stable-diffusion-webui/modules/sd_models.py

278 lines
9.9 KiB
Python
Raw Normal View History

import collections
import os.path
import sys
from collections import namedtuple
import torch
from omegaconf import OmegaConf
from ldm.util import instantiate_from_config
from modules import shared, modelloader, devices, script_callbacks
from modules.paths import models_path
from modules.sd_hijack_inpainting import do_inpainting_hijack, should_hijack_inpainting
model_dir = "Stable-diffusion"
model_path = os.path.abspath(os.path.join(models_path, model_dir))
CheckpointInfo = namedtuple("CheckpointInfo", ['filename', 'title', 'hash', 'model_name', 'config'])
checkpoints_list = {}
checkpoints_loaded = collections.OrderedDict()
try:
# this silences the annoying "Some weights of the model checkpoint were not used when initializing..." message at start.
2022-10-16 23:53:56 +08:00
from transformers import logging, CLIPModel
logging.set_verbosity_error()
except Exception:
pass
def setup_model():
if not os.path.exists(model_path):
os.makedirs(model_path)
list_models()
def checkpoint_tiles():
return sorted([x.title for x in checkpoints_list.values()])
def list_models():
checkpoints_list.clear()
model_list = modelloader.load_models(model_path=model_path, command_path=shared.cmd_opts.ckpt_dir, ext_filter=[".ckpt"])
def modeltitle(path, shorthash):
abspath = os.path.abspath(path)
if shared.cmd_opts.ckpt_dir is not None and abspath.startswith(shared.cmd_opts.ckpt_dir):
name = abspath.replace(shared.cmd_opts.ckpt_dir, '')
elif abspath.startswith(model_path):
name = abspath.replace(model_path, '')
else:
name = os.path.basename(path)
if name.startswith("\\") or name.startswith("/"):
name = name[1:]
shortname = os.path.splitext(name.replace("/", "_").replace("\\", "_"))[0]
return f'{name} [{shorthash}]', shortname
cmd_ckpt = shared.cmd_opts.ckpt
if os.path.exists(cmd_ckpt):
h = model_hash(cmd_ckpt)
title, short_model_name = modeltitle(cmd_ckpt, h)
checkpoints_list[title] = CheckpointInfo(cmd_ckpt, title, h, short_model_name, shared.cmd_opts.config)
shared.opts.data['sd_model_checkpoint'] = title
elif cmd_ckpt is not None and cmd_ckpt != shared.default_sd_model_file:
print(f"Checkpoint in --ckpt argument not found (Possible it was moved to {model_path}: {cmd_ckpt}", file=sys.stderr)
for filename in model_list:
h = model_hash(filename)
title, short_model_name = modeltitle(filename, h)
basename, _ = os.path.splitext(filename)
config = basename + ".yaml"
if not os.path.exists(config):
config = shared.cmd_opts.config
checkpoints_list[title] = CheckpointInfo(filename, title, h, short_model_name, config)
2022-09-29 05:30:09 +08:00
def get_closet_checkpoint_match(searchString):
2022-09-30 02:08:03 +08:00
applicable = sorted([info for info in checkpoints_list.values() if searchString in info.title], key = lambda x:len(x.title))
if len(applicable) > 0:
2022-09-29 05:30:09 +08:00
return applicable[0]
return None
def model_hash(filename):
try:
with open(filename, "rb") as file:
import hashlib
m = hashlib.sha256()
file.seek(0x100000)
m.update(file.read(0x10000))
return m.hexdigest()[0:8]
except FileNotFoundError:
return 'NOFILE'
def select_checkpoint():
model_checkpoint = shared.opts.sd_model_checkpoint
checkpoint_info = checkpoints_list.get(model_checkpoint, None)
if checkpoint_info is not None:
return checkpoint_info
if len(checkpoints_list) == 0:
print(f"No checkpoints found. When searching for checkpoints, looked at:", file=sys.stderr)
if shared.cmd_opts.ckpt is not None:
print(f" - file {os.path.abspath(shared.cmd_opts.ckpt)}", file=sys.stderr)
print(f" - directory {model_path}", file=sys.stderr)
if shared.cmd_opts.ckpt_dir is not None:
print(f" - directory {os.path.abspath(shared.cmd_opts.ckpt_dir)}", file=sys.stderr)
print(f"Can't run without a checkpoint. Find and place a .ckpt file into any of those locations. The program will exit.", file=sys.stderr)
exit(1)
checkpoint_info = next(iter(checkpoints_list.values()))
if model_checkpoint is not None:
print(f"Checkpoint {model_checkpoint} not found; loading fallback {checkpoint_info.title}", file=sys.stderr)
return checkpoint_info
chckpoint_dict_replacements = {
'cond_stage_model.transformer.embeddings.': 'cond_stage_model.transformer.text_model.embeddings.',
'cond_stage_model.transformer.encoder.': 'cond_stage_model.transformer.text_model.encoder.',
'cond_stage_model.transformer.final_layer_norm.': 'cond_stage_model.transformer.text_model.final_layer_norm.',
}
def transform_checkpoint_dict_key(k):
for text, replacement in chckpoint_dict_replacements.items():
if k.startswith(text):
k = replacement + k[len(text):]
return k
def get_state_dict_from_checkpoint(pl_sd):
if "state_dict" in pl_sd:
pl_sd = pl_sd["state_dict"]
sd = {}
for k, v in pl_sd.items():
new_key = transform_checkpoint_dict_key(k)
if new_key is not None:
sd[new_key] = v
2022-10-19 17:45:30 +08:00
pl_sd.clear()
pl_sd.update(sd)
return pl_sd
2022-10-21 22:35:51 +08:00
vae_ignore_keys = {"model_ema.decay", "model_ema.num_updates"}
def load_model_weights(model, checkpoint_info):
checkpoint_file = checkpoint_info.filename
sd_model_hash = checkpoint_info.hash
if checkpoint_info not in checkpoints_loaded:
print(f"Loading weights [{sd_model_hash}] from {checkpoint_file}")
2022-10-15 15:35:18 +08:00
pl_sd = torch.load(checkpoint_file, map_location=shared.weight_load_location)
if "global_step" in pl_sd:
print(f"Global Step: {pl_sd['global_step']}")
sd = get_state_dict_from_checkpoint(pl_sd)
missing, extra = model.load_state_dict(sd, strict=False)
if shared.cmd_opts.opt_channelslast:
model.to(memory_format=torch.channels_last)
if not shared.cmd_opts.no_half:
model.half()
devices.dtype = torch.float32 if shared.cmd_opts.no_half else torch.float16
devices.dtype_vae = torch.float32 if shared.cmd_opts.no_half or shared.cmd_opts.no_half_vae else torch.float16
vae_file = os.path.splitext(checkpoint_file)[0] + ".vae.pt"
if not os.path.exists(vae_file) and shared.cmd_opts.vae_path is not None:
vae_file = shared.cmd_opts.vae_path
if os.path.exists(vae_file):
print(f"Loading VAE weights from: {vae_file}")
2022-10-15 15:35:18 +08:00
vae_ckpt = torch.load(vae_file, map_location=shared.weight_load_location)
2022-10-21 22:35:51 +08:00
vae_dict = {k: v for k, v in vae_ckpt["state_dict"].items() if k[0:4] != "loss" and k not in vae_ignore_keys}
model.first_stage_model.load_state_dict(vae_dict)
2022-10-07 15:40:22 +08:00
model.first_stage_model.to(devices.dtype_vae)
2022-10-07 15:40:22 +08:00
checkpoints_loaded[checkpoint_info] = model.state_dict().copy()
while len(checkpoints_loaded) > shared.opts.sd_checkpoint_cache:
checkpoints_loaded.popitem(last=False) # LRU
else:
print(f"Loading weights [{sd_model_hash}] from cache")
checkpoints_loaded.move_to_end(checkpoint_info)
model.load_state_dict(checkpoints_loaded[checkpoint_info])
2022-10-10 21:11:14 +08:00
model.sd_model_hash = sd_model_hash
2022-10-09 03:12:24 +08:00
model.sd_model_checkpoint = checkpoint_file
model.sd_checkpoint_info = checkpoint_info
def load_model(checkpoint_info=None):
from modules import lowvram, sd_hijack
checkpoint_info = checkpoint_info or select_checkpoint()
if checkpoint_info.config != shared.cmd_opts.config:
print(f"Loading config from: {checkpoint_info.config}")
sd_config = OmegaConf.load(checkpoint_info.config)
if should_hijack_inpainting(checkpoint_info):
# Hardcoded config for now...
sd_config.model.target = "ldm.models.diffusion.ddpm.LatentInpaintDiffusion"
sd_config.model.params.use_ema = False
sd_config.model.params.conditioning_key = "hybrid"
sd_config.model.params.unet_config.params.in_channels = 9
# Create a "fake" config with a different name so that we know to unload it when switching models.
checkpoint_info = checkpoint_info._replace(config=checkpoint_info.config.replace(".yaml", "-inpainting.yaml"))
do_inpainting_hijack()
sd_model = instantiate_from_config(sd_config.model)
load_model_weights(sd_model, checkpoint_info)
if shared.cmd_opts.lowvram or shared.cmd_opts.medvram:
lowvram.setup_for_low_vram(sd_model, shared.cmd_opts.medvram)
else:
sd_model.to(shared.device)
sd_hijack.model_hijack.hijack(sd_model)
sd_model.eval()
shared.sd_model = sd_model
script_callbacks.model_loaded_callback(sd_model)
print(f"Model loaded.")
return sd_model
def reload_model_weights(sd_model, info=None):
from modules import lowvram, devices, sd_hijack
checkpoint_info = info or select_checkpoint()
2022-10-09 03:12:24 +08:00
if sd_model.sd_model_checkpoint == checkpoint_info.filename:
return
if sd_model.sd_checkpoint_info.config != checkpoint_info.config or should_hijack_inpainting(checkpoint_info) != should_hijack_inpainting(sd_model.sd_checkpoint_info):
checkpoints_loaded.clear()
load_model(checkpoint_info)
return shared.sd_model
if shared.cmd_opts.lowvram or shared.cmd_opts.medvram:
lowvram.send_everything_to_cpu()
else:
sd_model.to(devices.cpu)
sd_hijack.model_hijack.undo_hijack(sd_model)
load_model_weights(sd_model, checkpoint_info)
sd_hijack.model_hijack.hijack(sd_model)
script_callbacks.model_loaded_callback(sd_model)
if not shared.cmd_opts.lowvram and not shared.cmd_opts.medvram:
sd_model.to(devices.device)
print(f"Weights loaded.")
return sd_model