mirror of
https://github.com/AUTOMATIC1111/stable-diffusion-webui.git
synced 2025-01-20 21:30:09 +08:00
202 lines
6.6 KiB
Python
202 lines
6.6 KiB
Python
import os
|
|
from dataclasses import dataclass
|
|
|
|
import torch
|
|
from einops import rearrange
|
|
from huggingface_hub import hf_hub_download
|
|
from imwatermark import WatermarkEncoder
|
|
from safetensors.torch import load_file as load_sft
|
|
|
|
from .model import Flux, FluxParams
|
|
from .modules.autoencoder import AutoEncoder, AutoEncoderParams
|
|
from .modules.conditioner import HFEmbedder
|
|
|
|
|
|
@dataclass
|
|
class ModelSpec:
|
|
params: FluxParams
|
|
ae_params: AutoEncoderParams
|
|
ckpt_path: str | None
|
|
ae_path: str | None
|
|
repo_id: str | None
|
|
repo_flow: str | None
|
|
repo_ae: str | None
|
|
|
|
|
|
configs = {
|
|
"flux-dev": ModelSpec(
|
|
repo_id="black-forest-labs/FLUX.1-dev",
|
|
repo_flow="flux1-dev.safetensors",
|
|
repo_ae="ae.safetensors",
|
|
ckpt_path=os.getenv("FLUX_DEV"),
|
|
params=FluxParams(
|
|
in_channels=64,
|
|
vec_in_dim=768,
|
|
context_in_dim=4096,
|
|
hidden_size=3072,
|
|
mlp_ratio=4.0,
|
|
num_heads=24,
|
|
depth=19,
|
|
depth_single_blocks=38,
|
|
axes_dim=[16, 56, 56],
|
|
theta=10_000,
|
|
qkv_bias=True,
|
|
guidance_embed=True,
|
|
),
|
|
ae_path=os.getenv("AE"),
|
|
ae_params=AutoEncoderParams(
|
|
resolution=256,
|
|
in_channels=3,
|
|
ch=128,
|
|
out_ch=3,
|
|
ch_mult=[1, 2, 4, 4],
|
|
num_res_blocks=2,
|
|
z_channels=16,
|
|
scale_factor=0.3611,
|
|
shift_factor=0.1159,
|
|
),
|
|
),
|
|
"flux-schnell": ModelSpec(
|
|
repo_id="black-forest-labs/FLUX.1-schnell",
|
|
repo_flow="flux1-schnell.safetensors",
|
|
repo_ae="ae.safetensors",
|
|
ckpt_path=os.getenv("FLUX_SCHNELL"),
|
|
params=FluxParams(
|
|
in_channels=64,
|
|
vec_in_dim=768,
|
|
context_in_dim=4096,
|
|
hidden_size=3072,
|
|
mlp_ratio=4.0,
|
|
num_heads=24,
|
|
depth=19,
|
|
depth_single_blocks=38,
|
|
axes_dim=[16, 56, 56],
|
|
theta=10_000,
|
|
qkv_bias=True,
|
|
guidance_embed=False,
|
|
),
|
|
ae_path=os.getenv("AE"),
|
|
ae_params=AutoEncoderParams(
|
|
resolution=256,
|
|
in_channels=3,
|
|
ch=128,
|
|
out_ch=3,
|
|
ch_mult=[1, 2, 4, 4],
|
|
num_res_blocks=2,
|
|
z_channels=16,
|
|
scale_factor=0.3611,
|
|
shift_factor=0.1159,
|
|
),
|
|
),
|
|
}
|
|
|
|
|
|
def print_load_warning(missing: list[str], unexpected: list[str]) -> None:
|
|
if len(missing) > 0 and len(unexpected) > 0:
|
|
print(f"Got {len(missing)} missing keys:\n\t" + "\n\t".join(missing))
|
|
print("\n" + "-" * 79 + "\n")
|
|
print(f"Got {len(unexpected)} unexpected keys:\n\t" + "\n\t".join(unexpected))
|
|
elif len(missing) > 0:
|
|
print(f"Got {len(missing)} missing keys:\n\t" + "\n\t".join(missing))
|
|
elif len(unexpected) > 0:
|
|
print(f"Got {len(unexpected)} unexpected keys:\n\t" + "\n\t".join(unexpected))
|
|
|
|
|
|
def load_flow_model(name: str, device: str | torch.device = "cuda", hf_download: bool = True):
|
|
# Loading Flux
|
|
print("Init model")
|
|
ckpt_path = configs[name].ckpt_path
|
|
if (
|
|
ckpt_path is None
|
|
and configs[name].repo_id is not None
|
|
and configs[name].repo_flow is not None
|
|
and hf_download
|
|
):
|
|
ckpt_path = hf_hub_download(configs[name].repo_id, configs[name].repo_flow)
|
|
|
|
with torch.device("meta" if ckpt_path is not None else device):
|
|
model = Flux(configs[name].params).to(torch.bfloat16)
|
|
|
|
if ckpt_path is not None:
|
|
print("Loading checkpoint")
|
|
# load_sft doesn't support torch.device
|
|
sd = load_sft(ckpt_path, device=str(device))
|
|
missing, unexpected = model.load_state_dict(sd, strict=False, assign=True)
|
|
print_load_warning(missing, unexpected)
|
|
return model
|
|
|
|
|
|
def load_t5(device: str | torch.device = "cuda", max_length: int = 512) -> HFEmbedder:
|
|
# max length 64, 128, 256 and 512 should work (if your sequence is short enough)
|
|
return HFEmbedder("google/t5-v1_1-xxl", max_length=max_length, torch_dtype=torch.bfloat16).to(device)
|
|
|
|
|
|
def load_clip(device: str | torch.device = "cuda") -> HFEmbedder:
|
|
return HFEmbedder("openai/clip-vit-large-patch14", max_length=77, torch_dtype=torch.bfloat16).to(device)
|
|
|
|
|
|
def load_ae(name: str, device: str | torch.device = "cuda", hf_download: bool = True) -> AutoEncoder:
|
|
ckpt_path = configs[name].ae_path
|
|
if (
|
|
ckpt_path is None
|
|
and configs[name].repo_id is not None
|
|
and configs[name].repo_ae is not None
|
|
and hf_download
|
|
):
|
|
ckpt_path = hf_hub_download(configs[name].repo_id, configs[name].repo_ae)
|
|
|
|
# Loading the autoencoder
|
|
print("Init AE")
|
|
with torch.device("meta" if ckpt_path is not None else device):
|
|
ae = AutoEncoder(configs[name].ae_params)
|
|
|
|
if ckpt_path is not None:
|
|
sd = load_sft(ckpt_path, device=str(device))
|
|
missing, unexpected = ae.load_state_dict(sd, strict=False, assign=True)
|
|
print_load_warning(missing, unexpected)
|
|
return ae
|
|
|
|
|
|
class WatermarkEmbedder:
|
|
def __init__(self, watermark):
|
|
self.watermark = watermark
|
|
self.num_bits = len(WATERMARK_BITS)
|
|
self.encoder = WatermarkEncoder()
|
|
self.encoder.set_watermark("bits", self.watermark)
|
|
|
|
def __call__(self, image: torch.Tensor) -> torch.Tensor:
|
|
"""
|
|
Adds a predefined watermark to the input image
|
|
|
|
Args:
|
|
image: ([N,] B, RGB, H, W) in range [-1, 1]
|
|
|
|
Returns:
|
|
same as input but watermarked
|
|
"""
|
|
image = 0.5 * image + 0.5
|
|
squeeze = len(image.shape) == 4
|
|
if squeeze:
|
|
image = image[None, ...]
|
|
n = image.shape[0]
|
|
image_np = rearrange((255 * image).detach().cpu(), "n b c h w -> (n b) h w c").numpy()[:, :, :, ::-1]
|
|
# torch (b, c, h, w) in [0, 1] -> numpy (b, h, w, c) [0, 255]
|
|
# watermarking libary expects input as cv2 BGR format
|
|
for k in range(image_np.shape[0]):
|
|
image_np[k] = self.encoder.encode(image_np[k], "dwtDct")
|
|
image = torch.from_numpy(rearrange(image_np[:, :, :, ::-1], "(n b) h w c -> n b c h w", n=n)).to(
|
|
image.device
|
|
)
|
|
image = torch.clamp(image / 255, min=0.0, max=1.0)
|
|
if squeeze:
|
|
image = image[0]
|
|
image = 2 * image - 1
|
|
return image
|
|
|
|
|
|
# A fixed 48-bit message that was chosen at random
|
|
WATERMARK_MESSAGE = 0b001010101111111010000111100111001111010100101110
|
|
# bin(x)[2:] gives bits of x as str, use int to convert them to 0/1
|
|
WATERMARK_BITS = [int(bit) for bit in bin(WATERMARK_MESSAGE)[2:]]
|
|
embed_watermark = WatermarkEmbedder(WATERMARK_BITS)
|