mirror of
https://github.com/AUTOMATIC1111/stable-diffusion-webui.git
synced 2025-01-22 06:10:10 +08:00
118 lines
4.8 KiB
Python
118 lines
4.8 KiB
Python
import re
|
|
|
|
import torch
|
|
import gradio as gr
|
|
from fastapi import FastAPI
|
|
|
|
import network
|
|
import networks
|
|
import extra_networks_lora
|
|
import ui_extra_networks_lora
|
|
from modules import script_callbacks, ui_extra_networks, extra_networks, shared
|
|
|
|
def unload():
|
|
torch.nn.Linear.forward = torch.nn.Linear_forward_before_network
|
|
torch.nn.Linear._load_from_state_dict = torch.nn.Linear_load_state_dict_before_network
|
|
torch.nn.Conv2d.forward = torch.nn.Conv2d_forward_before_network
|
|
torch.nn.Conv2d._load_from_state_dict = torch.nn.Conv2d_load_state_dict_before_network
|
|
torch.nn.MultiheadAttention.forward = torch.nn.MultiheadAttention_forward_before_network
|
|
torch.nn.MultiheadAttention._load_from_state_dict = torch.nn.MultiheadAttention_load_state_dict_before_network
|
|
|
|
|
|
def before_ui():
|
|
ui_extra_networks.register_page(ui_extra_networks_lora.ExtraNetworksPageLora())
|
|
extra_networks.register_extra_network(extra_networks_lora.ExtraNetworkLora())
|
|
|
|
|
|
if not hasattr(torch.nn, 'Linear_forward_before_network'):
|
|
torch.nn.Linear_forward_before_network = torch.nn.Linear.forward
|
|
|
|
if not hasattr(torch.nn, 'Linear_load_state_dict_before_network'):
|
|
torch.nn.Linear_load_state_dict_before_network = torch.nn.Linear._load_from_state_dict
|
|
|
|
if not hasattr(torch.nn, 'Conv2d_forward_before_network'):
|
|
torch.nn.Conv2d_forward_before_network = torch.nn.Conv2d.forward
|
|
|
|
if not hasattr(torch.nn, 'Conv2d_load_state_dict_before_network'):
|
|
torch.nn.Conv2d_load_state_dict_before_network = torch.nn.Conv2d._load_from_state_dict
|
|
|
|
if not hasattr(torch.nn, 'MultiheadAttention_forward_before_network'):
|
|
torch.nn.MultiheadAttention_forward_before_network = torch.nn.MultiheadAttention.forward
|
|
|
|
if not hasattr(torch.nn, 'MultiheadAttention_load_state_dict_before_network'):
|
|
torch.nn.MultiheadAttention_load_state_dict_before_network = torch.nn.MultiheadAttention._load_from_state_dict
|
|
|
|
torch.nn.Linear.forward = networks.network_Linear_forward
|
|
torch.nn.Linear._load_from_state_dict = networks.network_Linear_load_state_dict
|
|
torch.nn.Conv2d.forward = networks.network_Conv2d_forward
|
|
torch.nn.Conv2d._load_from_state_dict = networks.network_Conv2d_load_state_dict
|
|
torch.nn.MultiheadAttention.forward = networks.network_MultiheadAttention_forward
|
|
torch.nn.MultiheadAttention._load_from_state_dict = networks.network_MultiheadAttention_load_state_dict
|
|
|
|
script_callbacks.on_model_loaded(networks.assign_network_names_to_compvis_modules)
|
|
script_callbacks.on_script_unloaded(unload)
|
|
script_callbacks.on_before_ui(before_ui)
|
|
script_callbacks.on_infotext_pasted(networks.infotext_pasted)
|
|
|
|
|
|
shared.options_templates.update(shared.options_section(('extra_networks', "Extra Networks"), {
|
|
"sd_lora": shared.OptionInfo("None", "Add network to prompt", gr.Dropdown, lambda: {"choices": ["None", *networks.available_networks]}, refresh=networks.list_available_networks),
|
|
"lora_preferred_name": shared.OptionInfo("Alias from file", "When adding to prompt, refer to Lora by", gr.Radio, {"choices": ["Alias from file", "Filename"]}),
|
|
"lora_add_hashes_to_infotext": shared.OptionInfo(True, "Add Lora hashes to infotext"),
|
|
}))
|
|
|
|
|
|
shared.options_templates.update(shared.options_section(('compatibility', "Compatibility"), {
|
|
"lora_functional": shared.OptionInfo(False, "Lora/Networks: use old method that takes longer when you have multiple Loras active and produces same results as kohya-ss/sd-webui-additional-networks extension"),
|
|
}))
|
|
|
|
|
|
def create_lora_json(obj: network.NetworkOnDisk):
|
|
return {
|
|
"name": obj.name,
|
|
"alias": obj.alias,
|
|
"path": obj.filename,
|
|
"metadata": obj.metadata,
|
|
}
|
|
|
|
|
|
def api_networks(_: gr.Blocks, app: FastAPI):
|
|
@app.get("/sdapi/v1/loras")
|
|
async def get_loras():
|
|
return [create_lora_json(obj) for obj in networks.available_networks.values()]
|
|
|
|
@app.post("/sdapi/v1/refresh-loras")
|
|
async def refresh_loras():
|
|
return networks.list_available_networks()
|
|
|
|
|
|
script_callbacks.on_app_started(api_networks)
|
|
|
|
re_lora = re.compile("<lora:([^:]+):")
|
|
|
|
|
|
def infotext_pasted(infotext, d):
|
|
hashes = d.get("Lora hashes")
|
|
if not hashes:
|
|
return
|
|
|
|
hashes = [x.strip().split(':', 1) for x in hashes.split(",")]
|
|
hashes = {x[0].strip().replace(",", ""): x[1].strip() for x in hashes}
|
|
|
|
def network_replacement(m):
|
|
alias = m.group(1)
|
|
shorthash = hashes.get(alias)
|
|
if shorthash is None:
|
|
return m.group(0)
|
|
|
|
network_on_disk = networks.available_network_hash_lookup.get(shorthash)
|
|
if network_on_disk is None:
|
|
return m.group(0)
|
|
|
|
return f'<lora:{network_on_disk.get_alias()}:'
|
|
|
|
d["Prompt"] = re.sub(re_lora, network_replacement, d["Prompt"])
|
|
|
|
|
|
script_callbacks.on_infotext_pasted(infotext_pasted)
|