mirror of
https://github.com/RVC-Project/Retrieval-based-Voice-Conversion-WebUI.git
synced 2025-04-25 22:18:58 +08:00
Format code (#384)
Co-authored-by: github-actions[bot] <github-actions[bot]@users.noreply.github.com>
This commit is contained in:
parent
5284e38c3d
commit
89afd017ba
@ -1309,7 +1309,11 @@ with gr.Blocks() as app:
|
|||||||
choices=sorted(index_paths),
|
choices=sorted(index_paths),
|
||||||
interactive=True,
|
interactive=True,
|
||||||
)
|
)
|
||||||
refresh_button.click(fn=lambda: change_choices()[1], inputs=[], outputs=file_index4)
|
refresh_button.click(
|
||||||
|
fn=lambda: change_choices()[1],
|
||||||
|
inputs=[],
|
||||||
|
outputs=file_index4,
|
||||||
|
)
|
||||||
# file_big_npy2 = gr.Textbox(
|
# file_big_npy2 = gr.Textbox(
|
||||||
# label=i18n("特征文件路径"),
|
# label=i18n("特征文件路径"),
|
||||||
# value="E:\\codes\\py39\\vits_vc_gpu_train\\logs\\mi-test-1key\\total_fea.npy",
|
# value="E:\\codes\\py39\\vits_vc_gpu_train\\logs\\mi-test-1key\\total_fea.npy",
|
||||||
|
@ -2,17 +2,18 @@ from infer_pack.modules.F0Predictor.F0Predictor import F0Predictor
|
|||||||
import pyworld
|
import pyworld
|
||||||
import numpy as np
|
import numpy as np
|
||||||
|
|
||||||
|
|
||||||
class DioF0Predictor(F0Predictor):
|
class DioF0Predictor(F0Predictor):
|
||||||
def __init__(self,hop_length=512,f0_min=50,f0_max=1100,sampling_rate=44100):
|
def __init__(self, hop_length=512, f0_min=50, f0_max=1100, sampling_rate=44100):
|
||||||
self.hop_length = hop_length
|
self.hop_length = hop_length
|
||||||
self.f0_min = f0_min
|
self.f0_min = f0_min
|
||||||
self.f0_max = f0_max
|
self.f0_max = f0_max
|
||||||
self.sampling_rate = sampling_rate
|
self.sampling_rate = sampling_rate
|
||||||
|
|
||||||
def interpolate_f0(self,f0):
|
def interpolate_f0(self, f0):
|
||||||
'''
|
"""
|
||||||
对F0进行插值处理
|
对F0进行插值处理
|
||||||
'''
|
"""
|
||||||
|
|
||||||
data = np.reshape(f0, (f0.size, 1))
|
data = np.reshape(f0, (f0.size, 1))
|
||||||
|
|
||||||
@ -42,21 +43,25 @@ class DioF0Predictor(F0Predictor):
|
|||||||
for k in range(i, frame_number):
|
for k in range(i, frame_number):
|
||||||
ip_data[k] = last_value
|
ip_data[k] = last_value
|
||||||
else:
|
else:
|
||||||
ip_data[i] = data[i] #这里可能存在一个没有必要的拷贝
|
ip_data[i] = data[i] # 这里可能存在一个没有必要的拷贝
|
||||||
last_value = data[i]
|
last_value = data[i]
|
||||||
|
|
||||||
return ip_data[:,0], vuv_vector[:,0]
|
return ip_data[:, 0], vuv_vector[:, 0]
|
||||||
|
|
||||||
def resize_f0(self,x, target_len):
|
def resize_f0(self, x, target_len):
|
||||||
source = np.array(x)
|
source = np.array(x)
|
||||||
source[source<0.001] = np.nan
|
source[source < 0.001] = np.nan
|
||||||
target = np.interp(np.arange(0, len(source)*target_len, len(source))/ target_len, np.arange(0, len(source)), source)
|
target = np.interp(
|
||||||
|
np.arange(0, len(source) * target_len, len(source)) / target_len,
|
||||||
|
np.arange(0, len(source)),
|
||||||
|
source,
|
||||||
|
)
|
||||||
res = np.nan_to_num(target)
|
res = np.nan_to_num(target)
|
||||||
return res
|
return res
|
||||||
|
|
||||||
def compute_f0(self,wav,p_len=None):
|
def compute_f0(self, wav, p_len=None):
|
||||||
if p_len is None:
|
if p_len is None:
|
||||||
p_len = wav.shape[0]//self.hop_length
|
p_len = wav.shape[0] // self.hop_length
|
||||||
f0, t = pyworld.dio(
|
f0, t = pyworld.dio(
|
||||||
wav.astype(np.double),
|
wav.astype(np.double),
|
||||||
fs=self.sampling_rate,
|
fs=self.sampling_rate,
|
||||||
@ -69,9 +74,9 @@ class DioF0Predictor(F0Predictor):
|
|||||||
f0[index] = round(pitch, 1)
|
f0[index] = round(pitch, 1)
|
||||||
return self.interpolate_f0(self.resize_f0(f0, p_len))[0]
|
return self.interpolate_f0(self.resize_f0(f0, p_len))[0]
|
||||||
|
|
||||||
def compute_f0_uv(self,wav,p_len=None):
|
def compute_f0_uv(self, wav, p_len=None):
|
||||||
if p_len is None:
|
if p_len is None:
|
||||||
p_len = wav.shape[0]//self.hop_length
|
p_len = wav.shape[0] // self.hop_length
|
||||||
f0, t = pyworld.dio(
|
f0, t = pyworld.dio(
|
||||||
wav.astype(np.double),
|
wav.astype(np.double),
|
||||||
fs=self.sampling_rate,
|
fs=self.sampling_rate,
|
||||||
|
@ -1,16 +1,16 @@
|
|||||||
class F0Predictor(object):
|
class F0Predictor(object):
|
||||||
def compute_f0(self,wav,p_len):
|
def compute_f0(self, wav, p_len):
|
||||||
'''
|
"""
|
||||||
input: wav:[signal_length]
|
input: wav:[signal_length]
|
||||||
p_len:int
|
p_len:int
|
||||||
output: f0:[signal_length//hop_length]
|
output: f0:[signal_length//hop_length]
|
||||||
'''
|
"""
|
||||||
pass
|
pass
|
||||||
|
|
||||||
def compute_f0_uv(self,wav,p_len):
|
def compute_f0_uv(self, wav, p_len):
|
||||||
'''
|
"""
|
||||||
input: wav:[signal_length]
|
input: wav:[signal_length]
|
||||||
p_len:int
|
p_len:int
|
||||||
output: f0:[signal_length//hop_length],uv:[signal_length//hop_length]
|
output: f0:[signal_length//hop_length],uv:[signal_length//hop_length]
|
||||||
'''
|
"""
|
||||||
pass
|
pass
|
@ -2,17 +2,18 @@ from infer_pack.modules.F0Predictor.F0Predictor import F0Predictor
|
|||||||
import pyworld
|
import pyworld
|
||||||
import numpy as np
|
import numpy as np
|
||||||
|
|
||||||
|
|
||||||
class HarvestF0Predictor(F0Predictor):
|
class HarvestF0Predictor(F0Predictor):
|
||||||
def __init__(self,hop_length=512,f0_min=50,f0_max=1100,sampling_rate=44100):
|
def __init__(self, hop_length=512, f0_min=50, f0_max=1100, sampling_rate=44100):
|
||||||
self.hop_length = hop_length
|
self.hop_length = hop_length
|
||||||
self.f0_min = f0_min
|
self.f0_min = f0_min
|
||||||
self.f0_max = f0_max
|
self.f0_max = f0_max
|
||||||
self.sampling_rate = sampling_rate
|
self.sampling_rate = sampling_rate
|
||||||
|
|
||||||
def interpolate_f0(self,f0):
|
def interpolate_f0(self, f0):
|
||||||
'''
|
"""
|
||||||
对F0进行插值处理
|
对F0进行插值处理
|
||||||
'''
|
"""
|
||||||
|
|
||||||
data = np.reshape(f0, (f0.size, 1))
|
data = np.reshape(f0, (f0.size, 1))
|
||||||
|
|
||||||
@ -42,34 +43,38 @@ class HarvestF0Predictor(F0Predictor):
|
|||||||
for k in range(i, frame_number):
|
for k in range(i, frame_number):
|
||||||
ip_data[k] = last_value
|
ip_data[k] = last_value
|
||||||
else:
|
else:
|
||||||
ip_data[i] = data[i] #这里可能存在一个没有必要的拷贝
|
ip_data[i] = data[i] # 这里可能存在一个没有必要的拷贝
|
||||||
last_value = data[i]
|
last_value = data[i]
|
||||||
|
|
||||||
return ip_data[:,0], vuv_vector[:,0]
|
return ip_data[:, 0], vuv_vector[:, 0]
|
||||||
|
|
||||||
def resize_f0(self,x, target_len):
|
def resize_f0(self, x, target_len):
|
||||||
source = np.array(x)
|
source = np.array(x)
|
||||||
source[source<0.001] = np.nan
|
source[source < 0.001] = np.nan
|
||||||
target = np.interp(np.arange(0, len(source)*target_len, len(source))/ target_len, np.arange(0, len(source)), source)
|
target = np.interp(
|
||||||
|
np.arange(0, len(source) * target_len, len(source)) / target_len,
|
||||||
|
np.arange(0, len(source)),
|
||||||
|
source,
|
||||||
|
)
|
||||||
res = np.nan_to_num(target)
|
res = np.nan_to_num(target)
|
||||||
return res
|
return res
|
||||||
|
|
||||||
def compute_f0(self,wav,p_len=None):
|
def compute_f0(self, wav, p_len=None):
|
||||||
if p_len is None:
|
if p_len is None:
|
||||||
p_len = wav.shape[0]//self.hop_length
|
p_len = wav.shape[0] // self.hop_length
|
||||||
f0, t = pyworld.harvest(
|
f0, t = pyworld.harvest(
|
||||||
wav.astype(np.double),
|
wav.astype(np.double),
|
||||||
fs=self.hop_length,
|
fs=self.hop_length,
|
||||||
f0_ceil=self.f0_max,
|
f0_ceil=self.f0_max,
|
||||||
f0_floor=self.f0_min,
|
f0_floor=self.f0_min,
|
||||||
frame_period=1000 * self.hop_length / self.sampling_rate,
|
frame_period=1000 * self.hop_length / self.sampling_rate,
|
||||||
)
|
)
|
||||||
f0 = pyworld.stonemask(wav.astype(np.double), f0, t, self.fs)
|
f0 = pyworld.stonemask(wav.astype(np.double), f0, t, self.fs)
|
||||||
return self.interpolate_f0(self.resize_f0(f0, p_len))[0]
|
return self.interpolate_f0(self.resize_f0(f0, p_len))[0]
|
||||||
|
|
||||||
def compute_f0_uv(self,wav,p_len=None):
|
def compute_f0_uv(self, wav, p_len=None):
|
||||||
if p_len is None:
|
if p_len is None:
|
||||||
p_len = wav.shape[0]//self.hop_length
|
p_len = wav.shape[0] // self.hop_length
|
||||||
f0, t = pyworld.harvest(
|
f0, t = pyworld.harvest(
|
||||||
wav.astype(np.double),
|
wav.astype(np.double),
|
||||||
fs=self.sampling_rate,
|
fs=self.sampling_rate,
|
||||||
|
@ -2,18 +2,18 @@ from infer_pack.modules.F0Predictor.F0Predictor import F0Predictor
|
|||||||
import parselmouth
|
import parselmouth
|
||||||
import numpy as np
|
import numpy as np
|
||||||
|
|
||||||
|
|
||||||
class PMF0Predictor(F0Predictor):
|
class PMF0Predictor(F0Predictor):
|
||||||
def __init__(self,hop_length=512,f0_min=50,f0_max=1100,sampling_rate=44100):
|
def __init__(self, hop_length=512, f0_min=50, f0_max=1100, sampling_rate=44100):
|
||||||
self.hop_length = hop_length
|
self.hop_length = hop_length
|
||||||
self.f0_min = f0_min
|
self.f0_min = f0_min
|
||||||
self.f0_max = f0_max
|
self.f0_max = f0_max
|
||||||
self.sampling_rate = sampling_rate
|
self.sampling_rate = sampling_rate
|
||||||
|
|
||||||
|
def interpolate_f0(self, f0):
|
||||||
def interpolate_f0(self,f0):
|
"""
|
||||||
'''
|
|
||||||
对F0进行插值处理
|
对F0进行插值处理
|
||||||
'''
|
"""
|
||||||
|
|
||||||
data = np.reshape(f0, (f0.size, 1))
|
data = np.reshape(f0, (f0.size, 1))
|
||||||
|
|
||||||
@ -43,41 +43,55 @@ class PMF0Predictor(F0Predictor):
|
|||||||
for k in range(i, frame_number):
|
for k in range(i, frame_number):
|
||||||
ip_data[k] = last_value
|
ip_data[k] = last_value
|
||||||
else:
|
else:
|
||||||
ip_data[i] = data[i] #这里可能存在一个没有必要的拷贝
|
ip_data[i] = data[i] # 这里可能存在一个没有必要的拷贝
|
||||||
last_value = data[i]
|
last_value = data[i]
|
||||||
|
|
||||||
return ip_data[:,0], vuv_vector[:,0]
|
return ip_data[:, 0], vuv_vector[:, 0]
|
||||||
|
|
||||||
def compute_f0(self,wav,p_len=None):
|
def compute_f0(self, wav, p_len=None):
|
||||||
x = wav
|
x = wav
|
||||||
if p_len is None:
|
if p_len is None:
|
||||||
p_len = x.shape[0]//self.hop_length
|
p_len = x.shape[0] // self.hop_length
|
||||||
else:
|
else:
|
||||||
assert abs(p_len-x.shape[0]//self.hop_length) < 4, "pad length error"
|
assert abs(p_len - x.shape[0] // self.hop_length) < 4, "pad length error"
|
||||||
time_step = self.hop_length / self.sampling_rate * 1000
|
time_step = self.hop_length / self.sampling_rate * 1000
|
||||||
f0 = parselmouth.Sound(x, self.sampling_rate).to_pitch_ac(
|
f0 = (
|
||||||
time_step=time_step / 1000, voicing_threshold=0.6,
|
parselmouth.Sound(x, self.sampling_rate)
|
||||||
pitch_floor=self.f0_min, pitch_ceiling=self.f0_max).selected_array['frequency']
|
.to_pitch_ac(
|
||||||
|
time_step=time_step / 1000,
|
||||||
|
voicing_threshold=0.6,
|
||||||
|
pitch_floor=self.f0_min,
|
||||||
|
pitch_ceiling=self.f0_max,
|
||||||
|
)
|
||||||
|
.selected_array["frequency"]
|
||||||
|
)
|
||||||
|
|
||||||
pad_size=(p_len - len(f0) + 1) // 2
|
pad_size = (p_len - len(f0) + 1) // 2
|
||||||
if(pad_size>0 or p_len - len(f0) - pad_size>0):
|
if pad_size > 0 or p_len - len(f0) - pad_size > 0:
|
||||||
f0 = np.pad(f0,[[pad_size,p_len - len(f0) - pad_size]], mode='constant')
|
f0 = np.pad(f0, [[pad_size, p_len - len(f0) - pad_size]], mode="constant")
|
||||||
f0,uv = self.interpolate_f0(f0)
|
f0, uv = self.interpolate_f0(f0)
|
||||||
return f0
|
return f0
|
||||||
|
|
||||||
def compute_f0_uv(self,wav,p_len=None):
|
def compute_f0_uv(self, wav, p_len=None):
|
||||||
x = wav
|
x = wav
|
||||||
if p_len is None:
|
if p_len is None:
|
||||||
p_len = x.shape[0]//self.hop_length
|
p_len = x.shape[0] // self.hop_length
|
||||||
else:
|
else:
|
||||||
assert abs(p_len-x.shape[0]//self.hop_length) < 4, "pad length error"
|
assert abs(p_len - x.shape[0] // self.hop_length) < 4, "pad length error"
|
||||||
time_step = self.hop_length / self.sampling_rate * 1000
|
time_step = self.hop_length / self.sampling_rate * 1000
|
||||||
f0 = parselmouth.Sound(x, self.sampling_rate).to_pitch_ac(
|
f0 = (
|
||||||
time_step=time_step / 1000, voicing_threshold=0.6,
|
parselmouth.Sound(x, self.sampling_rate)
|
||||||
pitch_floor=self.f0_min, pitch_ceiling=self.f0_max).selected_array['frequency']
|
.to_pitch_ac(
|
||||||
|
time_step=time_step / 1000,
|
||||||
|
voicing_threshold=0.6,
|
||||||
|
pitch_floor=self.f0_min,
|
||||||
|
pitch_ceiling=self.f0_max,
|
||||||
|
)
|
||||||
|
.selected_array["frequency"]
|
||||||
|
)
|
||||||
|
|
||||||
pad_size=(p_len - len(f0) + 1) // 2
|
pad_size = (p_len - len(f0) + 1) // 2
|
||||||
if(pad_size>0 or p_len - len(f0) - pad_size>0):
|
if pad_size > 0 or p_len - len(f0) - pad_size > 0:
|
||||||
f0 = np.pad(f0,[[pad_size,p_len - len(f0) - pad_size]], mode='constant')
|
f0 = np.pad(f0, [[pad_size, p_len - len(f0) - pad_size]], mode="constant")
|
||||||
f0,uv = self.interpolate_f0(f0)
|
f0, uv = self.interpolate_f0(f0)
|
||||||
return f0,uv
|
return f0, uv
|
||||||
|
@ -3,13 +3,14 @@ import librosa
|
|||||||
import numpy as np
|
import numpy as np
|
||||||
import soundfile
|
import soundfile
|
||||||
|
|
||||||
class ContentVec():
|
|
||||||
def __init__(self, vec_path = "pretrained/vec-768-layer-12.onnx",device=None):
|
class ContentVec:
|
||||||
|
def __init__(self, vec_path="pretrained/vec-768-layer-12.onnx", device=None):
|
||||||
print("load model(s) from {}".format(vec_path))
|
print("load model(s) from {}".format(vec_path))
|
||||||
if device == 'cpu' or device is None:
|
if device == "cpu" or device is None:
|
||||||
providers = ['CPUExecutionProvider']
|
providers = ["CPUExecutionProvider"]
|
||||||
elif device == 'cuda':
|
elif device == "cuda":
|
||||||
providers = ['CUDAExecutionProvider', 'CPUExecutionProvider']
|
providers = ["CUDAExecutionProvider", "CPUExecutionProvider"]
|
||||||
else:
|
else:
|
||||||
raise RuntimeError("Unsportted Device")
|
raise RuntimeError("Unsportted Device")
|
||||||
self.model = onnxruntime.InferenceSession(vec_path, providers=providers)
|
self.model = onnxruntime.InferenceSession(vec_path, providers=providers)
|
||||||
@ -20,7 +21,7 @@ class ContentVec():
|
|||||||
def forward(self, wav):
|
def forward(self, wav):
|
||||||
feats = wav
|
feats = wav
|
||||||
if feats.ndim == 2: # double channels
|
if feats.ndim == 2: # double channels
|
||||||
feats = feats.mean(-1)
|
feats = feats.mean(-1)
|
||||||
assert feats.ndim == 1, feats.ndim
|
assert feats.ndim == 1, feats.ndim
|
||||||
feats = np.expand_dims(np.expand_dims(feats, 0), 0)
|
feats = np.expand_dims(np.expand_dims(feats, 0), 0)
|
||||||
onnx_input = {self.model.get_inputs()[0].name: feats}
|
onnx_input = {self.model.get_inputs()[0].name: feats}
|
||||||
@ -31,33 +32,42 @@ class ContentVec():
|
|||||||
def get_f0_predictor(f0_predictor, hop_length, sampling_rate, **kargs):
|
def get_f0_predictor(f0_predictor, hop_length, sampling_rate, **kargs):
|
||||||
if f0_predictor == "pm":
|
if f0_predictor == "pm":
|
||||||
from infer_pack.modules.F0Predictor.PMF0Predictor import PMF0Predictor
|
from infer_pack.modules.F0Predictor.PMF0Predictor import PMF0Predictor
|
||||||
f0_predictor_object = PMF0Predictor(hop_length=hop_length,sampling_rate=sampling_rate)
|
|
||||||
|
f0_predictor_object = PMF0Predictor(
|
||||||
|
hop_length=hop_length, sampling_rate=sampling_rate
|
||||||
|
)
|
||||||
elif f0_predictor == "harvest":
|
elif f0_predictor == "harvest":
|
||||||
from infer_pack.modules.F0Predictor.HarvestF0Predictor import HarvestF0Predictor
|
from infer_pack.modules.F0Predictor.HarvestF0Predictor import HarvestF0Predictor
|
||||||
f0_predictor_object = HarvestF0Predictor(hop_length=hop_length,sampling_rate=sampling_rate)
|
|
||||||
|
f0_predictor_object = HarvestF0Predictor(
|
||||||
|
hop_length=hop_length, sampling_rate=sampling_rate
|
||||||
|
)
|
||||||
elif f0_predictor == "dio":
|
elif f0_predictor == "dio":
|
||||||
from infer_pack.modules.F0Predictor.DioF0Predictor import DioF0Predictor
|
from infer_pack.modules.F0Predictor.DioF0Predictor import DioF0Predictor
|
||||||
f0_predictor_object = DioF0Predictor(hop_length=hop_length,sampling_rate=sampling_rate)
|
|
||||||
|
f0_predictor_object = DioF0Predictor(
|
||||||
|
hop_length=hop_length, sampling_rate=sampling_rate
|
||||||
|
)
|
||||||
else:
|
else:
|
||||||
raise Exception("Unknown f0 predictor")
|
raise Exception("Unknown f0 predictor")
|
||||||
return f0_predictor_object
|
return f0_predictor_object
|
||||||
|
|
||||||
|
|
||||||
class OnnxRVC():
|
class OnnxRVC:
|
||||||
def __init__(
|
def __init__(
|
||||||
self,
|
self,
|
||||||
model_path,
|
model_path,
|
||||||
sr=40000,
|
sr=40000,
|
||||||
hop_size=512,
|
hop_size=512,
|
||||||
vec_path="vec-768-layer-12",
|
vec_path="vec-768-layer-12",
|
||||||
device="cpu"
|
device="cpu",
|
||||||
):
|
):
|
||||||
vec_path = f"pretrained/{vec_path}.onnx"
|
vec_path = f"pretrained/{vec_path}.onnx"
|
||||||
self.vec_model = ContentVec(vec_path, device)
|
self.vec_model = ContentVec(vec_path, device)
|
||||||
if device == 'cpu' or device is None:
|
if device == "cpu" or device is None:
|
||||||
providers = ['CPUExecutionProvider']
|
providers = ["CPUExecutionProvider"]
|
||||||
elif device == 'cuda':
|
elif device == "cuda":
|
||||||
providers = ['CUDAExecutionProvider', 'CPUExecutionProvider']
|
providers = ["CUDAExecutionProvider", "CPUExecutionProvider"]
|
||||||
else:
|
else:
|
||||||
raise RuntimeError("Unsportted Device")
|
raise RuntimeError("Unsportted Device")
|
||||||
self.model = onnxruntime.InferenceSession(model_path, providers=providers)
|
self.model = onnxruntime.InferenceSession(model_path, providers=providers)
|
||||||
@ -66,29 +76,37 @@ class OnnxRVC():
|
|||||||
|
|
||||||
def forward(self, hubert, hubert_length, pitch, pitchf, ds, rnd):
|
def forward(self, hubert, hubert_length, pitch, pitchf, ds, rnd):
|
||||||
onnx_input = {
|
onnx_input = {
|
||||||
self.model.get_inputs()[0].name: hubert,
|
self.model.get_inputs()[0].name: hubert,
|
||||||
self.model.get_inputs()[1].name: hubert_length,
|
self.model.get_inputs()[1].name: hubert_length,
|
||||||
self.model.get_inputs()[2].name: pitch,
|
self.model.get_inputs()[2].name: pitch,
|
||||||
self.model.get_inputs()[3].name: pitchf,
|
self.model.get_inputs()[3].name: pitchf,
|
||||||
self.model.get_inputs()[4].name: ds,
|
self.model.get_inputs()[4].name: ds,
|
||||||
self.model.get_inputs()[5].name: rnd
|
self.model.get_inputs()[5].name: rnd,
|
||||||
}
|
}
|
||||||
return (self.model.run(None, onnx_input)[0] * 32767).astype(np.int16)
|
return (self.model.run(None, onnx_input)[0] * 32767).astype(np.int16)
|
||||||
|
|
||||||
def inference(self, raw_path, sid, f0_method="dio", f0_up_key=0, pad_time=0.5, cr_threshold=0.02):
|
def inference(
|
||||||
|
self,
|
||||||
|
raw_path,
|
||||||
|
sid,
|
||||||
|
f0_method="dio",
|
||||||
|
f0_up_key=0,
|
||||||
|
pad_time=0.5,
|
||||||
|
cr_threshold=0.02,
|
||||||
|
):
|
||||||
f0_min = 50
|
f0_min = 50
|
||||||
f0_max = 1100
|
f0_max = 1100
|
||||||
f0_mel_min = 1127 * np.log(1 + f0_min / 700)
|
f0_mel_min = 1127 * np.log(1 + f0_min / 700)
|
||||||
f0_mel_max = 1127 * np.log(1 + f0_max / 700)
|
f0_mel_max = 1127 * np.log(1 + f0_max / 700)
|
||||||
f0_predictor = get_f0_predictor(
|
f0_predictor = get_f0_predictor(
|
||||||
f0_method,
|
f0_method,
|
||||||
hop_length=self.hop_size,
|
hop_length=self.hop_size,
|
||||||
sampling_rate=self.sampling_rate,
|
sampling_rate=self.sampling_rate,
|
||||||
threshold=cr_threshold
|
threshold=cr_threshold,
|
||||||
)
|
)
|
||||||
wav, sr = librosa.load(raw_path, sr=self.sampling_rate)
|
wav, sr = librosa.load(raw_path, sr=self.sampling_rate)
|
||||||
org_length = len(wav)
|
org_length = len(wav)
|
||||||
if org_length / sr > 50.:
|
if org_length / sr > 50.0:
|
||||||
raise RuntimeError("Reached Max Length")
|
raise RuntimeError("Reached Max Length")
|
||||||
|
|
||||||
wav16k = librosa.resample(wav, orig_sr=self.sampling_rate, target_sr=16000)
|
wav16k = librosa.resample(wav, orig_sr=self.sampling_rate, target_sr=16000)
|
||||||
@ -117,5 +135,5 @@ class OnnxRVC():
|
|||||||
hubert_length = np.array([hubert_length]).astype(np.int64)
|
hubert_length = np.array([hubert_length]).astype(np.int64)
|
||||||
|
|
||||||
out_wav = self.forward(hubert, hubert_length, pitch, pitchf, ds, rnd).squeeze()
|
out_wav = self.forward(hubert, hubert_length, pitch, pitchf, ds, rnd).squeeze()
|
||||||
out_wav = np.pad(out_wav, (0, 2*self.hop_size), 'constant')
|
out_wav = np.pad(out_wav, (0, 2 * self.hop_size), "constant")
|
||||||
return out_wav[0:org_length]
|
return out_wav[0:org_length]
|
@ -2,16 +2,18 @@ import soundfile
|
|||||||
from infer_pack.onnx_inference import OnnxRVC
|
from infer_pack.onnx_inference import OnnxRVC
|
||||||
|
|
||||||
hop_size = 512
|
hop_size = 512
|
||||||
sampling_rate = 40000 #采样率
|
sampling_rate = 40000 # 采样率
|
||||||
f0_up_key = 0 #升降调
|
f0_up_key = 0 # 升降调
|
||||||
sid = 0 #角色ID
|
sid = 0 # 角色ID
|
||||||
f0_method = "dio" #F0提取算法
|
f0_method = "dio" # F0提取算法
|
||||||
model_path = "ShirohaRVC.onnx" #模型的完整路径
|
model_path = "ShirohaRVC.onnx" # 模型的完整路径
|
||||||
vec_name = "vec-256-layer-9" #内部自动补齐为 f"pretrained/{vec_name}.onnx" 需要onnx的vec模型
|
vec_name = "vec-256-layer-9" # 内部自动补齐为 f"pretrained/{vec_name}.onnx" 需要onnx的vec模型
|
||||||
wav_path = "123.wav" #输入路径或ByteIO实例
|
wav_path = "123.wav" # 输入路径或ByteIO实例
|
||||||
out_path = "out.wav" #输出路径或ByteIO实例
|
out_path = "out.wav" # 输出路径或ByteIO实例
|
||||||
|
|
||||||
model = OnnxRVC(model_path, vec_path=vec_name, sr=sampling_rate, hop_size=hop_size, device="cuda")
|
model = OnnxRVC(
|
||||||
|
model_path, vec_path=vec_name, sr=sampling_rate, hop_size=hop_size, device="cuda"
|
||||||
|
)
|
||||||
|
|
||||||
audio = model.inference(wav_path, sid, f0_method=f0_method, f0_up_key=f0_up_key)
|
audio = model.inference(wav_path, sid, f0_method=f0_method, f0_up_key=f0_up_key)
|
||||||
|
|
||||||
|
Loading…
x
Reference in New Issue
Block a user