stable-diffusion-webui/extensions-builtin/Lora/network_oft.py

103 lines
4.1 KiB
Python
Raw Normal View History

2023-10-18 14:35:50 +08:00
import torch
import network
from einops import rearrange
2023-10-18 14:35:50 +08:00
class ModuleTypeOFT(network.ModuleType):
def create_module(self, net: network.Network, weights: network.NetworkWeights):
if all(x in weights.w for x in ["oft_blocks"]):
return NetworkModuleOFT(net, weights)
return None
# adapted from kohya's implementation https://github.com/kohya-ss/sd-scripts/blob/main/networks/oft.py
2023-10-18 14:35:50 +08:00
class NetworkModuleOFT(network.NetworkModule):
def __init__(self, net: network.Network, weights: network.NetworkWeights):
2023-10-18 19:16:01 +08:00
2023-10-18 14:35:50 +08:00
super().__init__(net, weights)
self.oft_blocks = weights.w["oft_blocks"]
self.alpha = weights.w["alpha"]
self.dim = self.oft_blocks.shape[0]
self.num_blocks = self.dim
if "Linear" in self.sd_module.__class__.__name__:
self.out_dim = self.sd_module.out_features
elif "Conv" in self.sd_module.__class__.__name__:
self.out_dim = self.sd_module.out_channels
self.constraint = self.alpha * self.out_dim
2023-10-18 14:35:50 +08:00
self.block_size = self.out_dim // self.num_blocks
2023-10-18 19:16:01 +08:00
self.org_module: list[torch.Module] = [self.sd_module]
2023-10-22 07:07:45 +08:00
# def merge_weight(self, R_weight, org_weight):
# R_weight = R_weight.to(org_weight.device, dtype=org_weight.dtype)
# if org_weight.dim() == 4:
# weight = torch.einsum("oihw, op -> pihw", org_weight, R_weight)
# else:
# weight = torch.einsum("oi, op -> pi", org_weight, R_weight)
# weight = torch.einsum(
# "k n m, k n ... -> k m ...",
# self.oft_diag * scale + torch.eye(self.block_size, device=device),
# org_weight
# )
# return weight
2023-10-22 07:07:45 +08:00
def get_weight(self, oft_blocks, multiplier=None):
# constraint = self.constraint.to(oft_blocks.device, dtype=oft_blocks.dtype)
2023-10-22 23:54:24 +08:00
# block_Q = oft_blocks - oft_blocks.transpose(1, 2)
# norm_Q = torch.norm(block_Q.flatten())
# new_norm_Q = torch.clamp(norm_Q, max=constraint)
# block_Q = block_Q * ((new_norm_Q + 1e-8) / (norm_Q + 1e-8))
# m_I = torch.eye(self.block_size, device=oft_blocks.device).unsqueeze(0).repeat(self.num_blocks, 1, 1)
# block_R = torch.matmul(m_I + block_Q, (m_I - block_Q).inverse())
2023-10-22 23:54:24 +08:00
# block_R_weighted = multiplier * block_R + (1 - multiplier) * m_I
# R = torch.block_diag(*block_R_weighted)
#return R
return self.oft_blocks
2023-10-18 14:35:50 +08:00
def calc_updown(self, orig_weight):
multiplier = self.multiplier() * self.calc_scale()
#R = self.get_weight(self.oft_blocks, multiplier)
R = self.oft_blocks.to(orig_weight.device, dtype=orig_weight.dtype)
#merged_weight = self.merge_weight(R, orig_weight)
orig_weight = rearrange(orig_weight, '(k n) ... -> k n ...', k=self.num_blocks, n=self.block_size)
weight = torch.einsum(
'k n m, k n ... -> k m ...',
R * multiplier + torch.eye(self.block_size, device=orig_weight.device),
orig_weight
)
weight = rearrange(weight, 'k m ... -> (k m) ...')
#updown = merged_weight.to(orig_weight.device, dtype=orig_weight.dtype) - orig_weight
updown = weight.to(orig_weight.device, dtype=orig_weight.dtype) - orig_weight
output_shape = orig_weight.shape
2023-10-22 23:54:24 +08:00
orig_weight = orig_weight
2023-10-18 19:27:44 +08:00
2023-10-18 14:35:50 +08:00
return self.finalize_updown(updown, orig_weight, output_shape)
2023-10-23 00:31:15 +08:00
# override to remove the multiplier/scale factor; it's already multiplied in get_weight
def finalize_updown(self, updown, orig_weight, output_shape, ex_bias=None):
#return super().finalize_updown(updown, orig_weight, output_shape, ex_bias)
if self.bias is not None:
updown = updown.reshape(self.bias.shape)
updown += self.bias.to(orig_weight.device, dtype=orig_weight.dtype)
updown = updown.reshape(output_shape)
if len(output_shape) == 4:
updown = updown.reshape(output_shape)
if orig_weight.size().numel() == updown.size().numel():
updown = updown.reshape(orig_weight.shape)
if ex_bias is not None:
ex_bias = ex_bias * self.multiplier()
return updown, ex_bias