mirror of
https://github.com/RVC-Project/Retrieval-based-Voice-Conversion-WebUI.git
synced 2024-12-29 02:55:05 +08:00
c8261b2ccc
* Reformat
* rewrite _get_name_params
* Add workflow for automatic formatting
* Revert "Add workflow for automatic formatting"
This reverts commit 9111c5dbc1
.
* revert Retrieval_based_Voice_Conversion_WebUI.ipynb
---------
Co-authored-by: 源文雨 <41315874+fumiama@users.noreply.github.com>
261 lines
9.0 KiB
Python
261 lines
9.0 KiB
Python
import numpy as np
|
|
|
|
|
|
# This function is obtained from librosa.
|
|
def get_rms(
|
|
y,
|
|
frame_length=2048,
|
|
hop_length=512,
|
|
pad_mode="constant",
|
|
):
|
|
padding = (int(frame_length // 2), int(frame_length // 2))
|
|
y = np.pad(y, padding, mode=pad_mode)
|
|
|
|
axis = -1
|
|
# put our new within-frame axis at the end for now
|
|
out_strides = y.strides + tuple([y.strides[axis]])
|
|
# Reduce the shape on the framing axis
|
|
x_shape_trimmed = list(y.shape)
|
|
x_shape_trimmed[axis] -= frame_length - 1
|
|
out_shape = tuple(x_shape_trimmed) + tuple([frame_length])
|
|
xw = np.lib.stride_tricks.as_strided(y, shape=out_shape, strides=out_strides)
|
|
if axis < 0:
|
|
target_axis = axis - 1
|
|
else:
|
|
target_axis = axis + 1
|
|
xw = np.moveaxis(xw, -1, target_axis)
|
|
# Downsample along the target axis
|
|
slices = [slice(None)] * xw.ndim
|
|
slices[axis] = slice(0, None, hop_length)
|
|
x = xw[tuple(slices)]
|
|
|
|
# Calculate power
|
|
power = np.mean(np.abs(x) ** 2, axis=-2, keepdims=True)
|
|
|
|
return np.sqrt(power)
|
|
|
|
|
|
class Slicer:
|
|
def __init__(
|
|
self,
|
|
sr: int,
|
|
threshold: float = -40.0,
|
|
min_length: int = 5000,
|
|
min_interval: int = 300,
|
|
hop_size: int = 20,
|
|
max_sil_kept: int = 5000,
|
|
):
|
|
if not min_length >= min_interval >= hop_size:
|
|
raise ValueError(
|
|
"The following condition must be satisfied: min_length >= min_interval >= hop_size"
|
|
)
|
|
if not max_sil_kept >= hop_size:
|
|
raise ValueError(
|
|
"The following condition must be satisfied: max_sil_kept >= hop_size"
|
|
)
|
|
min_interval = sr * min_interval / 1000
|
|
self.threshold = 10 ** (threshold / 20.0)
|
|
self.hop_size = round(sr * hop_size / 1000)
|
|
self.win_size = min(round(min_interval), 4 * self.hop_size)
|
|
self.min_length = round(sr * min_length / 1000 / self.hop_size)
|
|
self.min_interval = round(min_interval / self.hop_size)
|
|
self.max_sil_kept = round(sr * max_sil_kept / 1000 / self.hop_size)
|
|
|
|
def _apply_slice(self, waveform, begin, end):
|
|
if len(waveform.shape) > 1:
|
|
return waveform[
|
|
:, begin * self.hop_size : min(waveform.shape[1], end * self.hop_size)
|
|
]
|
|
else:
|
|
return waveform[
|
|
begin * self.hop_size : min(waveform.shape[0], end * self.hop_size)
|
|
]
|
|
|
|
# @timeit
|
|
def slice(self, waveform):
|
|
if len(waveform.shape) > 1:
|
|
samples = waveform.mean(axis=0)
|
|
else:
|
|
samples = waveform
|
|
if samples.shape[0] <= self.min_length:
|
|
return [waveform]
|
|
rms_list = get_rms(
|
|
y=samples, frame_length=self.win_size, hop_length=self.hop_size
|
|
).squeeze(0)
|
|
sil_tags = []
|
|
silence_start = None
|
|
clip_start = 0
|
|
for i, rms in enumerate(rms_list):
|
|
# Keep looping while frame is silent.
|
|
if rms < self.threshold:
|
|
# Record start of silent frames.
|
|
if silence_start is None:
|
|
silence_start = i
|
|
continue
|
|
# Keep looping while frame is not silent and silence start has not been recorded.
|
|
if silence_start is None:
|
|
continue
|
|
# Clear recorded silence start if interval is not enough or clip is too short
|
|
is_leading_silence = silence_start == 0 and i > self.max_sil_kept
|
|
need_slice_middle = (
|
|
i - silence_start >= self.min_interval
|
|
and i - clip_start >= self.min_length
|
|
)
|
|
if not is_leading_silence and not need_slice_middle:
|
|
silence_start = None
|
|
continue
|
|
# Need slicing. Record the range of silent frames to be removed.
|
|
if i - silence_start <= self.max_sil_kept:
|
|
pos = rms_list[silence_start : i + 1].argmin() + silence_start
|
|
if silence_start == 0:
|
|
sil_tags.append((0, pos))
|
|
else:
|
|
sil_tags.append((pos, pos))
|
|
clip_start = pos
|
|
elif i - silence_start <= self.max_sil_kept * 2:
|
|
pos = rms_list[
|
|
i - self.max_sil_kept : silence_start + self.max_sil_kept + 1
|
|
].argmin()
|
|
pos += i - self.max_sil_kept
|
|
pos_l = (
|
|
rms_list[
|
|
silence_start : silence_start + self.max_sil_kept + 1
|
|
].argmin()
|
|
+ silence_start
|
|
)
|
|
pos_r = (
|
|
rms_list[i - self.max_sil_kept : i + 1].argmin()
|
|
+ i
|
|
- self.max_sil_kept
|
|
)
|
|
if silence_start == 0:
|
|
sil_tags.append((0, pos_r))
|
|
clip_start = pos_r
|
|
else:
|
|
sil_tags.append((min(pos_l, pos), max(pos_r, pos)))
|
|
clip_start = max(pos_r, pos)
|
|
else:
|
|
pos_l = (
|
|
rms_list[
|
|
silence_start : silence_start + self.max_sil_kept + 1
|
|
].argmin()
|
|
+ silence_start
|
|
)
|
|
pos_r = (
|
|
rms_list[i - self.max_sil_kept : i + 1].argmin()
|
|
+ i
|
|
- self.max_sil_kept
|
|
)
|
|
if silence_start == 0:
|
|
sil_tags.append((0, pos_r))
|
|
else:
|
|
sil_tags.append((pos_l, pos_r))
|
|
clip_start = pos_r
|
|
silence_start = None
|
|
# Deal with trailing silence.
|
|
total_frames = rms_list.shape[0]
|
|
if (
|
|
silence_start is not None
|
|
and total_frames - silence_start >= self.min_interval
|
|
):
|
|
silence_end = min(total_frames, silence_start + self.max_sil_kept)
|
|
pos = rms_list[silence_start : silence_end + 1].argmin() + silence_start
|
|
sil_tags.append((pos, total_frames + 1))
|
|
# Apply and return slices.
|
|
if len(sil_tags) == 0:
|
|
return [waveform]
|
|
else:
|
|
chunks = []
|
|
if sil_tags[0][0] > 0:
|
|
chunks.append(self._apply_slice(waveform, 0, sil_tags[0][0]))
|
|
for i in range(len(sil_tags) - 1):
|
|
chunks.append(
|
|
self._apply_slice(waveform, sil_tags[i][1], sil_tags[i + 1][0])
|
|
)
|
|
if sil_tags[-1][1] < total_frames:
|
|
chunks.append(
|
|
self._apply_slice(waveform, sil_tags[-1][1], total_frames)
|
|
)
|
|
return chunks
|
|
|
|
|
|
def main():
|
|
import os.path
|
|
from argparse import ArgumentParser
|
|
|
|
import librosa
|
|
import soundfile
|
|
|
|
parser = ArgumentParser()
|
|
parser.add_argument("audio", type=str, help="The audio to be sliced")
|
|
parser.add_argument(
|
|
"--out", type=str, help="Output directory of the sliced audio clips"
|
|
)
|
|
parser.add_argument(
|
|
"--db_thresh",
|
|
type=float,
|
|
required=False,
|
|
default=-40,
|
|
help="The dB threshold for silence detection",
|
|
)
|
|
parser.add_argument(
|
|
"--min_length",
|
|
type=int,
|
|
required=False,
|
|
default=5000,
|
|
help="The minimum milliseconds required for each sliced audio clip",
|
|
)
|
|
parser.add_argument(
|
|
"--min_interval",
|
|
type=int,
|
|
required=False,
|
|
default=300,
|
|
help="The minimum milliseconds for a silence part to be sliced",
|
|
)
|
|
parser.add_argument(
|
|
"--hop_size",
|
|
type=int,
|
|
required=False,
|
|
default=10,
|
|
help="Frame length in milliseconds",
|
|
)
|
|
parser.add_argument(
|
|
"--max_sil_kept",
|
|
type=int,
|
|
required=False,
|
|
default=500,
|
|
help="The maximum silence length kept around the sliced clip, presented in milliseconds",
|
|
)
|
|
args = parser.parse_args()
|
|
out = args.out
|
|
if out is None:
|
|
out = os.path.dirname(os.path.abspath(args.audio))
|
|
audio, sr = librosa.load(args.audio, sr=None, mono=False)
|
|
slicer = Slicer(
|
|
sr=sr,
|
|
threshold=args.db_thresh,
|
|
min_length=args.min_length,
|
|
min_interval=args.min_interval,
|
|
hop_size=args.hop_size,
|
|
max_sil_kept=args.max_sil_kept,
|
|
)
|
|
chunks = slicer.slice(audio)
|
|
if not os.path.exists(out):
|
|
os.makedirs(out)
|
|
for i, chunk in enumerate(chunks):
|
|
if len(chunk.shape) > 1:
|
|
chunk = chunk.T
|
|
soundfile.write(
|
|
os.path.join(
|
|
out,
|
|
f"%s_%d.wav"
|
|
% (os.path.basename(args.audio).rsplit(".", maxsplit=1)[0], i),
|
|
),
|
|
chunk,
|
|
sr,
|
|
)
|
|
|
|
|
|
if __name__ == "__main__":
|
|
main()
|