mirror of
https://github.com/RVC-Project/Retrieval-based-Voice-Conversion-WebUI.git
synced 2025-01-18 04:10:08 +08:00
78f03e7dc0
* Fix return_complex warning on training * remove unused prints
126 lines
3.7 KiB
Python
126 lines
3.7 KiB
Python
import torch
|
|
import torch.utils.data
|
|
from librosa.filters import mel as librosa_mel_fn
|
|
import logging
|
|
|
|
logger = logging.getLogger(__name__)
|
|
|
|
MAX_WAV_VALUE = 32768.0
|
|
|
|
|
|
def dynamic_range_compression_torch(x, C=1, clip_val=1e-5):
|
|
"""
|
|
PARAMS
|
|
------
|
|
C: compression factor
|
|
"""
|
|
return torch.log(torch.clamp(x, min=clip_val) * C)
|
|
|
|
|
|
def dynamic_range_decompression_torch(x, C=1):
|
|
"""
|
|
PARAMS
|
|
------
|
|
C: compression factor used to compress
|
|
"""
|
|
return torch.exp(x) / C
|
|
|
|
|
|
def spectral_normalize_torch(magnitudes):
|
|
return dynamic_range_compression_torch(magnitudes)
|
|
|
|
|
|
def spectral_de_normalize_torch(magnitudes):
|
|
return dynamic_range_decompression_torch(magnitudes)
|
|
|
|
|
|
# Reusable banks
|
|
mel_basis = {}
|
|
hann_window = {}
|
|
|
|
def spectrogram_torch(y, n_fft, sampling_rate, hop_size, win_size, center=False):
|
|
"""Convert waveform into Linear-frequency Linear-amplitude spectrogram.
|
|
|
|
Args:
|
|
y :: (B, T) - Audio waveforms
|
|
n_fft
|
|
sampling_rate
|
|
hop_size
|
|
win_size
|
|
center
|
|
Returns:
|
|
:: (B, Freq, Frame) - Linear-frequency Linear-amplitude spectrogram
|
|
"""
|
|
|
|
# Window - Cache if needed
|
|
global hann_window
|
|
dtype_device = str(y.dtype) + "_" + str(y.device)
|
|
wnsize_dtype_device = str(win_size) + "_" + dtype_device
|
|
if wnsize_dtype_device not in hann_window:
|
|
hann_window[wnsize_dtype_device] = torch.hann_window(win_size).to(
|
|
dtype=y.dtype, device=y.device
|
|
)
|
|
|
|
# Padding
|
|
y = torch.nn.functional.pad(
|
|
y.unsqueeze(1),
|
|
(int((n_fft - hop_size) / 2), int((n_fft - hop_size) / 2)),
|
|
mode="reflect",
|
|
)
|
|
y = y.squeeze(1)
|
|
|
|
# Complex Spectrogram :: (B, T) -> (B, Freq, Frame, RealComplex=2)
|
|
spec = torch.stft(
|
|
y,
|
|
n_fft,
|
|
hop_length=hop_size,
|
|
win_length=win_size,
|
|
window=hann_window[wnsize_dtype_device],
|
|
center=center,
|
|
pad_mode="reflect",
|
|
normalized=False,
|
|
onesided=True,
|
|
return_complex=True,
|
|
)
|
|
|
|
# Linear-frequency Linear-amplitude spectrogram :: (B, Freq, Frame, RealComplex=2) -> (B, Freq, Frame)
|
|
spec = torch.sqrt(spec.real.pow(2) + spec.imag.pow(2) + 1e-6)
|
|
return spec
|
|
|
|
def spec_to_mel_torch(spec, n_fft, num_mels, sampling_rate, fmin, fmax):
|
|
# MelBasis - Cache if needed
|
|
global mel_basis
|
|
dtype_device = str(spec.dtype) + "_" + str(spec.device)
|
|
fmax_dtype_device = str(fmax) + "_" + dtype_device
|
|
if fmax_dtype_device not in mel_basis:
|
|
mel = librosa_mel_fn(
|
|
sr=sampling_rate, n_fft=n_fft, n_mels=num_mels, fmin=fmin, fmax=fmax
|
|
)
|
|
mel_basis[fmax_dtype_device] = torch.from_numpy(mel).to(
|
|
dtype=spec.dtype, device=spec.device
|
|
)
|
|
|
|
# Mel-frequency Log-amplitude spectrogram :: (B, Freq=num_mels, Frame)
|
|
melspec = torch.matmul(mel_basis[fmax_dtype_device], spec)
|
|
melspec = spectral_normalize_torch(melspec)
|
|
return melspec
|
|
|
|
|
|
def mel_spectrogram_torch(
|
|
y, n_fft, num_mels, sampling_rate, hop_size, win_size, fmin, fmax, center=False
|
|
):
|
|
"""Convert waveform into Mel-frequency Log-amplitude spectrogram.
|
|
|
|
Args:
|
|
y :: (B, T) - Waveforms
|
|
Returns:
|
|
melspec :: (B, Freq, Frame) - Mel-frequency Log-amplitude spectrogram
|
|
"""
|
|
# Linear-frequency Linear-amplitude spectrogram :: (B, T) -> (B, Freq, Frame)
|
|
spec = spectrogram_torch(y, n_fft, sampling_rate, hop_size, win_size, center)
|
|
|
|
# Mel-frequency Log-amplitude spectrogram :: (B, Freq, Frame) -> (B, Freq=num_mels, Frame)
|
|
melspec = spec_to_mel_torch(spec, n_fft, num_mels, sampling_rate, fmin, fmax)
|
|
|
|
return melspec
|