stable-diffusion-webui/modules/sd_samplers_common.py

Ignoring revisions in .git-blame-ignore-revs. Click here to bypass and see the normal blame view.

301 lines
10 KiB
Python
Raw Normal View History

import inspect
from collections import namedtuple, deque
import numpy as np
import torch
from PIL import Image
2023-08-06 22:01:07 +08:00
from modules import devices, images, sd_vae_approx, sd_samplers, sd_vae_taesd, shared, sd_models
from modules.shared import opts, state
import k_diffusion.sampling
2022-09-03 22:21:15 +08:00
2022-10-06 19:12:52 +08:00
SamplerData = namedtuple('SamplerData', ['name', 'constructor', 'aliases', 'options'])
2022-09-03 22:21:15 +08:00
2022-09-19 21:42:56 +08:00
def setup_img2img_steps(p, steps=None):
if opts.img2img_fix_steps or steps is not None:
requested_steps = (steps or p.steps)
steps = int(requested_steps / min(p.denoising_strength, 0.999)) if p.denoising_strength > 0 else 0
t_enc = requested_steps - 1
else:
steps = p.steps
t_enc = int(min(p.denoising_strength, 0.999) * steps)
return steps, t_enc
approximation_indexes = {"Full": 0, "Approx NN": 1, "Approx cheap": 2, "TAESD": 3}
2022-12-25 03:39:00 +08:00
2023-08-04 13:38:52 +08:00
def samples_to_images_tensor(sample, approximation=None, model=None):
'''latents -> images [-1, 1]'''
if approximation is None:
approximation = approximation_indexes.get(opts.show_progress_type, 0)
if approximation == 2:
2023-08-04 13:38:52 +08:00
x_sample = sd_vae_approx.cheap_approximation(sample)
elif approximation == 1:
2023-08-04 13:38:52 +08:00
x_sample = sd_vae_approx.model()(sample.to(devices.device, devices.dtype)).detach()
elif approximation == 3:
2023-05-17 17:39:07 +08:00
x_sample = sample * 1.5
2023-08-04 13:38:52 +08:00
x_sample = sd_vae_taesd.decoder_model()(x_sample.to(devices.device, devices.dtype)).detach()
x_sample = x_sample * 2 - 1
else:
2023-08-04 13:38:52 +08:00
if model is None:
model = shared.sd_model
x_sample = model.decode_first_stage(sample.to(model.first_stage_model.dtype))
2023-08-04 13:40:20 +08:00
2023-08-04 13:38:52 +08:00
return x_sample
def single_sample_to_image(sample, approximation=None):
x_sample = samples_to_images_tensor(sample.unsqueeze(0), approximation)[0] * 0.5 + 0.5
2022-12-25 03:39:00 +08:00
2023-05-17 17:39:07 +08:00
x_sample = torch.clamp(x_sample, min=0.0, max=1.0)
x_sample = 255. * np.moveaxis(x_sample.cpu().numpy(), 0, 2)
x_sample = x_sample.astype(np.uint8)
return Image.fromarray(x_sample)
def decode_first_stage(model, x):
x = x.to(devices.dtype_vae)
approx_index = approximation_indexes.get(opts.sd_vae_decode_method, 0)
return samples_to_images_tensor(x, approx_index, model)
2022-12-25 03:39:00 +08:00
def sample_to_image(samples, index=0, approximation=None):
return single_sample_to_image(samples[index], approximation)
2022-12-25 03:39:00 +08:00
def samples_to_image_grid(samples, approximation=None):
return images.image_grid([single_sample_to_image(sample, approximation) for sample in samples])
2023-08-04 13:38:52 +08:00
def images_tensor_to_samples(image, approximation=None, model=None):
'''image[0, 1] -> latent'''
if approximation is None:
approximation = approximation_indexes.get(opts.sd_vae_encode_method, 0)
if approximation == 3:
image = image.to(devices.device, devices.dtype)
2023-08-04 17:55:52 +08:00
x_latent = sd_vae_taesd.encoder_model()(image)
2023-08-04 13:38:52 +08:00
else:
if model is None:
model = shared.sd_model
image = image.to(shared.device, dtype=devices.dtype_vae)
image = image * 2 - 1
x_latent = model.get_first_stage_encoding(model.encode_first_stage(image))
return x_latent
def store_latent(decoded):
state.current_latent = decoded
if opts.live_previews_enable and opts.show_progress_every_n_steps > 0 and shared.state.sampling_step % opts.show_progress_every_n_steps == 0:
if not shared.parallel_processing_allowed:
shared.state.assign_current_image(sample_to_image(decoded))
def is_sampler_using_eta_noise_seed_delta(p):
"""returns whether sampler from config will use eta noise seed delta for image creation"""
sampler_config = sd_samplers.find_sampler_config(p.sampler_name)
eta = p.eta
if eta is None and p.sampler is not None:
eta = p.sampler.eta
if eta is None and sampler_config is not None:
eta = 0 if sampler_config.options.get("default_eta_is_0", False) else 1.0
if eta == 0:
return False
return sampler_config.options.get("uses_ensd", False)
class InterruptedException(BaseException):
pass
def replace_torchsde_browinan():
import torchsde._brownian.brownian_interval
def torchsde_randn(size, dtype, device, seed):
return devices.randn_local(seed, size).to(device=device, dtype=dtype)
torchsde._brownian.brownian_interval._randn = torchsde_randn
replace_torchsde_browinan()
2023-08-06 22:01:07 +08:00
def apply_refiner(sampler):
completed_ratio = sampler.step / sampler.steps
if completed_ratio <= shared.opts.sd_refiner_switch_at:
return False
2023-08-09 03:17:25 +08:00
if shared.opts.sd_refiner_checkpoint == "None":
return False
if shared.sd_model.sd_checkpoint_info.title == shared.opts.sd_refiner_checkpoint:
return False
refiner_checkpoint_info = sd_models.get_closet_checkpoint_match(shared.opts.sd_refiner_checkpoint)
if refiner_checkpoint_info is None:
raise Exception(f'Could not find checkpoint with name {shared.opts.sd_refiner_checkpoint}')
sampler.p.extra_generation_params['Refiner'] = refiner_checkpoint_info.short_title
sampler.p.extra_generation_params['Refiner switch at'] = shared.opts.sd_refiner_switch_at
with sd_models.SkipWritingToConfig():
sd_models.reload_model_weights(info=refiner_checkpoint_info)
devices.torch_gc()
sampler.p.setup_conds()
sampler.update_inner_model()
2023-08-06 22:01:07 +08:00
return True
2023-08-06 22:01:07 +08:00
class TorchHijack:
def __init__(self, sampler_noises):
# Using a deque to efficiently receive the sampler_noises in the same order as the previous index-based
# implementation.
self.sampler_noises = deque(sampler_noises)
def __getattr__(self, item):
if item == 'randn_like':
return self.randn_like
if hasattr(torch, item):
return getattr(torch, item)
raise AttributeError(f"'{type(self).__name__}' object has no attribute '{item}'")
def randn_like(self, x):
if self.sampler_noises:
noise = self.sampler_noises.popleft()
if noise.shape == x.shape:
return noise
return devices.randn_like(x)
class Sampler:
def __init__(self, funcname):
self.funcname = funcname
self.func = funcname
self.extra_params = []
self.sampler_noises = None
self.stop_at = None
self.eta = None
self.config = None # set by the function calling the constructor
self.last_latent = None
self.s_min_uncond = None
self.s_churn = 0.0
self.s_tmin = 0.0
self.s_tmax = float('inf')
self.s_noise = 1.0
self.eta_option_field = 'eta_ancestral'
self.eta_infotext_field = 'Eta'
self.conditioning_key = shared.sd_model.model.conditioning_key
2023-08-09 03:09:40 +08:00
self.p = None
self.model_wrap_cfg = None
2023-08-09 03:09:40 +08:00
self.sampler_extra_args = None
def callback_state(self, d):
step = d['i']
if self.stop_at is not None and step > self.stop_at:
raise InterruptedException
state.sampling_step = step
shared.total_tqdm.update()
def launch_sampling(self, steps, func):
2023-08-09 03:09:40 +08:00
self.model_wrap_cfg.steps = steps
state.sampling_steps = steps
state.sampling_step = 0
try:
return func()
except RecursionError:
print(
'Encountered RecursionError during sampling, returning last latent. '
'rho >5 with a polyexponential scheduler may cause this error. '
'You should try to use a smaller rho value instead.'
)
return self.last_latent
except InterruptedException:
return self.last_latent
def number_of_needed_noises(self, p):
return p.steps
def initialize(self, p) -> dict:
2023-08-09 03:09:40 +08:00
self.p = p
self.model_wrap_cfg.p = p
self.model_wrap_cfg.mask = p.mask if hasattr(p, 'mask') else None
self.model_wrap_cfg.nmask = p.nmask if hasattr(p, 'nmask') else None
self.model_wrap_cfg.step = 0
self.model_wrap_cfg.image_cfg_scale = getattr(p, 'image_cfg_scale', None)
self.eta = p.eta if p.eta is not None else getattr(opts, self.eta_option_field, 0.0)
self.s_min_uncond = getattr(p, 's_min_uncond', 0.0)
k_diffusion.sampling.torch = TorchHijack(self.sampler_noises if self.sampler_noises is not None else [])
extra_params_kwargs = {}
for param_name in self.extra_params:
if hasattr(p, param_name) and param_name in inspect.signature(self.func).parameters:
extra_params_kwargs[param_name] = getattr(p, param_name)
if 'eta' in inspect.signature(self.func).parameters:
if self.eta != 1.0:
p.extra_generation_params[self.eta_infotext_field] = self.eta
extra_params_kwargs['eta'] = self.eta
if len(self.extra_params) > 0:
s_churn = getattr(opts, 's_churn', p.s_churn)
s_tmin = getattr(opts, 's_tmin', p.s_tmin)
s_tmax = getattr(opts, 's_tmax', p.s_tmax) or self.s_tmax # 0 = inf
s_noise = getattr(opts, 's_noise', p.s_noise)
if s_churn != self.s_churn:
extra_params_kwargs['s_churn'] = s_churn
p.s_churn = s_churn
p.extra_generation_params['Sigma churn'] = s_churn
if s_tmin != self.s_tmin:
extra_params_kwargs['s_tmin'] = s_tmin
p.s_tmin = s_tmin
p.extra_generation_params['Sigma tmin'] = s_tmin
if s_tmax != self.s_tmax:
extra_params_kwargs['s_tmax'] = s_tmax
p.s_tmax = s_tmax
p.extra_generation_params['Sigma tmax'] = s_tmax
if s_noise != self.s_noise:
extra_params_kwargs['s_noise'] = s_noise
p.s_noise = s_noise
p.extra_generation_params['Sigma noise'] = s_noise
return extra_params_kwargs
def create_noise_sampler(self, x, sigmas, p):
"""For DPM++ SDE: manually create noise sampler to enable deterministic results across different batch sizes"""
if shared.opts.no_dpmpp_sde_batch_determinism:
return None
from k_diffusion.sampling import BrownianTreeNoiseSampler
sigma_min, sigma_max = sigmas[sigmas > 0].min(), sigmas.max()
current_iter_seeds = p.all_seeds[p.iteration * p.batch_size:(p.iteration + 1) * p.batch_size]
return BrownianTreeNoiseSampler(x, sigma_min, sigma_max, seed=current_iter_seeds)