mirror of
https://github.com/AUTOMATIC1111/stable-diffusion-webui.git
synced 2025-01-06 15:15:05 +08:00
ef0cdb8a42
fix writing empty prompt pictures to rroot directory instead of 'empty' suppress 'Denoising strength change factor' text inimage info unless using loopback mode
196 lines
7.3 KiB
Python
196 lines
7.3 KiB
Python
import math
|
|
import cv2
|
|
import numpy as np
|
|
from PIL import Image, ImageOps, ImageChops
|
|
|
|
from modules.processing import Processed, StableDiffusionProcessingImg2Img, process_images
|
|
from modules.shared import opts, state
|
|
import modules.shared as shared
|
|
import modules.processing as processing
|
|
from modules.ui import plaintext_to_html
|
|
import modules.images as images
|
|
import modules.scripts
|
|
|
|
def img2img(prompt: str, negative_prompt: str, prompt_style: int, init_img, init_img_with_mask, init_mask, mask_mode, steps: int, sampler_index: int, mask_blur: int, inpainting_fill: int, restore_faces: bool, tiling: bool, mode: int, n_iter: int, batch_size: int, cfg_scale: float, denoising_strength: float, denoising_strength_change_factor: float, seed: int, subseed: int, subseed_strength: float, seed_resize_from_h: int, seed_resize_from_w: int, height: int, width: int, resize_mode: int, upscaler_index: str, upscale_overlap: int, inpaint_full_res: bool, inpainting_mask_invert: int, *args):
|
|
is_inpaint = mode == 1
|
|
is_loopback = mode == 2
|
|
is_upscale = mode == 3
|
|
|
|
if is_inpaint:
|
|
if mask_mode == 0:
|
|
image = init_img_with_mask['image']
|
|
mask = init_img_with_mask['mask']
|
|
alpha_mask = ImageOps.invert(image.split()[-1]).convert('L').point(lambda x: 255 if x > 0 else 0, mode='1')
|
|
mask = ImageChops.lighter(alpha_mask, mask.convert('L')).convert('L')
|
|
image = image.convert('RGB')
|
|
else:
|
|
image = init_img
|
|
mask = init_mask
|
|
else:
|
|
image = init_img
|
|
mask = None
|
|
|
|
assert 0. <= denoising_strength <= 1., 'can only work with strength in [0.0, 1.0]'
|
|
|
|
p = StableDiffusionProcessingImg2Img(
|
|
sd_model=shared.sd_model,
|
|
outpath_samples=opts.outdir_samples or opts.outdir_img2img_samples,
|
|
outpath_grids=opts.outdir_grids or opts.outdir_img2img_grids,
|
|
prompt=prompt,
|
|
negative_prompt=negative_prompt,
|
|
prompt_style=prompt_style,
|
|
seed=seed,
|
|
subseed=subseed,
|
|
subseed_strength=subseed_strength,
|
|
seed_resize_from_h=seed_resize_from_h,
|
|
seed_resize_from_w=seed_resize_from_w,
|
|
sampler_index=sampler_index,
|
|
batch_size=batch_size,
|
|
n_iter=n_iter,
|
|
steps=steps,
|
|
cfg_scale=cfg_scale,
|
|
width=width,
|
|
height=height,
|
|
restore_faces=restore_faces,
|
|
tiling=tiling,
|
|
init_images=[image],
|
|
mask=mask,
|
|
mask_blur=mask_blur,
|
|
inpainting_fill=inpainting_fill,
|
|
resize_mode=resize_mode,
|
|
denoising_strength=denoising_strength,
|
|
inpaint_full_res=inpaint_full_res,
|
|
inpainting_mask_invert=inpainting_mask_invert,
|
|
extra_generation_params={
|
|
"Denoising strength": denoising_strength,
|
|
"Denoising strength change factor": (denoising_strength_change_factor if is_loopback else None)
|
|
}
|
|
)
|
|
print(f"\nimg2img: {prompt}", file=shared.progress_print_out)
|
|
|
|
if is_loopback:
|
|
output_images, info = None, None
|
|
history = []
|
|
initial_seed = None
|
|
initial_info = None
|
|
|
|
state.job_count = n_iter
|
|
|
|
do_color_correction = False
|
|
try:
|
|
from skimage import exposure
|
|
do_color_correction = True
|
|
except:
|
|
print("Install scikit-image to perform color correction on loopback")
|
|
|
|
|
|
for i in range(n_iter):
|
|
if do_color_correction and i == 0:
|
|
correction_target = cv2.cvtColor(np.asarray(init_img.copy()), cv2.COLOR_RGB2LAB)
|
|
|
|
p.n_iter = 1
|
|
p.batch_size = 1
|
|
p.do_not_save_grid = True
|
|
|
|
state.job = f"Batch {i + 1} out of {n_iter}"
|
|
processed = process_images(p)
|
|
|
|
if initial_seed is None:
|
|
initial_seed = processed.seed
|
|
initial_info = processed.info
|
|
|
|
init_img = processed.images[0]
|
|
|
|
if do_color_correction and correction_target is not None:
|
|
init_img = Image.fromarray(cv2.cvtColor(exposure.match_histograms(
|
|
cv2.cvtColor(
|
|
np.asarray(init_img),
|
|
cv2.COLOR_RGB2LAB
|
|
),
|
|
correction_target,
|
|
channel_axis=2
|
|
), cv2.COLOR_LAB2RGB).astype("uint8"))
|
|
|
|
p.init_images = [init_img]
|
|
p.seed = processed.seed + 1
|
|
p.denoising_strength = min(max(p.denoising_strength * denoising_strength_change_factor, 0.1), 1)
|
|
history.append(processed.images[0])
|
|
|
|
grid = images.image_grid(history, batch_size, rows=1)
|
|
|
|
images.save_image(grid, p.outpath_grids, "grid", initial_seed, prompt, opts.grid_format, info=info, short_filename=not opts.grid_extended_filename)
|
|
|
|
processed = Processed(p, history, initial_seed, initial_info)
|
|
|
|
elif is_upscale:
|
|
initial_info = None
|
|
|
|
processing.fix_seed(p)
|
|
seed = p.seed
|
|
|
|
upscaler = shared.sd_upscalers[upscaler_index]
|
|
img = upscaler.upscale(init_img, init_img.width * 2, init_img.height * 2)
|
|
|
|
processing.torch_gc()
|
|
|
|
grid = images.split_grid(img, tile_w=width, tile_h=height, overlap=upscale_overlap)
|
|
|
|
upscale_count = p.n_iter
|
|
p.n_iter = 1
|
|
p.do_not_save_grid = True
|
|
p.do_not_save_samples = True
|
|
|
|
work = []
|
|
|
|
for y, h, row in grid.tiles:
|
|
for tiledata in row:
|
|
work.append(tiledata[2])
|
|
|
|
batch_count = math.ceil(len(work) / p.batch_size)
|
|
state.job_count = batch_count * upscale_count
|
|
|
|
print(f"SD upscaling will process a total of {len(work)} images tiled as {len(grid.tiles[0][2])}x{len(grid.tiles)} per upscale in a total of {state.job_count} batches.")
|
|
|
|
result_images = []
|
|
for n in range(upscale_count):
|
|
start_seed = seed + n
|
|
p.seed = start_seed
|
|
|
|
work_results = []
|
|
for i in range(batch_count):
|
|
p.init_images = work[i*p.batch_size:(i+1)*p.batch_size]
|
|
|
|
state.job = f"Batch {i + 1} out of {state.job_count}"
|
|
processed = process_images(p)
|
|
|
|
if initial_info is None:
|
|
initial_info = processed.info
|
|
|
|
p.seed = processed.seed + 1
|
|
work_results += processed.images
|
|
|
|
image_index = 0
|
|
for y, h, row in grid.tiles:
|
|
for tiledata in row:
|
|
tiledata[2] = work_results[image_index] if image_index < len(work_results) else Image.new("RGB", (p.width, p.height))
|
|
image_index += 1
|
|
|
|
combined_image = images.combine_grid(grid)
|
|
result_images.append(combined_image)
|
|
|
|
if opts.samples_save:
|
|
images.save_image(combined_image, p.outpath_samples, "", start_seed, prompt, opts.grid_format, info=initial_info)
|
|
|
|
processed = Processed(p, result_images, seed, initial_info)
|
|
|
|
else:
|
|
|
|
processed = modules.scripts.scripts_img2img.run(p, *args)
|
|
|
|
if processed is None:
|
|
processed = process_images(p)
|
|
|
|
shared.total_tqdm.clear()
|
|
|
|
return processed.images, processed.js(), plaintext_to_html(processed.info)
|