mirror of
https://github.com/RVC-Project/Retrieval-based-Voice-Conversion-WebUI.git
synced 2025-04-05 04:08:58 +08:00
389 lines
14 KiB
Python
389 lines
14 KiB
Python
import datetime
|
|
import time
|
|
import logging
|
|
import os
|
|
import platform
|
|
import shutil
|
|
import re
|
|
import numpy as np
|
|
import soundfile as sf
|
|
from pydub import AudioSegment
|
|
import torch
|
|
import threading
|
|
from queue import Queue, Empty
|
|
from contextlib import nullcontext
|
|
|
|
# Import modules from your packages
|
|
from spark.cli.SparkTTS import SparkTTS
|
|
from rvc_ui.initialization import vc
|
|
|
|
# Initialize the Spark TTS model (moved outside function to avoid reinitializing)
|
|
model_dir = "spark/pretrained_models/Spark-TTS-0.5B"
|
|
device = 0
|
|
|
|
def initialize_model(model_dir, device):
|
|
"""Load the model once at the beginning."""
|
|
logging.info(f"Loading model from: {model_dir}")
|
|
|
|
# Determine appropriate device based on platform and availability
|
|
if platform.system() == "Darwin":
|
|
# macOS with MPS support (Apple Silicon)
|
|
device = torch.device(f"mps:{device}")
|
|
logging.info(f"Using MPS device: {device}")
|
|
elif torch.cuda.is_available():
|
|
# System with CUDA support
|
|
device = torch.device(f"cuda:{device}")
|
|
logging.info(f"Using CUDA device: {device}")
|
|
else:
|
|
# Fall back to CPU
|
|
device = torch.device("cpu")
|
|
logging.info("GPU acceleration not available, using CPU")
|
|
|
|
model = SparkTTS(model_dir, device)
|
|
return model
|
|
|
|
|
|
def run_tts(
|
|
text,
|
|
prompt_text=None,
|
|
prompt_speech=None,
|
|
gender=None,
|
|
pitch=None,
|
|
speed=None,
|
|
save_dir="TEMP/spark",
|
|
save_filename=None,
|
|
cuda_stream=None,
|
|
):
|
|
"""Perform TTS inference using a specific CUDA stream."""
|
|
model = initialize_model(model_dir, device=device)
|
|
logging.info(f"Saving audio to: {save_dir}")
|
|
|
|
if prompt_text is not None:
|
|
prompt_text = None if len(prompt_text) <= 1 else prompt_text
|
|
|
|
# Ensure the save directory exists
|
|
os.makedirs(save_dir, exist_ok=True)
|
|
|
|
# Determine the save path
|
|
if save_filename:
|
|
save_path = os.path.join(save_dir, save_filename)
|
|
else:
|
|
timestamp = datetime.datetime.now().strftime("%Y%m%d%H%M%S")
|
|
save_path = os.path.join(save_dir, f"{timestamp}.wav")
|
|
|
|
logging.info("Starting TTS inference...")
|
|
|
|
# Perform inference using the specified CUDA stream
|
|
with torch.cuda.stream(cuda_stream) if cuda_stream and torch.cuda.is_available() else nullcontext():
|
|
with torch.no_grad():
|
|
wav = model.inference(
|
|
text,
|
|
prompt_speech,
|
|
prompt_text,
|
|
gender,
|
|
pitch,
|
|
speed,
|
|
)
|
|
|
|
# Save the audio (CPU operation)
|
|
sf.write(save_path, wav, samplerate=16000)
|
|
|
|
logging.info(f"TTS audio saved at: {save_path}")
|
|
return save_path
|
|
|
|
|
|
def process_with_rvc(
|
|
spk_item, input_path, vc_transform, f0method,
|
|
file_index1, file_index2, index_rate, filter_radius,
|
|
resample_sr, rms_mix_rate, protect,
|
|
output_path, cuda_stream=None
|
|
):
|
|
"""Process audio through RVC with a specific CUDA stream."""
|
|
logging.info(f"Starting RVC inference for {input_path}...")
|
|
|
|
# Set the CUDA stream if provided
|
|
with torch.cuda.stream(cuda_stream) if cuda_stream and torch.cuda.is_available() else nullcontext():
|
|
# Call RVC processing function
|
|
f0_file = None # We're not using an F0 curve file
|
|
output_info, output_audio = vc.vc_single(
|
|
spk_item, input_path, vc_transform, f0_file, f0method,
|
|
file_index1, file_index2, index_rate, filter_radius,
|
|
resample_sr, rms_mix_rate, protect
|
|
)
|
|
|
|
# Save RVC output (CPU operation)
|
|
rvc_saved = False
|
|
try:
|
|
if isinstance(output_audio, str) and os.path.exists(output_audio):
|
|
# Case 1: output_audio is a file path string
|
|
shutil.copy2(output_audio, output_path)
|
|
rvc_saved = True
|
|
elif isinstance(output_audio, tuple) and len(output_audio) >= 2:
|
|
# Case 2: output_audio might be (sample_rate, audio_data)
|
|
sf.write(output_path, output_audio[1], output_audio[0])
|
|
rvc_saved = True
|
|
elif hasattr(output_audio, 'name') and os.path.exists(output_audio.name):
|
|
# Case 3: output_audio might be a file-like object
|
|
shutil.copy2(output_audio.name, output_path)
|
|
rvc_saved = True
|
|
except Exception as e:
|
|
output_info += f"\nError saving RVC output: {str(e)}"
|
|
|
|
logging.info(f"RVC inference completed for {input_path}")
|
|
return rvc_saved, output_info
|
|
|
|
|
|
def split_into_sentences(text):
|
|
"""
|
|
Split text into sentences using regular expressions.
|
|
|
|
Args:
|
|
text (str): The input text to split
|
|
|
|
Returns:
|
|
list: A list of sentences
|
|
"""
|
|
# Split on period, exclamation mark, or question mark followed by space or end of string
|
|
sentences = re.split(r'(?<=[.!?])\s+|(?<=[.!?])$', text)
|
|
# Remove any empty sentences
|
|
sentences = [s.strip() for s in sentences if s.strip()]
|
|
return sentences
|
|
|
|
|
|
def generate_and_process_with_rvc_parallel(
|
|
text, prompt_text, prompt_wav_upload, prompt_wav_record,
|
|
spk_item, vc_transform, f0method,
|
|
file_index1, file_index2, index_rate, filter_radius,
|
|
resample_sr, rms_mix_rate, protect
|
|
):
|
|
"""
|
|
Handle combined TTS and RVC processing using CUDA streams for parallel operation.
|
|
Uses a producer-consumer pattern where TTS produces audio files for RVC to consume.
|
|
"""
|
|
# Ensure TEMP directories exist
|
|
os.makedirs("./TEMP/spark", exist_ok=True)
|
|
os.makedirs("./TEMP/rvc", exist_ok=True)
|
|
|
|
# Split text into sentences
|
|
sentences = split_into_sentences(text)
|
|
if not sentences:
|
|
yield "No valid text to process.", None
|
|
return
|
|
|
|
# Get next base fragment number
|
|
base_fragment_num = 1
|
|
while any(os.path.exists(f"./TEMP/spark/fragment_{base_fragment_num + i}.wav") or
|
|
os.path.exists(f"./TEMP/rvc/fragment_{base_fragment_num + i}.wav")
|
|
for i in range(len(sentences))):
|
|
base_fragment_num += 1
|
|
|
|
# Process reference speech
|
|
prompt_speech = prompt_wav_upload if prompt_wav_upload else prompt_wav_record
|
|
prompt_text_clean = None if not prompt_text or len(prompt_text) < 2 else prompt_text
|
|
|
|
# Create CUDA streams if CUDA is available
|
|
use_cuda = torch.cuda.is_available()
|
|
if use_cuda:
|
|
spark_stream = torch.cuda.Stream()
|
|
rvc_stream = torch.cuda.Stream()
|
|
logging.info("Using separate CUDA streams for Spark TTS and RVC")
|
|
else:
|
|
spark_stream = None
|
|
rvc_stream = None
|
|
logging.info("CUDA not available, parallel processing will be limited")
|
|
|
|
# Create queues for communication between TTS and RVC
|
|
tts_to_rvc_queue = Queue()
|
|
rvc_results_queue = Queue()
|
|
|
|
# Flag to signal completion
|
|
processing_complete = threading.Event()
|
|
|
|
info_messages = [f"Processing {len(sentences)} sentences using parallel CUDA streams..."]
|
|
|
|
# Yield initial message with no audio yet
|
|
yield "\n".join(info_messages), None
|
|
|
|
# TTS worker function
|
|
def tts_worker():
|
|
for i, sentence in enumerate(sentences):
|
|
fragment_num = base_fragment_num + i
|
|
tts_filename = f"fragment_{fragment_num}.wav"
|
|
|
|
try:
|
|
# Use the TTS CUDA stream
|
|
path = run_tts(
|
|
sentence,
|
|
prompt_text=prompt_text_clean,
|
|
prompt_speech=prompt_speech,
|
|
save_dir="./TEMP/spark",
|
|
save_filename=tts_filename,
|
|
cuda_stream=spark_stream
|
|
)
|
|
# Put the path and sentence info to the queue for RVC processing
|
|
tts_to_rvc_queue.put((i, fragment_num, sentence, path))
|
|
except Exception as e:
|
|
logging.error(f"TTS processing error for sentence {i}: {str(e)}")
|
|
tts_to_rvc_queue.put((i, fragment_num, sentence, None, str(e)))
|
|
|
|
# Signal TTS completion
|
|
tts_to_rvc_queue.put(None)
|
|
|
|
# RVC worker function
|
|
def rvc_worker():
|
|
while True:
|
|
# Get item from the queue
|
|
item = tts_to_rvc_queue.get()
|
|
|
|
# Check for the sentinel value (None) that signals completion
|
|
if item is None:
|
|
break
|
|
|
|
# Unpack the item
|
|
if len(item) == 5: # Error case
|
|
i, fragment_num, sentence, _, error = item
|
|
rvc_results_queue.put((i, None, None, False, f"TTS error for sentence {i+1}: {error}"))
|
|
continue
|
|
|
|
i, fragment_num, sentence, tts_path = item
|
|
|
|
if not tts_path or not os.path.exists(tts_path):
|
|
rvc_results_queue.put((i, None, None, False, f"No TTS output for sentence {i+1}"))
|
|
continue
|
|
|
|
# Prepare RVC path
|
|
rvc_path = os.path.join("./TEMP/rvc", f"fragment_{fragment_num}.wav")
|
|
|
|
try:
|
|
# Process with RVC
|
|
rvc_success, rvc_info = process_with_rvc(
|
|
spk_item, tts_path, vc_transform, f0method,
|
|
file_index1, file_index2, index_rate, filter_radius,
|
|
resample_sr, rms_mix_rate, protect,
|
|
rvc_path, cuda_stream=rvc_stream
|
|
)
|
|
|
|
# Create info message
|
|
info_message = f"Sentence {i+1}: {sentence[:30]}{'...' if len(sentence) > 30 else ''}\n"
|
|
info_message += f" - Spark output: {tts_path}\n"
|
|
if rvc_success:
|
|
info_message += f" - RVC output: {rvc_path}"
|
|
else:
|
|
info_message += f" - Could not save RVC output to {rvc_path}"
|
|
|
|
# Put the results to the queue
|
|
rvc_results_queue.put((i, tts_path, rvc_path if rvc_success else None, rvc_success, info_message))
|
|
except Exception as e:
|
|
logging.error(f"RVC processing error for sentence {i}: {str(e)}")
|
|
info_message = f"Sentence {i+1}: {sentence[:30]}{'...' if len(sentence) > 30 else ''}\n"
|
|
info_message += f" - Spark output: {tts_path}\n"
|
|
info_message += f" - RVC processing error: {str(e)}"
|
|
rvc_results_queue.put((i, tts_path, None, False, info_message))
|
|
|
|
# Signal RVC completion
|
|
processing_complete.set()
|
|
|
|
# Start the worker threads
|
|
tts_thread = threading.Thread(target=tts_worker)
|
|
rvc_thread = threading.Thread(target=rvc_worker)
|
|
|
|
tts_thread.start()
|
|
rvc_thread.start()
|
|
|
|
# Process results as they become available
|
|
completed_sentences = {}
|
|
next_to_yield = 0
|
|
|
|
while not processing_complete.is_set() or not rvc_results_queue.empty():
|
|
try:
|
|
# Try to get an item from the results queue with a timeout
|
|
try:
|
|
i, tts_path, rvc_path, success, info = rvc_results_queue.get(timeout=0.1)
|
|
completed_sentences[i] = (tts_path, rvc_path, success, info)
|
|
except Empty:
|
|
# No results available yet, continue the loop
|
|
continue
|
|
|
|
# Check if we can yield the next sentence
|
|
while next_to_yield in completed_sentences:
|
|
_, rvc_path, _, info = completed_sentences[next_to_yield]
|
|
info_messages.append(info)
|
|
|
|
# Yield the current state
|
|
yield "\n".join(info_messages), rvc_path
|
|
|
|
# Move to the next sentence
|
|
next_to_yield += 1
|
|
except Exception as e:
|
|
logging.error(f"Error in main processing loop: {str(e)}")
|
|
info_messages.append(f"Error in processing: {str(e)}")
|
|
yield "\n".join(info_messages), None
|
|
break
|
|
|
|
# Join the threads
|
|
tts_thread.join()
|
|
rvc_thread.join()
|
|
|
|
# Yield any remaining sentences in order
|
|
remaining_indices = sorted([i for i in completed_sentences if i >= next_to_yield])
|
|
for i in remaining_indices:
|
|
_, rvc_path, _, info = completed_sentences[i]
|
|
info_messages.append(info)
|
|
yield "\n".join(info_messages), rvc_path
|
|
|
|
|
|
def concatenate_audio_files(file_paths, output_path, sample_rate=44100):
|
|
"""
|
|
Concatenate multiple audio files into a single file
|
|
|
|
Args:
|
|
file_paths (list): List of paths to audio files
|
|
output_path (str): Path to save the concatenated audio
|
|
sample_rate (int): Sample rate for the output file
|
|
|
|
Returns:
|
|
bool: True if concatenation was successful, False otherwise
|
|
"""
|
|
try:
|
|
# Use pydub to concatenate audio files
|
|
combined = AudioSegment.empty()
|
|
for file_path in file_paths:
|
|
segment = AudioSegment.from_file(file_path)
|
|
combined += segment
|
|
|
|
# Export the combined audio
|
|
combined.export(output_path, format="wav")
|
|
return True
|
|
except Exception as e:
|
|
print(f"Error concatenating audio files: {str(e)}")
|
|
|
|
# Fallback method using soundfile
|
|
try:
|
|
all_audio = []
|
|
for file_path in file_paths:
|
|
data, sr = sf.read(file_path)
|
|
# Convert to mono if stereo
|
|
if len(data.shape) > 1 and data.shape[1] > 1:
|
|
data = data.mean(axis=1)
|
|
all_audio.append(data)
|
|
|
|
# Concatenate all audio data
|
|
concatenated = np.concatenate(all_audio)
|
|
sf.write(output_path, concatenated, sample_rate)
|
|
return True
|
|
except Exception as e2:
|
|
print(f"Fallback concatenation failed: {str(e2)}")
|
|
return False
|
|
|
|
|
|
def modified_get_vc(sid0_value, protect0_value, file_index2_component):
|
|
"""
|
|
Modified function to get voice conversion parameters
|
|
"""
|
|
protect1_value = protect0_value
|
|
outputs = vc.get_vc(sid0_value, protect0_value, protect1_value)
|
|
|
|
if isinstance(outputs, tuple) and len(outputs) >= 3:
|
|
return outputs[0], outputs[1], outputs[3]
|
|
|
|
return 0, protect0_value, file_index2_component.choices[0] if file_index2_component.choices else "" |