stable-diffusion-webui/modules/sd_vae_approx.py

Ignoring revisions in .git-blame-ignore-revs. Click here to bypass and see the normal blame view.

118 lines
4.5 KiB
Python
Raw Normal View History

2022-12-25 03:39:00 +08:00
import os
import torch
from torch import nn
from modules import devices, paths, shared
2022-12-25 03:39:00 +08:00
sd_vae_approx_models = {}
2022-12-25 03:39:00 +08:00
class VAEApprox(nn.Module):
2024-06-16 13:04:31 +08:00
def __init__(self, latent_channels=4):
2022-12-25 03:39:00 +08:00
super(VAEApprox, self).__init__()
2024-06-16 13:04:31 +08:00
self.conv1 = nn.Conv2d(latent_channels, 8, (7, 7))
2022-12-25 03:39:00 +08:00
self.conv2 = nn.Conv2d(8, 16, (5, 5))
self.conv3 = nn.Conv2d(16, 32, (3, 3))
self.conv4 = nn.Conv2d(32, 64, (3, 3))
self.conv5 = nn.Conv2d(64, 32, (3, 3))
self.conv6 = nn.Conv2d(32, 16, (3, 3))
self.conv7 = nn.Conv2d(16, 8, (3, 3))
self.conv8 = nn.Conv2d(8, 3, (3, 3))
def forward(self, x):
extra = 11
x = nn.functional.interpolate(x, (x.shape[2] * 2, x.shape[3] * 2))
x = nn.functional.pad(x, (extra, extra, extra, extra))
for layer in [self.conv1, self.conv2, self.conv3, self.conv4, self.conv5, self.conv6, self.conv7, self.conv8, ]:
x = layer(x)
x = nn.functional.leaky_relu(x, 0.1)
return x
def download_model(model_path, model_url):
if not os.path.exists(model_path):
os.makedirs(os.path.dirname(model_path), exist_ok=True)
print(f'Downloading VAEApprox model to: {model_path}')
torch.hub.download_url_to_file(model_url, model_path)
2022-12-25 03:39:00 +08:00
def model():
2024-06-16 13:04:31 +08:00
if shared.sd_model.is_sd3:
model_name = "vaeapprox-sd3.pt"
elif shared.sd_model.is_sdxl:
model_name = "vaeapprox-sdxl.pt"
2024-08-31 17:07:57 +08:00
elif shared.sd_model.is_flux1:
model_name = "vaeapprox-sd3.pt"
2024-06-16 13:04:31 +08:00
else:
model_name = "model.pt"
loaded_model = sd_vae_approx_models.get(model_name)
2022-12-25 03:39:00 +08:00
if loaded_model is None:
model_path = os.path.join(paths.models_path, "VAE-approx", model_name)
if not os.path.exists(model_path):
model_path = os.path.join(paths.script_path, "models", "VAE-approx", model_name)
if not os.path.exists(model_path):
model_path = os.path.join(paths.models_path, "VAE-approx", model_name)
download_model(model_path, 'https://github.com/AUTOMATIC1111/stable-diffusion-webui/releases/download/v1.0.0-pre/' + model_name)
2024-06-16 13:04:31 +08:00
loaded_model = VAEApprox(latent_channels=shared.sd_model.latent_channels)
loaded_model.load_state_dict(torch.load(model_path, map_location='cpu' if devices.device.type != 'cuda' else None))
loaded_model.eval()
loaded_model.to(devices.device, devices.dtype)
sd_vae_approx_models[model_name] = loaded_model
2022-12-25 03:39:00 +08:00
return loaded_model
2022-12-25 03:39:00 +08:00
def cheap_approximation(sample):
# https://discuss.huggingface.co/t/decoding-latents-to-rgb-without-upscaling/23204/2
2024-06-16 13:04:31 +08:00
if shared.sd_model.is_sd3:
coeffs = [
[-0.0645, 0.0177, 0.1052], [ 0.0028, 0.0312, 0.0650],
[ 0.1848, 0.0762, 0.0360], [ 0.0944, 0.0360, 0.0889],
[ 0.0897, 0.0506, -0.0364], [-0.0020, 0.1203, 0.0284],
[ 0.0855, 0.0118, 0.0283], [-0.0539, 0.0658, 0.1047],
[-0.0057, 0.0116, 0.0700], [-0.0412, 0.0281, -0.0039],
[ 0.1106, 0.1171, 0.1220], [-0.0248, 0.0682, -0.0481],
[ 0.0815, 0.0846, 0.1207], [-0.0120, -0.0055, -0.0867],
[-0.0749, -0.0634, -0.0456], [-0.1418, -0.1457, -0.1259],
]
2024-08-31 17:07:57 +08:00
elif shared.sd_model.is_flux1:
coeffs = [
# from comfy
[-0.0404, 0.0159, 0.0609], [ 0.0043, 0.0298, 0.0850],
[ 0.0328, -0.0749, -0.0503], [-0.0245, 0.0085, 0.0549],
[ 0.0966, 0.0894, 0.0530], [ 0.0035, 0.0399, 0.0123],
[ 0.0583, 0.1184, 0.1262], [-0.0191, -0.0206, -0.0306],
[-0.0324, 0.0055, 0.1001], [ 0.0955, 0.0659, -0.0545],
[-0.0504, 0.0231, -0.0013], [ 0.0500, -0.0008, -0.0088],
[ 0.0982, 0.0941, 0.0976], [-0.1233, -0.0280, -0.0897],
[-0.0005, -0.0530, -0.0020], [-0.1273, -0.0932, -0.0680],
]
2024-06-16 13:04:31 +08:00
elif shared.sd_model.is_sdxl:
coeffs = [
[ 0.3448, 0.4168, 0.4395],
[-0.1953, -0.0290, 0.0250],
[ 0.1074, 0.0886, -0.0163],
[-0.3730, -0.2499, -0.2088],
]
else:
coeffs = [
[ 0.298, 0.207, 0.208],
[ 0.187, 0.286, 0.173],
[-0.158, 0.189, 0.264],
[-0.184, -0.271, -0.473],
]
coefs = torch.tensor(coeffs).to(sample.device)
2022-12-25 03:39:00 +08:00
2023-08-04 13:38:52 +08:00
x_sample = torch.einsum("...lxy,lr -> ...rxy", sample, coefs)
2022-12-25 03:39:00 +08:00
return x_sample