail_preservation),
|
|
(mask_inf, gen_param_labels.composite_mask_influence),
|
|
(dif_thresh, gen_param_labels.composite_difference_threshold),
|
|
(dif_contr, gen_param_labels.composite_difference_contrast)]
|
|
|
|
self.paste_field_names = []
|
|
for _, field_name in self.infotext_fields:
|
|
self.paste_field_names.append(field_name)
|
|
|
|
return [soft_inpainting_enabled,
|
|
power,
|
|
scale,
|
|
detail,
|
|
mask_inf,
|
|
dif_thresh,
|
|
dif_contr]
|
|
|
|
def process(self, p, enabled, power, scale, detail_preservation, mask_inf, dif_thresh, dif_contr):
|
|
if not enabled:
|
|
return
|
|
|
|
if not processing_uses_inpainting(p):
|
|
return
|
|
|
|
# Shut off the rounding it normally does.
|
|
p.mask_round = False
|
|
|
|
settings = SoftInpaintingSettings(power, scale, detail_preservation, mask_inf, dif_thresh, dif_contr)
|
|
|
|
# p.extra_generation_params["Mask rounding"] = False
|
|
settings.add_generation_params(p.extra_generation_params)
|
|
|
|
def on_mask_blend(self, p, mba: scripts.MaskBlendArgs, enabled, power, scale, detail_preservation, mask_inf,
|
|
dif_thresh, dif_contr):
|
|
if not enabled:
|
|
return
|
|
|
|
if not processing_uses_inpainting(p):
|
|
return
|
|
|
|
if mba.is_final_blend:
|
|
mba.blended_latent = mba.current_latent
|
|
return
|
|
|
|
settings = SoftInpaintingSettings(power, scale, detail_preservation, mask_inf, dif_thresh, dif_contr)
|
|
|
|
# todo: Why is sigma 2D? Both values are the same.
|
|
mba.blended_latent = latent_blend(settings,
|
|
mba.init_latent,
|
|
mba.current_latent,
|
|
get_modified_nmask(settings, mba.nmask, mba.sigma[0]))
|
|
|
|
def post_sample(self, p, ps: scripts.PostSampleArgs, enabled, power, scale, detail_preservation, mask_inf,
|
|
dif_thresh, dif_contr):
|
|
if not enabled:
|
|
return
|
|
|
|
if not processing_uses_inpainting(p):
|
|
return
|
|
|
|
nmask = getattr(p, "nmask", None)
|
|
if nmask is None:
|
|
return
|
|
|
|
from modules import images
|
|
from modules.shared import opts
|
|
|
|
settings = SoftInpaintingSettings(power, scale, detail_preservation, mask_inf, dif_thresh, dif_contr)
|
|
|
|
# since the original code puts holes in the existing overlay images,
|
|
# we have to rebuild them.
|
|
self.overlay_images = []
|
|
for img in p.init_images:
|
|
|
|
image = images.flatten(img, opts.img2img_background_color)
|
|
|
|
if p.paste_to is None and p.resize_mode != 3:
|
|
image = images.resize_image(p.resize_mode, image, p.width, p.height)
|
|
|
|
self.overlay_images.append(image.convert('RGBA'))
|
|
|
|
if len(p.init_images) == 1:
|
|
self.overlay_images = self.overlay_images * p.batch_size
|
|
|
|
if getattr(ps.samples, 'already_decoded', False):
|
|
self.masks_for_overlay = apply_masks(settings=settings,
|
|
nmask=nmask,
|
|
overlay_images=self.overlay_images,
|
|
width=p.width,
|
|
height=p.height,
|
|
paste_to=p.paste_to)
|
|
else:
|
|
self.masks_for_overlay = apply_adaptive_masks(settings=settings,
|
|
nmask=nmask,
|
|
latent_orig=p.init_latent,
|
|
latent_processed=ps.samples,
|
|
overlay_images=self.overlay_images,
|
|
width=p.width,
|
|
height=p.height,
|
|
paste_to=p.paste_to)
|
|
|
|
def postprocess_maskoverlay(self, p, ppmo: scripts.PostProcessMaskOverlayArgs, enabled, power, scale,
|
|
detail_preservation, mask_inf, dif_thresh, dif_contr):
|
|
if not enabled:
|
|
return
|
|
|
|
if not processing_uses_inpainting(p):
|
|
return
|
|
|
|
if self.masks_for_overlay is None:
|
|
return
|
|
|
|
if self.overlay_images is None:
|
|
return
|
|
|
|
ppmo.mask_for_overlay = self.masks_for_overlay[ppmo.index]
|
|
ppmo.overlay_image = self.overlay_images[ppmo.index]
|