mirror of
https://github.com/RVC-Project/Retrieval-based-Voice-Conversion-WebUI.git
synced 2025-04-05 04:08:58 +08:00
Add cuda streams
This commit is contained in:
parent
1db54518ff
commit
7252387621
@ -1,7 +1,7 @@
|
||||
import gradio as gr
|
||||
|
||||
# Import modules from your packages
|
||||
from merged_ui.utils import generate_and_process_with_rvc, modified_get_vc
|
||||
from merged_ui.utils import generate_and_process_with_rvc_parallel, modified_get_vc
|
||||
from rvc_ui.initialization import config
|
||||
from rvc_ui.main import names, index_paths
|
||||
|
||||
@ -135,7 +135,7 @@ def build_merged_ui():
|
||||
|
||||
# Connect generate function to button with streaming enabled
|
||||
generate_with_rvc_button.click(
|
||||
generate_and_process_with_rvc,
|
||||
generate_and_process_with_rvc_parallel,
|
||||
inputs=[
|
||||
tts_text_input,
|
||||
prompt_text_input,
|
||||
|
@ -9,7 +9,9 @@ import numpy as np
|
||||
import soundfile as sf
|
||||
from pydub import AudioSegment
|
||||
import torch
|
||||
from pydub import AudioSegment
|
||||
import threading
|
||||
from queue import Queue, Empty
|
||||
from contextlib import nullcontext
|
||||
|
||||
# Import modules from your packages
|
||||
from spark.cli.SparkTTS import SparkTTS
|
||||
@ -48,10 +50,11 @@ def run_tts(
|
||||
gender=None,
|
||||
pitch=None,
|
||||
speed=None,
|
||||
save_dir="TEMP/spark", # Updated default save directory
|
||||
save_filename=None, # New parameter to specify filename
|
||||
save_dir="TEMP/spark",
|
||||
save_filename=None,
|
||||
cuda_stream=None,
|
||||
):
|
||||
"""Perform TTS inference and save the generated audio."""
|
||||
"""Perform TTS inference using a specific CUDA stream."""
|
||||
model = initialize_model(model_dir, device=device)
|
||||
logging.info(f"Saving audio to: {save_dir}")
|
||||
|
||||
@ -61,16 +64,17 @@ def run_tts(
|
||||
# Ensure the save directory exists
|
||||
os.makedirs(save_dir, exist_ok=True)
|
||||
|
||||
# Determine the save path based on save_filename if provided; otherwise, use a timestamp
|
||||
# Determine the save path
|
||||
if save_filename:
|
||||
save_path = os.path.join(save_dir, save_filename)
|
||||
else:
|
||||
timestamp = datetime.now().strftime("%Y%m%d%H%M%S")
|
||||
timestamp = datetime.datetime.now().strftime("%Y%m%d%H%M%S")
|
||||
save_path = os.path.join(save_dir, f"{timestamp}.wav")
|
||||
|
||||
logging.info("Starting inference...")
|
||||
logging.info("Starting TTS inference...")
|
||||
|
||||
# Perform inference and save the output audio
|
||||
# Perform inference using the specified CUDA stream
|
||||
with torch.cuda.stream(cuda_stream) if cuda_stream and torch.cuda.is_available() else nullcontext():
|
||||
with torch.no_grad():
|
||||
wav = model.inference(
|
||||
text,
|
||||
@ -80,11 +84,55 @@ def run_tts(
|
||||
pitch,
|
||||
speed,
|
||||
)
|
||||
|
||||
# Save the audio (CPU operation)
|
||||
sf.write(save_path, wav, samplerate=16000)
|
||||
|
||||
logging.info(f"Audio saved at: {save_path}")
|
||||
logging.info(f"TTS audio saved at: {save_path}")
|
||||
return save_path
|
||||
|
||||
|
||||
def process_with_rvc(
|
||||
spk_item, input_path, vc_transform, f0method,
|
||||
file_index1, file_index2, index_rate, filter_radius,
|
||||
resample_sr, rms_mix_rate, protect,
|
||||
output_path, cuda_stream=None
|
||||
):
|
||||
"""Process audio through RVC with a specific CUDA stream."""
|
||||
logging.info(f"Starting RVC inference for {input_path}...")
|
||||
|
||||
# Set the CUDA stream if provided
|
||||
with torch.cuda.stream(cuda_stream) if cuda_stream and torch.cuda.is_available() else nullcontext():
|
||||
# Call RVC processing function
|
||||
f0_file = None # We're not using an F0 curve file
|
||||
output_info, output_audio = vc.vc_single(
|
||||
spk_item, input_path, vc_transform, f0_file, f0method,
|
||||
file_index1, file_index2, index_rate, filter_radius,
|
||||
resample_sr, rms_mix_rate, protect
|
||||
)
|
||||
|
||||
# Save RVC output (CPU operation)
|
||||
rvc_saved = False
|
||||
try:
|
||||
if isinstance(output_audio, str) and os.path.exists(output_audio):
|
||||
# Case 1: output_audio is a file path string
|
||||
shutil.copy2(output_audio, output_path)
|
||||
rvc_saved = True
|
||||
elif isinstance(output_audio, tuple) and len(output_audio) >= 2:
|
||||
# Case 2: output_audio might be (sample_rate, audio_data)
|
||||
sf.write(output_path, output_audio[1], output_audio[0])
|
||||
rvc_saved = True
|
||||
elif hasattr(output_audio, 'name') and os.path.exists(output_audio.name):
|
||||
# Case 3: output_audio might be a file-like object
|
||||
shutil.copy2(output_audio.name, output_path)
|
||||
rvc_saved = True
|
||||
except Exception as e:
|
||||
output_info += f"\nError saving RVC output: {str(e)}"
|
||||
|
||||
logging.info(f"RVC inference completed for {input_path}")
|
||||
return rvc_saved, output_info
|
||||
|
||||
|
||||
def split_into_sentences(text):
|
||||
"""
|
||||
Split text into sentences using regular expressions.
|
||||
@ -101,74 +149,188 @@ def split_into_sentences(text):
|
||||
sentences = [s.strip() for s in sentences if s.strip()]
|
||||
return sentences
|
||||
|
||||
def process_single_sentence(
|
||||
sentence_index, sentence, prompt_speech, prompt_text_clean,
|
||||
|
||||
def generate_and_process_with_rvc_parallel(
|
||||
text, prompt_text, prompt_wav_upload, prompt_wav_record,
|
||||
spk_item, vc_transform, f0method,
|
||||
file_index1, file_index2, index_rate, filter_radius,
|
||||
resample_sr, rms_mix_rate, protect,
|
||||
base_fragment_num
|
||||
resample_sr, rms_mix_rate, protect
|
||||
):
|
||||
"""
|
||||
Process a single sentence through the TTS and RVC pipeline.
|
||||
Handle combined TTS and RVC processing using CUDA streams for parallel operation.
|
||||
Uses a producer-consumer pattern where TTS produces audio files for RVC to consume.
|
||||
"""
|
||||
fragment_num = base_fragment_num + sentence_index
|
||||
# Ensure TEMP directories exist
|
||||
os.makedirs("./TEMP/spark", exist_ok=True)
|
||||
os.makedirs("./TEMP/rvc", exist_ok=True)
|
||||
|
||||
# Generate TTS audio for this sentence, saving directly to the correct location
|
||||
tts_path = run_tts(
|
||||
# Split text into sentences
|
||||
sentences = split_into_sentences(text)
|
||||
if not sentences:
|
||||
yield "No valid text to process.", None
|
||||
return
|
||||
|
||||
# Get next base fragment number
|
||||
base_fragment_num = 1
|
||||
while any(os.path.exists(f"./TEMP/spark/fragment_{base_fragment_num + i}.wav") or
|
||||
os.path.exists(f"./TEMP/rvc/fragment_{base_fragment_num + i}.wav")
|
||||
for i in range(len(sentences))):
|
||||
base_fragment_num += 1
|
||||
|
||||
# Process reference speech
|
||||
prompt_speech = prompt_wav_upload if prompt_wav_upload else prompt_wav_record
|
||||
prompt_text_clean = None if not prompt_text or len(prompt_text) < 2 else prompt_text
|
||||
|
||||
# Create CUDA streams if CUDA is available
|
||||
use_cuda = torch.cuda.is_available()
|
||||
if use_cuda:
|
||||
spark_stream = torch.cuda.Stream()
|
||||
rvc_stream = torch.cuda.Stream()
|
||||
logging.info("Using separate CUDA streams for Spark TTS and RVC")
|
||||
else:
|
||||
spark_stream = None
|
||||
rvc_stream = None
|
||||
logging.info("CUDA not available, parallel processing will be limited")
|
||||
|
||||
# Create queues for communication between TTS and RVC
|
||||
tts_to_rvc_queue = Queue()
|
||||
rvc_results_queue = Queue()
|
||||
|
||||
# Flag to signal completion
|
||||
processing_complete = threading.Event()
|
||||
|
||||
info_messages = [f"Processing {len(sentences)} sentences using parallel CUDA streams..."]
|
||||
|
||||
# Yield initial message with no audio yet
|
||||
yield "\n".join(info_messages), None
|
||||
|
||||
# TTS worker function
|
||||
def tts_worker():
|
||||
for i, sentence in enumerate(sentences):
|
||||
fragment_num = base_fragment_num + i
|
||||
tts_filename = f"fragment_{fragment_num}.wav"
|
||||
|
||||
try:
|
||||
# Use the TTS CUDA stream
|
||||
path = run_tts(
|
||||
sentence,
|
||||
prompt_text=prompt_text_clean,
|
||||
prompt_speech=prompt_speech,
|
||||
save_dir="./TEMP/spark",
|
||||
save_filename=f"fragment_{fragment_num}.wav"
|
||||
save_filename=tts_filename,
|
||||
cuda_stream=spark_stream
|
||||
)
|
||||
|
||||
# Make sure we have a TTS file to process
|
||||
if not tts_path or not os.path.exists(tts_path):
|
||||
return None, None, False, f"Failed to generate TTS audio for sentence: {sentence}"
|
||||
|
||||
# Use the tts_path as the Spark output (no need to copy)
|
||||
spark_output_path = tts_path
|
||||
|
||||
# Call RVC processing function
|
||||
f0_file = None # We're not using an F0 curve file in this pipeline
|
||||
output_info, output_audio = vc.vc_single(
|
||||
spk_item, tts_path, vc_transform, f0_file, f0method,
|
||||
file_index1, file_index2, index_rate, filter_radius,
|
||||
resample_sr, rms_mix_rate, protect
|
||||
)
|
||||
|
||||
# Save RVC output to TEMP/rvc directory
|
||||
rvc_output_path = f"./TEMP/rvc/fragment_{fragment_num}.wav"
|
||||
rvc_saved = False
|
||||
|
||||
try:
|
||||
if isinstance(output_audio, str) and os.path.exists(output_audio):
|
||||
# Case 1: output_audio is a file path string
|
||||
shutil.copy2(output_audio, rvc_output_path)
|
||||
rvc_saved = True
|
||||
elif isinstance(output_audio, tuple) and len(output_audio) >= 2:
|
||||
# Case 2: output_audio might be (sample_rate, audio_data)
|
||||
try:
|
||||
sf.write(rvc_output_path, output_audio[1], output_audio[0])
|
||||
rvc_saved = True
|
||||
except Exception as inner_e:
|
||||
output_info += f"\nFailed to save RVC tuple format: {str(inner_e)}"
|
||||
elif hasattr(output_audio, 'name') and os.path.exists(output_audio.name):
|
||||
# Case 3: output_audio might be a file-like object
|
||||
shutil.copy2(output_audio.name, rvc_output_path)
|
||||
rvc_saved = True
|
||||
# Put the path and sentence info to the queue for RVC processing
|
||||
tts_to_rvc_queue.put((i, fragment_num, sentence, path))
|
||||
except Exception as e:
|
||||
output_info += f"\nError saving RVC output: {str(e)}"
|
||||
logging.error(f"TTS processing error for sentence {i}: {str(e)}")
|
||||
tts_to_rvc_queue.put((i, fragment_num, sentence, None, str(e)))
|
||||
|
||||
# Prepare info message
|
||||
info_message = f"Sentence {sentence_index+1}: {sentence[:30]}{'...' if len(sentence) > 30 else ''}\n"
|
||||
info_message += f" - Spark output: {spark_output_path}\n"
|
||||
if rvc_saved:
|
||||
info_message += f" - RVC output: {rvc_output_path}"
|
||||
# Signal TTS completion
|
||||
tts_to_rvc_queue.put(None)
|
||||
|
||||
# RVC worker function
|
||||
def rvc_worker():
|
||||
while True:
|
||||
# Get item from the queue
|
||||
item = tts_to_rvc_queue.get()
|
||||
|
||||
# Check for the sentinel value (None) that signals completion
|
||||
if item is None:
|
||||
break
|
||||
|
||||
# Unpack the item
|
||||
if len(item) == 5: # Error case
|
||||
i, fragment_num, sentence, _, error = item
|
||||
rvc_results_queue.put((i, None, None, False, f"TTS error for sentence {i+1}: {error}"))
|
||||
continue
|
||||
|
||||
i, fragment_num, sentence, tts_path = item
|
||||
|
||||
if not tts_path or not os.path.exists(tts_path):
|
||||
rvc_results_queue.put((i, None, None, False, f"No TTS output for sentence {i+1}"))
|
||||
continue
|
||||
|
||||
# Prepare RVC path
|
||||
rvc_path = os.path.join("./TEMP/rvc", f"fragment_{fragment_num}.wav")
|
||||
|
||||
try:
|
||||
# Process with RVC
|
||||
rvc_success, rvc_info = process_with_rvc(
|
||||
spk_item, tts_path, vc_transform, f0method,
|
||||
file_index1, file_index2, index_rate, filter_radius,
|
||||
resample_sr, rms_mix_rate, protect,
|
||||
rvc_path, cuda_stream=rvc_stream
|
||||
)
|
||||
|
||||
# Create info message
|
||||
info_message = f"Sentence {i+1}: {sentence[:30]}{'...' if len(sentence) > 30 else ''}\n"
|
||||
info_message += f" - Spark output: {tts_path}\n"
|
||||
if rvc_success:
|
||||
info_message += f" - RVC output: {rvc_path}"
|
||||
else:
|
||||
info_message += f" - Could not save RVC output to {rvc_output_path}"
|
||||
info_message += f" - Could not save RVC output to {rvc_path}"
|
||||
|
||||
# Put the results to the queue
|
||||
rvc_results_queue.put((i, tts_path, rvc_path if rvc_success else None, rvc_success, info_message))
|
||||
except Exception as e:
|
||||
logging.error(f"RVC processing error for sentence {i}: {str(e)}")
|
||||
info_message = f"Sentence {i+1}: {sentence[:30]}{'...' if len(sentence) > 30 else ''}\n"
|
||||
info_message += f" - Spark output: {tts_path}\n"
|
||||
info_message += f" - RVC processing error: {str(e)}"
|
||||
rvc_results_queue.put((i, tts_path, None, False, info_message))
|
||||
|
||||
# Signal RVC completion
|
||||
processing_complete.set()
|
||||
|
||||
# Start the worker threads
|
||||
tts_thread = threading.Thread(target=tts_worker)
|
||||
rvc_thread = threading.Thread(target=rvc_worker)
|
||||
|
||||
tts_thread.start()
|
||||
rvc_thread.start()
|
||||
|
||||
# Process results as they become available
|
||||
completed_sentences = {}
|
||||
next_to_yield = 0
|
||||
|
||||
while not processing_complete.is_set() or not rvc_results_queue.empty():
|
||||
try:
|
||||
# Try to get an item from the results queue with a timeout
|
||||
try:
|
||||
i, tts_path, rvc_path, success, info = rvc_results_queue.get(timeout=0.1)
|
||||
completed_sentences[i] = (tts_path, rvc_path, success, info)
|
||||
except Empty:
|
||||
# No results available yet, continue the loop
|
||||
continue
|
||||
|
||||
# Check if we can yield the next sentence
|
||||
while next_to_yield in completed_sentences:
|
||||
_, rvc_path, _, info = completed_sentences[next_to_yield]
|
||||
info_messages.append(info)
|
||||
|
||||
# Yield the current state
|
||||
yield "\n".join(info_messages), rvc_path
|
||||
|
||||
# Move to the next sentence
|
||||
next_to_yield += 1
|
||||
except Exception as e:
|
||||
logging.error(f"Error in main processing loop: {str(e)}")
|
||||
info_messages.append(f"Error in processing: {str(e)}")
|
||||
yield "\n".join(info_messages), None
|
||||
break
|
||||
|
||||
# Join the threads
|
||||
tts_thread.join()
|
||||
rvc_thread.join()
|
||||
|
||||
# Yield any remaining sentences in order
|
||||
remaining_indices = sorted([i for i in completed_sentences if i >= next_to_yield])
|
||||
for i in remaining_indices:
|
||||
_, rvc_path, _, info = completed_sentences[i]
|
||||
info_messages.append(info)
|
||||
yield "\n".join(info_messages), rvc_path
|
||||
|
||||
return spark_output_path, rvc_output_path, rvc_saved, info_message
|
||||
|
||||
def concatenate_audio_files(file_paths, output_path, sample_rate=44100):
|
||||
"""
|
||||
@ -213,74 +375,6 @@ def concatenate_audio_files(file_paths, output_path, sample_rate=44100):
|
||||
print(f"Fallback concatenation failed: {str(e2)}")
|
||||
return False
|
||||
|
||||
def generate_and_process_with_rvc(
|
||||
text, prompt_text, prompt_wav_upload, prompt_wav_record,
|
||||
spk_item, vc_transform, f0method,
|
||||
file_index1, file_index2, index_rate, filter_radius,
|
||||
resample_sr, rms_mix_rate, protect
|
||||
):
|
||||
"""
|
||||
Handle combined TTS and RVC processing for multiple sentences and yield outputs as they are processed.
|
||||
The output is just the latest processed audio.
|
||||
Before yielding a new audio fragment, the function waits for the previous one to finish playing,
|
||||
based on its duration.
|
||||
"""
|
||||
# Ensure TEMP directories exist
|
||||
os.makedirs("./TEMP/spark", exist_ok=True)
|
||||
os.makedirs("./TEMP/rvc", exist_ok=True)
|
||||
|
||||
# Split text into sentences
|
||||
sentences = split_into_sentences(text)
|
||||
if not sentences:
|
||||
yield "No valid text to process.", None
|
||||
return
|
||||
|
||||
# Get next base fragment number
|
||||
base_fragment_num = 1
|
||||
while any(os.path.exists(f"./TEMP/spark/fragment_{base_fragment_num + i}.wav") or
|
||||
os.path.exists(f"./TEMP/rvc/fragment_{base_fragment_num + i}.wav")
|
||||
for i in range(len(sentences))):
|
||||
base_fragment_num += 1
|
||||
|
||||
# Process reference speech
|
||||
prompt_speech = prompt_wav_upload if prompt_wav_upload else prompt_wav_record
|
||||
prompt_text_clean = None if not prompt_text or len(prompt_text) < 2 else prompt_text
|
||||
|
||||
info_messages = [f"Processing {len(sentences)} sentences..."]
|
||||
|
||||
# Yield initial message with no audio yet
|
||||
yield "\n".join(info_messages), None
|
||||
|
||||
# Set up a timer to simulate playback duration
|
||||
next_available_time = time.time()
|
||||
|
||||
for i, sentence in enumerate(sentences):
|
||||
spark_path, rvc_path, success, info = process_single_sentence(
|
||||
i, sentence, prompt_speech, prompt_text_clean,
|
||||
spk_item, vc_transform, f0method,
|
||||
file_index1, file_index2, index_rate, filter_radius,
|
||||
resample_sr, rms_mix_rate, protect,
|
||||
base_fragment_num
|
||||
)
|
||||
|
||||
info_messages.append(info)
|
||||
# Only update output if processing was successful and we have an audio file
|
||||
if success and rvc_path:
|
||||
try:
|
||||
audio_seg = AudioSegment.from_file(rvc_path)
|
||||
duration = audio_seg.duration_seconds
|
||||
except Exception as e:
|
||||
duration = 0
|
||||
|
||||
current_time = time.time()
|
||||
if current_time < next_available_time:
|
||||
time.sleep(next_available_time - current_time)
|
||||
|
||||
yield "\n".join(info_messages), rvc_path
|
||||
|
||||
next_available_time = time.time() + duration
|
||||
|
||||
yield "\n".join(info_messages), rvc_path
|
||||
|
||||
def modified_get_vc(sid0_value, protect0_value, file_index2_component):
|
||||
"""
|
||||
|
Loading…
x
Reference in New Issue
Block a user