Add cuda streams

This commit is contained in:
VSlobolinskyi 2025-03-22 00:41:08 +02:00
parent 1db54518ff
commit 7252387621
2 changed files with 245 additions and 151 deletions

View File

@ -1,7 +1,7 @@
import gradio as gr
# Import modules from your packages
from merged_ui.utils import generate_and_process_with_rvc, modified_get_vc
from merged_ui.utils import generate_and_process_with_rvc_parallel, modified_get_vc
from rvc_ui.initialization import config
from rvc_ui.main import names, index_paths
@ -135,7 +135,7 @@ def build_merged_ui():
# Connect generate function to button with streaming enabled
generate_with_rvc_button.click(
generate_and_process_with_rvc,
generate_and_process_with_rvc_parallel,
inputs=[
tts_text_input,
prompt_text_input,

View File

@ -9,7 +9,9 @@ import numpy as np
import soundfile as sf
from pydub import AudioSegment
import torch
from pydub import AudioSegment
import threading
from queue import Queue, Empty
from contextlib import nullcontext
# Import modules from your packages
from spark.cli.SparkTTS import SparkTTS
@ -48,10 +50,11 @@ def run_tts(
gender=None,
pitch=None,
speed=None,
save_dir="TEMP/spark", # Updated default save directory
save_filename=None, # New parameter to specify filename
save_dir="TEMP/spark",
save_filename=None,
cuda_stream=None,
):
"""Perform TTS inference and save the generated audio."""
"""Perform TTS inference using a specific CUDA stream."""
model = initialize_model(model_dir, device=device)
logging.info(f"Saving audio to: {save_dir}")
@ -61,30 +64,75 @@ def run_tts(
# Ensure the save directory exists
os.makedirs(save_dir, exist_ok=True)
# Determine the save path based on save_filename if provided; otherwise, use a timestamp
# Determine the save path
if save_filename:
save_path = os.path.join(save_dir, save_filename)
else:
timestamp = datetime.now().strftime("%Y%m%d%H%M%S")
timestamp = datetime.datetime.now().strftime("%Y%m%d%H%M%S")
save_path = os.path.join(save_dir, f"{timestamp}.wav")
logging.info("Starting inference...")
logging.info("Starting TTS inference...")
# Perform inference and save the output audio
with torch.no_grad():
wav = model.inference(
text,
prompt_speech,
prompt_text,
gender,
pitch,
speed,
)
sf.write(save_path, wav, samplerate=16000)
logging.info(f"Audio saved at: {save_path}")
# Perform inference using the specified CUDA stream
with torch.cuda.stream(cuda_stream) if cuda_stream and torch.cuda.is_available() else nullcontext():
with torch.no_grad():
wav = model.inference(
text,
prompt_speech,
prompt_text,
gender,
pitch,
speed,
)
# Save the audio (CPU operation)
sf.write(save_path, wav, samplerate=16000)
logging.info(f"TTS audio saved at: {save_path}")
return save_path
def process_with_rvc(
spk_item, input_path, vc_transform, f0method,
file_index1, file_index2, index_rate, filter_radius,
resample_sr, rms_mix_rate, protect,
output_path, cuda_stream=None
):
"""Process audio through RVC with a specific CUDA stream."""
logging.info(f"Starting RVC inference for {input_path}...")
# Set the CUDA stream if provided
with torch.cuda.stream(cuda_stream) if cuda_stream and torch.cuda.is_available() else nullcontext():
# Call RVC processing function
f0_file = None # We're not using an F0 curve file
output_info, output_audio = vc.vc_single(
spk_item, input_path, vc_transform, f0_file, f0method,
file_index1, file_index2, index_rate, filter_radius,
resample_sr, rms_mix_rate, protect
)
# Save RVC output (CPU operation)
rvc_saved = False
try:
if isinstance(output_audio, str) and os.path.exists(output_audio):
# Case 1: output_audio is a file path string
shutil.copy2(output_audio, output_path)
rvc_saved = True
elif isinstance(output_audio, tuple) and len(output_audio) >= 2:
# Case 2: output_audio might be (sample_rate, audio_data)
sf.write(output_path, output_audio[1], output_audio[0])
rvc_saved = True
elif hasattr(output_audio, 'name') and os.path.exists(output_audio.name):
# Case 3: output_audio might be a file-like object
shutil.copy2(output_audio.name, output_path)
rvc_saved = True
except Exception as e:
output_info += f"\nError saving RVC output: {str(e)}"
logging.info(f"RVC inference completed for {input_path}")
return rvc_saved, output_info
def split_into_sentences(text):
"""
Split text into sentences using regular expressions.
@ -101,74 +149,188 @@ def split_into_sentences(text):
sentences = [s.strip() for s in sentences if s.strip()]
return sentences
def process_single_sentence(
sentence_index, sentence, prompt_speech, prompt_text_clean,
def generate_and_process_with_rvc_parallel(
text, prompt_text, prompt_wav_upload, prompt_wav_record,
spk_item, vc_transform, f0method,
file_index1, file_index2, index_rate, filter_radius,
resample_sr, rms_mix_rate, protect,
base_fragment_num
resample_sr, rms_mix_rate, protect
):
"""
Process a single sentence through the TTS and RVC pipeline.
Handle combined TTS and RVC processing using CUDA streams for parallel operation.
Uses a producer-consumer pattern where TTS produces audio files for RVC to consume.
"""
fragment_num = base_fragment_num + sentence_index
# Generate TTS audio for this sentence, saving directly to the correct location
tts_path = run_tts(
sentence,
prompt_text=prompt_text_clean,
prompt_speech=prompt_speech,
save_dir="./TEMP/spark",
save_filename=f"fragment_{fragment_num}.wav"
)
# Make sure we have a TTS file to process
if not tts_path or not os.path.exists(tts_path):
return None, None, False, f"Failed to generate TTS audio for sentence: {sentence}"
# Use the tts_path as the Spark output (no need to copy)
spark_output_path = tts_path
# Call RVC processing function
f0_file = None # We're not using an F0 curve file in this pipeline
output_info, output_audio = vc.vc_single(
spk_item, tts_path, vc_transform, f0_file, f0method,
file_index1, file_index2, index_rate, filter_radius,
resample_sr, rms_mix_rate, protect
)
# Save RVC output to TEMP/rvc directory
rvc_output_path = f"./TEMP/rvc/fragment_{fragment_num}.wav"
rvc_saved = False
try:
if isinstance(output_audio, str) and os.path.exists(output_audio):
# Case 1: output_audio is a file path string
shutil.copy2(output_audio, rvc_output_path)
rvc_saved = True
elif isinstance(output_audio, tuple) and len(output_audio) >= 2:
# Case 2: output_audio might be (sample_rate, audio_data)
try:
sf.write(rvc_output_path, output_audio[1], output_audio[0])
rvc_saved = True
except Exception as inner_e:
output_info += f"\nFailed to save RVC tuple format: {str(inner_e)}"
elif hasattr(output_audio, 'name') and os.path.exists(output_audio.name):
# Case 3: output_audio might be a file-like object
shutil.copy2(output_audio.name, rvc_output_path)
rvc_saved = True
except Exception as e:
output_info += f"\nError saving RVC output: {str(e)}"
# Prepare info message
info_message = f"Sentence {sentence_index+1}: {sentence[:30]}{'...' if len(sentence) > 30 else ''}\n"
info_message += f" - Spark output: {spark_output_path}\n"
if rvc_saved:
info_message += f" - RVC output: {rvc_output_path}"
# Ensure TEMP directories exist
os.makedirs("./TEMP/spark", exist_ok=True)
os.makedirs("./TEMP/rvc", exist_ok=True)
# Split text into sentences
sentences = split_into_sentences(text)
if not sentences:
yield "No valid text to process.", None
return
# Get next base fragment number
base_fragment_num = 1
while any(os.path.exists(f"./TEMP/spark/fragment_{base_fragment_num + i}.wav") or
os.path.exists(f"./TEMP/rvc/fragment_{base_fragment_num + i}.wav")
for i in range(len(sentences))):
base_fragment_num += 1
# Process reference speech
prompt_speech = prompt_wav_upload if prompt_wav_upload else prompt_wav_record
prompt_text_clean = None if not prompt_text or len(prompt_text) < 2 else prompt_text
# Create CUDA streams if CUDA is available
use_cuda = torch.cuda.is_available()
if use_cuda:
spark_stream = torch.cuda.Stream()
rvc_stream = torch.cuda.Stream()
logging.info("Using separate CUDA streams for Spark TTS and RVC")
else:
info_message += f" - Could not save RVC output to {rvc_output_path}"
spark_stream = None
rvc_stream = None
logging.info("CUDA not available, parallel processing will be limited")
# Create queues for communication between TTS and RVC
tts_to_rvc_queue = Queue()
rvc_results_queue = Queue()
# Flag to signal completion
processing_complete = threading.Event()
info_messages = [f"Processing {len(sentences)} sentences using parallel CUDA streams..."]
# Yield initial message with no audio yet
yield "\n".join(info_messages), None
# TTS worker function
def tts_worker():
for i, sentence in enumerate(sentences):
fragment_num = base_fragment_num + i
tts_filename = f"fragment_{fragment_num}.wav"
try:
# Use the TTS CUDA stream
path = run_tts(
sentence,
prompt_text=prompt_text_clean,
prompt_speech=prompt_speech,
save_dir="./TEMP/spark",
save_filename=tts_filename,
cuda_stream=spark_stream
)
# Put the path and sentence info to the queue for RVC processing
tts_to_rvc_queue.put((i, fragment_num, sentence, path))
except Exception as e:
logging.error(f"TTS processing error for sentence {i}: {str(e)}")
tts_to_rvc_queue.put((i, fragment_num, sentence, None, str(e)))
# Signal TTS completion
tts_to_rvc_queue.put(None)
# RVC worker function
def rvc_worker():
while True:
# Get item from the queue
item = tts_to_rvc_queue.get()
# Check for the sentinel value (None) that signals completion
if item is None:
break
# Unpack the item
if len(item) == 5: # Error case
i, fragment_num, sentence, _, error = item
rvc_results_queue.put((i, None, None, False, f"TTS error for sentence {i+1}: {error}"))
continue
i, fragment_num, sentence, tts_path = item
if not tts_path or not os.path.exists(tts_path):
rvc_results_queue.put((i, None, None, False, f"No TTS output for sentence {i+1}"))
continue
# Prepare RVC path
rvc_path = os.path.join("./TEMP/rvc", f"fragment_{fragment_num}.wav")
try:
# Process with RVC
rvc_success, rvc_info = process_with_rvc(
spk_item, tts_path, vc_transform, f0method,
file_index1, file_index2, index_rate, filter_radius,
resample_sr, rms_mix_rate, protect,
rvc_path, cuda_stream=rvc_stream
)
# Create info message
info_message = f"Sentence {i+1}: {sentence[:30]}{'...' if len(sentence) > 30 else ''}\n"
info_message += f" - Spark output: {tts_path}\n"
if rvc_success:
info_message += f" - RVC output: {rvc_path}"
else:
info_message += f" - Could not save RVC output to {rvc_path}"
# Put the results to the queue
rvc_results_queue.put((i, tts_path, rvc_path if rvc_success else None, rvc_success, info_message))
except Exception as e:
logging.error(f"RVC processing error for sentence {i}: {str(e)}")
info_message = f"Sentence {i+1}: {sentence[:30]}{'...' if len(sentence) > 30 else ''}\n"
info_message += f" - Spark output: {tts_path}\n"
info_message += f" - RVC processing error: {str(e)}"
rvc_results_queue.put((i, tts_path, None, False, info_message))
# Signal RVC completion
processing_complete.set()
# Start the worker threads
tts_thread = threading.Thread(target=tts_worker)
rvc_thread = threading.Thread(target=rvc_worker)
tts_thread.start()
rvc_thread.start()
# Process results as they become available
completed_sentences = {}
next_to_yield = 0
while not processing_complete.is_set() or not rvc_results_queue.empty():
try:
# Try to get an item from the results queue with a timeout
try:
i, tts_path, rvc_path, success, info = rvc_results_queue.get(timeout=0.1)
completed_sentences[i] = (tts_path, rvc_path, success, info)
except Empty:
# No results available yet, continue the loop
continue
# Check if we can yield the next sentence
while next_to_yield in completed_sentences:
_, rvc_path, _, info = completed_sentences[next_to_yield]
info_messages.append(info)
# Yield the current state
yield "\n".join(info_messages), rvc_path
# Move to the next sentence
next_to_yield += 1
except Exception as e:
logging.error(f"Error in main processing loop: {str(e)}")
info_messages.append(f"Error in processing: {str(e)}")
yield "\n".join(info_messages), None
break
# Join the threads
tts_thread.join()
rvc_thread.join()
# Yield any remaining sentences in order
remaining_indices = sorted([i for i in completed_sentences if i >= next_to_yield])
for i in remaining_indices:
_, rvc_path, _, info = completed_sentences[i]
info_messages.append(info)
yield "\n".join(info_messages), rvc_path
return spark_output_path, rvc_output_path, rvc_saved, info_message
def concatenate_audio_files(file_paths, output_path, sample_rate=44100):
"""
@ -213,74 +375,6 @@ def concatenate_audio_files(file_paths, output_path, sample_rate=44100):
print(f"Fallback concatenation failed: {str(e2)}")
return False
def generate_and_process_with_rvc(
text, prompt_text, prompt_wav_upload, prompt_wav_record,
spk_item, vc_transform, f0method,
file_index1, file_index2, index_rate, filter_radius,
resample_sr, rms_mix_rate, protect
):
"""
Handle combined TTS and RVC processing for multiple sentences and yield outputs as they are processed.
The output is just the latest processed audio.
Before yielding a new audio fragment, the function waits for the previous one to finish playing,
based on its duration.
"""
# Ensure TEMP directories exist
os.makedirs("./TEMP/spark", exist_ok=True)
os.makedirs("./TEMP/rvc", exist_ok=True)
# Split text into sentences
sentences = split_into_sentences(text)
if not sentences:
yield "No valid text to process.", None
return
# Get next base fragment number
base_fragment_num = 1
while any(os.path.exists(f"./TEMP/spark/fragment_{base_fragment_num + i}.wav") or
os.path.exists(f"./TEMP/rvc/fragment_{base_fragment_num + i}.wav")
for i in range(len(sentences))):
base_fragment_num += 1
# Process reference speech
prompt_speech = prompt_wav_upload if prompt_wav_upload else prompt_wav_record
prompt_text_clean = None if not prompt_text or len(prompt_text) < 2 else prompt_text
info_messages = [f"Processing {len(sentences)} sentences..."]
# Yield initial message with no audio yet
yield "\n".join(info_messages), None
# Set up a timer to simulate playback duration
next_available_time = time.time()
for i, sentence in enumerate(sentences):
spark_path, rvc_path, success, info = process_single_sentence(
i, sentence, prompt_speech, prompt_text_clean,
spk_item, vc_transform, f0method,
file_index1, file_index2, index_rate, filter_radius,
resample_sr, rms_mix_rate, protect,
base_fragment_num
)
info_messages.append(info)
# Only update output if processing was successful and we have an audio file
if success and rvc_path:
try:
audio_seg = AudioSegment.from_file(rvc_path)
duration = audio_seg.duration_seconds
except Exception as e:
duration = 0
current_time = time.time()
if current_time < next_available_time:
time.sleep(next_available_time - current_time)
yield "\n".join(info_messages), rvc_path
next_available_time = time.time() + duration
yield "\n".join(info_messages), rvc_path
def modified_get_vc(sid0_value, protect0_value, file_index2_component):
"""