faiss improvement:1 use recommended parameter

tmp
This commit is contained in:
nadare 2023-04-22 09:39:53 +00:00
parent 334da847d2
commit 29c78c6416
2 changed files with 66 additions and 70 deletions

View File

@ -72,7 +72,7 @@ from config import (
noautoopen, noautoopen,
) )
from infer_uvr5 import _audio_pre_ from infer_uvr5 import _audio_pre_
from my_utils import load_audio from my_utils import load_audio, train_index
from train.process_ckpt import show_info, change_info, merge, extract_small_model from train.process_ckpt import show_info, change_info, merge, extract_small_model
# from trainset_preprocess_pipeline import PreProcess # from trainset_preprocess_pipeline import PreProcess
@ -614,47 +614,6 @@ def click_train(
return "训练结束, 您可查看控制台训练日志或实验文件夹下的train.log" return "训练结束, 您可查看控制台训练日志或实验文件夹下的train.log"
# but4.click(train_index, [exp_dir1], info3)
def train_index(exp_dir1):
exp_dir = "%s/logs/%s" % (now_dir, exp_dir1)
os.makedirs(exp_dir, exist_ok=True)
feature_dir = "%s/3_feature256" % (exp_dir)
if os.path.exists(feature_dir) == False:
return "请先进行特征提取!"
listdir_res = list(os.listdir(feature_dir))
if len(listdir_res) == 0:
return "请先进行特征提取!"
npys = []
for name in sorted(listdir_res):
phone = np.load("%s/%s" % (feature_dir, name))
npys.append(phone)
big_npy = np.concatenate(npys, 0)
np.save("%s/total_fea.npy" % exp_dir, big_npy)
n_ivf = big_npy.shape[0] // 39
infos = []
infos.append("%s,%s" % (big_npy.shape, n_ivf))
yield "\n".join(infos)
index = faiss.index_factory(256, "IVF%s,Flat" % n_ivf)
infos.append("training")
yield "\n".join(infos)
index_ivf = faiss.extract_index_ivf(index) #
index_ivf.nprobe = int(np.power(n_ivf, 0.3))
index.train(big_npy)
faiss.write_index(
index,
"%s/trained_IVF%s_Flat_nprobe_%s.index" % (exp_dir, n_ivf, index_ivf.nprobe),
)
infos.append("adding")
yield "\n".join(infos)
index.add(big_npy)
faiss.write_index(
index,
"%s/added_IVF%s_Flat_nprobe_%s.index" % (exp_dir, n_ivf, index_ivf.nprobe),
)
infos.append("成功构建索引, added_IVF%s_Flat_nprobe_%s.index" % (n_ivf, index_ivf.nprobe))
yield "\n".join(infos)
# but5.click(train1key, [exp_dir1, sr2, if_f0_3, trainset_dir4, spk_id5, gpus6, np7, f0method8, save_epoch10, total_epoch11, batch_size12, if_save_latest13, pretrained_G14, pretrained_D15, gpus16, if_cache_gpu17], info3) # but5.click(train1key, [exp_dir1, sr2, if_f0_3, trainset_dir4, spk_id5, gpus6, np7, f0method8, save_epoch10, total_epoch11, batch_size12, if_save_latest13, pretrained_G14, pretrained_D15, gpus16, if_cache_gpu17], info3)
def train1key( def train1key(
exp_dir1, exp_dir1,
@ -835,34 +794,7 @@ def train1key(
p.wait() p.wait()
yield get_info_str("训练结束, 您可查看控制台训练日志或实验文件夹下的train.log") yield get_info_str("训练结束, 您可查看控制台训练日志或实验文件夹下的train.log")
#######step3b:训练索引 #######step3b:训练索引
feature_dir = "%s/3_feature256" % (exp_dir) yield from train_index(exp_dir1)
npys = []
listdir_res = list(os.listdir(feature_dir))
for name in sorted(listdir_res):
phone = np.load("%s/%s" % (feature_dir, name))
npys.append(phone)
big_npy = np.concatenate(npys, 0)
np.save("%s/total_fea.npy" % exp_dir, big_npy)
n_ivf = big_npy.shape[0] // 39
yield get_info_str("%s,%s" % (big_npy.shape, n_ivf))
index = faiss.index_factory(256, "IVF%s,Flat" % n_ivf)
yield get_info_str("training index")
index_ivf = faiss.extract_index_ivf(index) #
index_ivf.nprobe = int(np.power(n_ivf, 0.3))
index.train(big_npy)
faiss.write_index(
index,
"%s/trained_IVF%s_Flat_nprobe_%s.index" % (exp_dir, n_ivf, index_ivf.nprobe),
)
yield get_info_str("adding index")
index.add(big_npy)
faiss.write_index(
index,
"%s/added_IVF%s_Flat_nprobe_%s.index" % (exp_dir, n_ivf, index_ivf.nprobe),
)
yield get_info_str(
"成功构建索引, added_IVF%s_Flat_nprobe_%s.index" % (n_ivf, index_ivf.nprobe)
)
yield get_info_str("全流程结束!") yield get_info_str("全流程结束!")

View File

@ -1,7 +1,71 @@
import os
import faiss
import ffmpeg import ffmpeg
import numpy as np import numpy as np
def train_index(exp_dir1):
'''train and save faiss index
Args:
exp_dir1(string): Relative path where index is stored
'''
exp_dir = "%s/logs/%s" % (os.getcwd(), exp_dir1)
os.makedirs(exp_dir, exist_ok=True)
feature_dir = "%s/3_feature256" % (exp_dir)
if os.path.exists(feature_dir) == False:
return "请先进行特征提取!"
listdir_res = list(os.listdir(feature_dir))
if len(listdir_res) == 0:
return "请先进行特征提取!"
npys = []
for name in sorted(listdir_res):
phone = np.load("%s/%s" % (feature_dir, name))
npys.append(phone)
big_npy = np.concatenate(npys, 0)
np.save("%s/total_fea.npy" % exp_dir, big_npy)
# use recommended parameter in https://github.com/facebookresearch/faiss/wiki/Guidelines-to-choose-an-index
N = big_npy.shape[0]
dim = big_npy.shape[1]
if 4 * np.rint(np.sqrt(N)) * 30 > N:
n_ivf = N // 30
else:
n_ivf = -(-N // 256)
for x in range(4, 18, 2):
K = x * np.rint(np.sqrt(N)).astype(int)
if 30 * K <= N <= 256 * K:
n_ivf = K
break
index_string = "IVF%s,PQ%sx4fs,RFlat" % (n_ivf, -(-dim//2))
index_name = index_string.replace(",", "_")
infos = []
infos.append("%s,%s" % (big_npy.shape, n_ivf))
yield "\n".join(infos)
index = faiss.index_factory(dim, index_string)
infos.append("training")
yield "\n".join(infos)
index.train(big_npy)
faiss.write_index(
index,
"%s/trained_%s.index" % (exp_dir, index_name),
)
infos.append("adding")
yield "\n".join(infos)
index.add(big_npy)
faiss.write_index(
index,
"%s/added_%s.index" % (exp_dir, index_name),
)
infos.append("成功构建索引, added_%s.index" % (index_name))
yield "\n".join(infos)
def load_audio(file, sr): def load_audio(file, sr):
try: try:
# https://github.com/openai/whisper/blob/main/whisper/audio.py#L26 # https://github.com/openai/whisper/blob/main/whisper/audio.py#L26