Retrieval-based-Voice-Conve.../train/process_ckpt.py

249 lines
7.3 KiB
Python
Raw Normal View History

import torch, traceback, os, pdb
2023-03-31 17:47:00 +08:00
from collections import OrderedDict
def savee(ckpt, sr, if_f0, name, epoch):
2023-03-31 17:47:00 +08:00
try:
opt = OrderedDict()
opt["weight"] = {}
for key in ckpt.keys():
if "enc_q" in key:
continue
2023-03-31 17:47:00 +08:00
opt["weight"][key] = ckpt[key].half()
if sr == "40k":
opt["config"] = [
1025,
32,
192,
192,
768,
2,
6,
3,
0,
"1",
[3, 7, 11],
[[1, 3, 5], [1, 3, 5], [1, 3, 5]],
[10, 10, 2, 2],
512,
[16, 16, 4, 4],
109,
256,
40000,
]
elif sr == "48k":
opt["config"] = [
1025,
32,
192,
192,
768,
2,
6,
3,
0,
"1",
[3, 7, 11],
[[1, 3, 5], [1, 3, 5], [1, 3, 5]],
[10, 6, 2, 2, 2],
512,
[16, 16, 4, 4, 4],
109,
256,
48000,
]
elif sr == "32k":
opt["config"] = [
513,
32,
192,
192,
768,
2,
6,
3,
0,
"1",
[3, 7, 11],
[[1, 3, 5], [1, 3, 5], [1, 3, 5]],
[10, 4, 2, 2, 2],
512,
[16, 16, 4, 4, 4],
109,
256,
32000,
]
opt["info"] = "%sepoch" % epoch
2023-03-31 17:47:00 +08:00
opt["sr"] = sr
opt["f0"] = if_f0
torch.save(opt, "weights/%s.pth" % name)
2023-03-31 17:47:00 +08:00
return "Success."
except:
return traceback.format_exc()
2023-03-31 17:47:00 +08:00
def show_info(path):
try:
a = torch.load(path, map_location="cpu")
return "模型信息:%s\n采样率:%s\n模型是否输入音高引导:%s" % (
a.get("info", "None"),
a.get("sr", "None"),
a.get("f0", "None"),
)
2023-03-31 17:47:00 +08:00
except:
return traceback.format_exc()
def extract_small_model(path, name, sr, if_f0, info):
2023-03-31 17:47:00 +08:00
try:
ckpt = torch.load(path, map_location="cpu")
if "model" in ckpt:
ckpt = ckpt["model"]
2023-03-31 17:47:00 +08:00
opt = OrderedDict()
opt["weight"] = {}
for key in ckpt.keys():
if "enc_q" in key:
continue
2023-03-31 17:47:00 +08:00
opt["weight"][key] = ckpt[key].half()
if sr == "40k":
opt["config"] = [
1025,
32,
192,
192,
768,
2,
6,
3,
0,
"1",
[3, 7, 11],
[[1, 3, 5], [1, 3, 5], [1, 3, 5]],
[10, 10, 2, 2],
512,
[16, 16, 4, 4],
109,
256,
40000,
]
elif sr == "48k":
opt["config"] = [
1025,
32,
192,
192,
768,
2,
6,
3,
0,
"1",
[3, 7, 11],
[[1, 3, 5], [1, 3, 5], [1, 3, 5]],
[10, 6, 2, 2, 2],
512,
[16, 16, 4, 4, 4],
109,
256,
48000,
]
elif sr == "32k":
opt["config"] = [
513,
32,
192,
192,
768,
2,
6,
3,
0,
"1",
[3, 7, 11],
[[1, 3, 5], [1, 3, 5], [1, 3, 5]],
[10, 4, 2, 2, 2],
512,
[16, 16, 4, 4, 4],
109,
256,
32000,
]
if info == "":
info = "Extracted model."
2023-03-31 17:47:00 +08:00
opt["info"] = info
opt["sr"] = sr
opt["f0"] = int(if_f0)
torch.save(opt, "weights/%s.pth" % name)
2023-03-31 17:47:00 +08:00
return "Success."
except:
return traceback.format_exc()
def change_info(path, info, name):
2023-03-31 17:47:00 +08:00
try:
ckpt = torch.load(path, map_location="cpu")
ckpt["info"] = info
if name == "":
name = os.path.basename(path)
torch.save(ckpt, "weights/%s" % name)
2023-03-31 17:47:00 +08:00
return "Success."
except:
return traceback.format_exc()
def merge(path1, path2, alpha1, sr, f0, info, name):
2023-03-31 17:47:00 +08:00
try:
2023-03-31 17:47:00 +08:00
def extract(ckpt):
a = ckpt["model"]
opt = OrderedDict()
opt["weight"] = {}
for key in a.keys():
if "enc_q" in key:
continue
2023-03-31 17:47:00 +08:00
opt["weight"][key] = a[key]
return opt
2023-03-31 17:47:00 +08:00
ckpt1 = torch.load(path1, map_location="cpu")
ckpt2 = torch.load(path2, map_location="cpu")
cfg = ckpt1["config"]
if "model" in ckpt1:
ckpt1 = extract(ckpt1)
else:
ckpt1 = ckpt1["weight"]
if "model" in ckpt2:
ckpt2 = extract(ckpt2)
else:
ckpt2 = ckpt2["weight"]
if sorted(list(ckpt1.keys())) != sorted(list(ckpt2.keys())):
return "Fail to merge the models. The model architectures are not the same."
2023-03-31 17:47:00 +08:00
opt = OrderedDict()
opt["weight"] = {}
for key in ckpt1.keys():
# try:
if key == "emb_g.weight" and ckpt1[key].shape != ckpt2[key].shape:
min_shape0 = min(ckpt1[key].shape[0], ckpt2[key].shape[0])
opt["weight"][key] = (
alpha1 * (ckpt1[key][:min_shape0].float())
+ (1 - alpha1) * (ckpt2[key][:min_shape0].float())
).half()
else:
opt["weight"][key] = (
alpha1 * (ckpt1[key].float()) + (1 - alpha1) * (ckpt2[key].float())
).half()
# except:
# pdb.set_trace()
opt["config"] = cfg
"""
2023-03-31 17:47:00 +08:00
if(sr=="40k"):opt["config"] = [1025, 32, 192, 192, 768, 2, 6, 3, 0, "1", [3, 7, 11], [[1, 3, 5], [1, 3, 5], [1, 3, 5]], [10, 10, 2, 2], 512, [16, 16, 4, 4,4], 109, 256, 40000]
elif(sr=="48k"):opt["config"] = [1025, 32, 192, 192, 768, 2, 6, 3, 0, "1", [3, 7, 11], [[1, 3, 5], [1, 3, 5], [1, 3, 5]], [10,6,2,2,2], 512, [16, 16, 4, 4], 109, 256, 48000]
elif(sr=="32k"):opt["config"] = [513, 32, 192, 192, 768, 2, 6, 3, 0, "1", [3, 7, 11], [[1, 3, 5], [1, 3, 5], [1, 3, 5]], [10, 4, 2, 2, 2], 512, [16, 16, 4, 4,4], 109, 256, 32000]
"""
opt["sr"] = sr
opt["f0"] = 1 if f0 == "" else 0
opt["info"] = info
torch.save(opt, "weights/%s.pth" % name)
2023-03-31 17:47:00 +08:00
return "Success."
except:
return traceback.format_exc()