stable-diffusion-webui/modules/sd_samplers_kdiffusion.py

Ignoring revisions in .git-blame-ignore-revs. Click here to bypass and see the normal blame view.

241 lines
12 KiB
Python
Raw Normal View History

import torch
2022-09-28 15:49:07 +08:00
import inspect
import k_diffusion.sampling
2023-08-10 22:04:59 +08:00
from modules import sd_samplers_common, sd_samplers_extra, sd_samplers_cfg_denoiser
2023-08-10 22:21:01 +08:00
from modules.sd_samplers_cfg_denoiser import CFGDenoiser # noqa: F401
2023-08-17 09:45:19 +08:00
from modules.script_callbacks import ExtraNoiseParams, extra_noise_callback
from modules.shared import opts
import modules.shared as shared
2022-09-03 22:21:15 +08:00
samplers_k_diffusion = [
2023-08-14 13:50:53 +08:00
('DPM++ 2M Karras', 'sample_dpmpp_2m', ['k_dpmpp_2m_ka'], {'scheduler': 'karras'}),
('DPM++ SDE Karras', 'sample_dpmpp_sde', ['k_dpmpp_sde_ka'], {'scheduler': 'karras', "second_order": True, "brownian_noise": True}),
('DPM++ 2M SDE Exponential', 'sample_dpmpp_2m_sde', ['k_dpmpp_2m_sde_exp'], {'scheduler': 'exponential', "brownian_noise": True}),
('DPM++ 2M SDE Karras', 'sample_dpmpp_2m_sde', ['k_dpmpp_2m_sde_ka'], {'scheduler': 'karras', "brownian_noise": True}),
('Euler a', 'sample_euler_ancestral', ['k_euler_a', 'k_euler_ancestral'], {"uses_ensd": True}),
2022-10-06 19:12:52 +08:00
('Euler', 'sample_euler', ['k_euler'], {}),
('LMS', 'sample_lms', ['k_lms'], {}),
('Heun', 'sample_heun', ['k_heun'], {"second_order": True}),
('DPM2', 'sample_dpm_2', ['k_dpm_2'], {'discard_next_to_last_sigma': True, "second_order": True}),
('DPM2 a', 'sample_dpm_2_ancestral', ['k_dpm_2_a'], {'discard_next_to_last_sigma': True, "uses_ensd": True, "second_order": True}),
('DPM++ 2S a', 'sample_dpmpp_2s_ancestral', ['k_dpmpp_2s_a'], {"uses_ensd": True, "second_order": True}),
2022-11-05 23:32:22 +08:00
('DPM++ 2M', 'sample_dpmpp_2m', ['k_dpmpp_2m'], {}),
('DPM++ SDE', 'sample_dpmpp_sde', ['k_dpmpp_sde'], {"second_order": True, "brownian_noise": True}),
2023-05-23 01:06:57 +08:00
('DPM++ 2M SDE', 'sample_dpmpp_2m_sde', ['k_dpmpp_2m_sde_ka'], {"brownian_noise": True}),
('DPM++ 2M SDE Heun', 'sample_dpmpp_2m_sde', ['k_dpmpp_2m_sde_heun'], {"brownian_noise": True, "solver_type": "heun"}),
('DPM++ 2M SDE Heun Karras', 'sample_dpmpp_2m_sde', ['k_dpmpp_2m_sde_heun_ka'], {'scheduler': 'karras', "brownian_noise": True, "solver_type": "heun"}),
('DPM++ 2M SDE Heun Exponential', 'sample_dpmpp_2m_sde', ['k_dpmpp_2m_sde_heun_exp'], {'scheduler': 'exponential', "brownian_noise": True, "solver_type": "heun"}),
('DPM++ 3M SDE', 'sample_dpmpp_3m_sde', ['k_dpmpp_3m_sde'], {'discard_next_to_last_sigma': True, "brownian_noise": True}),
('DPM++ 3M SDE Karras', 'sample_dpmpp_3m_sde', ['k_dpmpp_3m_sde_ka'], {'scheduler': 'karras', 'discard_next_to_last_sigma': True, "brownian_noise": True}),
('DPM++ 3M SDE Exponential', 'sample_dpmpp_3m_sde', ['k_dpmpp_3m_sde_exp'], {'scheduler': 'exponential', 'discard_next_to_last_sigma': True, "brownian_noise": True}),
('DPM fast', 'sample_dpm_fast', ['k_dpm_fast'], {"uses_ensd": True}),
('DPM adaptive', 'sample_dpm_adaptive', ['k_dpm_ad'], {"uses_ensd": True}),
2022-10-06 19:12:52 +08:00
('LMS Karras', 'sample_lms', ['k_lms_ka'], {'scheduler': 'karras'}),
('DPM2 Karras', 'sample_dpm_2', ['k_dpm_2_ka'], {'scheduler': 'karras', 'discard_next_to_last_sigma': True, "uses_ensd": True, "second_order": True}),
('DPM2 a Karras', 'sample_dpm_2_ancestral', ['k_dpm_2_a_ka'], {'scheduler': 'karras', 'discard_next_to_last_sigma': True, "uses_ensd": True, "second_order": True}),
('DPM++ 2S a Karras', 'sample_dpmpp_2s_ancestral', ['k_dpmpp_2s_a_ka'], {'scheduler': 'karras', "uses_ensd": True, "second_order": True}),
('Restart', sd_samplers_extra.restart_sampler, ['restart'], {'scheduler': 'karras', "second_order": True}),
2022-09-03 22:21:15 +08:00
]
2023-07-18 12:32:01 +08:00
2022-09-03 22:21:15 +08:00
samplers_data_k_diffusion = [
sd_samplers_common.SamplerData(label, lambda model, funcname=funcname: KDiffusionSampler(funcname, model), aliases, options)
2022-10-06 19:12:52 +08:00
for label, funcname, aliases, options in samplers_k_diffusion
if callable(funcname) or hasattr(k_diffusion.sampling, funcname)
2022-09-03 22:21:15 +08:00
]
sampler_extra_params = {
2022-09-28 15:49:07 +08:00
'sample_euler': ['s_churn', 's_tmin', 's_tmax', 's_noise'],
'sample_heun': ['s_churn', 's_tmin', 's_tmax', 's_noise'],
'sample_dpm_2': ['s_churn', 's_tmin', 's_tmax', 's_noise'],
2023-08-13 20:22:24 +08:00
'sample_dpm_fast': ['s_noise'],
'sample_dpm_2_ancestral': ['s_noise'],
'sample_dpmpp_2s_ancestral': ['s_noise'],
'sample_dpmpp_sde': ['s_noise'],
'sample_dpmpp_2m_sde': ['s_noise'],
'sample_dpmpp_3m_sde': ['s_noise'],
}
k_diffusion_samplers_map = {x.name: x for x in samplers_data_k_diffusion}
2023-05-22 23:02:05 +08:00
k_diffusion_scheduler = {
2023-05-24 00:18:09 +08:00
'Automatic': None,
2023-05-22 23:02:05 +08:00
'karras': k_diffusion.sampling.get_sigmas_karras,
'exponential': k_diffusion.sampling.get_sigmas_exponential,
'polyexponential': k_diffusion.sampling.get_sigmas_polyexponential
}
2023-08-09 03:09:40 +08:00
class CFGDenoiserKDiffusion(sd_samplers_cfg_denoiser.CFGDenoiser):
@property
def inner_model(self):
if self.model_wrap is None:
denoiser = k_diffusion.external.CompVisVDenoiser if shared.sd_model.parameterization == "v" else k_diffusion.external.CompVisDenoiser
self.model_wrap = denoiser(shared.sd_model, quantize=shared.opts.enable_quantization)
return self.model_wrap
class KDiffusionSampler(sd_samplers_common.Sampler):
def __init__(self, funcname, sd_model, options=None):
super().__init__(funcname)
self.extra_params = sampler_extra_params.get(funcname, [])
self.options = options or {}
self.func = funcname if callable(funcname) else getattr(k_diffusion.sampling, self.funcname)
2023-08-09 03:09:40 +08:00
self.model_wrap_cfg = CFGDenoiserKDiffusion(self)
self.model_wrap = self.model_wrap_cfg.inner_model
def get_sigmas(self, p, steps):
discard_next_to_last_sigma = self.config is not None and self.config.options.get('discard_next_to_last_sigma', False)
if opts.always_discard_next_to_last_sigma and not discard_next_to_last_sigma:
discard_next_to_last_sigma = True
p.extra_generation_params["Discard penultimate sigma"] = True
steps += 1 if discard_next_to_last_sigma else 0
2022-12-27 04:49:13 +08:00
if p.sampler_noise_scheduler_override:
2022-10-07 04:27:01 +08:00
sigmas = p.sampler_noise_scheduler_override(steps)
2023-05-24 00:18:09 +08:00
elif opts.k_sched_type != "Automatic":
m_sigma_min, m_sigma_max = (self.model_wrap.sigmas[0].item(), self.model_wrap.sigmas[-1].item())
sigma_min, sigma_max = (0.1, 10) if opts.use_old_karras_scheduler_sigmas else (m_sigma_min, m_sigma_max)
2023-05-22 23:02:05 +08:00
sigmas_kwargs = {
'sigma_min': sigma_min,
'sigma_max': sigma_max,
2023-05-22 23:02:05 +08:00
}
sigmas_func = k_diffusion_scheduler[opts.k_sched_type]
p.extra_generation_params["Schedule type"] = opts.k_sched_type
if opts.sigma_min != m_sigma_min and opts.sigma_min != 0:
sigmas_kwargs['sigma_min'] = opts.sigma_min
p.extra_generation_params["Schedule min sigma"] = opts.sigma_min
if opts.sigma_max != m_sigma_max and opts.sigma_max != 0:
sigmas_kwargs['sigma_max'] = opts.sigma_max
p.extra_generation_params["Schedule max sigma"] = opts.sigma_max
default_rho = 1. if opts.k_sched_type == "polyexponential" else 7.
if opts.k_sched_type != 'exponential' and opts.rho != 0 and opts.rho != default_rho:
2023-05-23 11:34:51 +08:00
sigmas_kwargs['rho'] = opts.rho
p.extra_generation_params["Schedule rho"] = opts.rho
2023-05-22 23:02:05 +08:00
sigmas = sigmas_func(n=steps, **sigmas_kwargs, device=shared.device)
2022-10-07 04:27:01 +08:00
elif self.config is not None and self.config.options.get('scheduler', None) == 'karras':
sigma_min, sigma_max = (0.1, 10) if opts.use_old_karras_scheduler_sigmas else (self.model_wrap.sigmas[0].item(), self.model_wrap.sigmas[-1].item())
sigmas = k_diffusion.sampling.get_sigmas_karras(n=steps, sigma_min=sigma_min, sigma_max=sigma_max, device=shared.device)
elif self.config is not None and self.config.options.get('scheduler', None) == 'exponential':
m_sigma_min, m_sigma_max = (self.model_wrap.sigmas[0].item(), self.model_wrap.sigmas[-1].item())
sigmas = k_diffusion.sampling.get_sigmas_exponential(n=steps, sigma_min=m_sigma_min, sigma_max=m_sigma_max, device=shared.device)
else:
2022-10-07 04:27:01 +08:00
sigmas = self.model_wrap.get_sigmas(steps)
if discard_next_to_last_sigma:
2022-12-19 11:16:42 +08:00
sigmas = torch.cat([sigmas[:-2], sigmas[-1:]])
return sigmas
def sample_img2img(self, p, x, noise, conditioning, unconditional_conditioning, steps=None, image_conditioning=None):
steps, t_enc = sd_samplers_common.setup_img2img_steps(p, steps)
sigmas = self.get_sigmas(p, steps)
sigma_sched = sigmas[steps - t_enc - 1:]
xi = x + noise * sigma_sched[0]
2023-08-15 14:19:19 +08:00
if opts.img2img_extra_noise > 0:
p.extra_generation_params["Extra noise"] = opts.img2img_extra_noise
extra_noise_params = ExtraNoiseParams(noise, x, xi)
2023-08-17 09:45:19 +08:00
extra_noise_callback(extra_noise_params)
noise = extra_noise_params.noise
2023-08-15 14:19:19 +08:00
xi += noise * opts.img2img_extra_noise
extra_params_kwargs = self.initialize(p)
parameters = inspect.signature(self.func).parameters
if 'sigma_min' in parameters:
2022-10-11 07:36:00 +08:00
## last sigma is zero which isn't allowed by DPM Fast & Adaptive so taking value before last
extra_params_kwargs['sigma_min'] = sigma_sched[-2]
if 'sigma_max' in parameters:
extra_params_kwargs['sigma_max'] = sigma_sched[0]
if 'n' in parameters:
extra_params_kwargs['n'] = len(sigma_sched) - 1
if 'sigma_sched' in parameters:
extra_params_kwargs['sigma_sched'] = sigma_sched
if 'sigmas' in parameters:
extra_params_kwargs['sigmas'] = sigma_sched
if self.config.options.get('brownian_noise', False):
2023-02-15 16:57:18 +08:00
noise_sampler = self.create_noise_sampler(x, sigmas, p)
extra_params_kwargs['noise_sampler'] = noise_sampler
if self.config.options.get('solver_type', None) == 'heun':
extra_params_kwargs['solver_type'] = 'heun'
self.model_wrap_cfg.init_latent = x
self.last_latent = x
self.sampler_extra_args = {
'cond': conditioning,
'image_cond': image_conditioning,
'uncond': unconditional_conditioning,
'cond_scale': p.cfg_scale,
2023-03-29 06:18:28 +08:00
's_min_uncond': self.s_min_uncond
}
samples = self.launch_sampling(t_enc + 1, lambda: self.func(self.model_wrap_cfg, xi, extra_args=self.sampler_extra_args, disable=False, callback=self.callback_state, **extra_params_kwargs))
2024-01-28 03:30:12 +08:00
self.add_infotext(p)
return samples
def sample(self, p, x, conditioning, unconditional_conditioning, steps=None, image_conditioning=None):
2022-09-19 21:42:56 +08:00
steps = steps or p.steps
sigmas = self.get_sigmas(p, steps)
2022-10-06 19:12:52 +08:00
if opts.sgm_noise_multiplier:
p.extra_generation_params["SGM noise multiplier"] = True
x = x * torch.sqrt(1.0 + sigmas[0] ** 2.0)
else:
x = x * sigmas[0]
extra_params_kwargs = self.initialize(p)
parameters = inspect.signature(self.func).parameters
if 'n' in parameters:
extra_params_kwargs['n'] = steps
if 'sigma_min' in parameters:
2022-09-29 18:30:33 +08:00
extra_params_kwargs['sigma_min'] = self.model_wrap.sigmas[0].item()
extra_params_kwargs['sigma_max'] = self.model_wrap.sigmas[-1].item()
if 'sigmas' in parameters:
2022-09-29 18:30:33 +08:00
extra_params_kwargs['sigmas'] = sigmas
if self.config.options.get('brownian_noise', False):
2023-02-15 16:57:18 +08:00
noise_sampler = self.create_noise_sampler(x, sigmas, p)
extra_params_kwargs['noise_sampler'] = noise_sampler
if self.config.options.get('solver_type', None) == 'heun':
extra_params_kwargs['solver_type'] = 'heun'
self.last_latent = x
self.sampler_extra_args = {
'cond': conditioning,
'image_cond': image_conditioning,
'uncond': unconditional_conditioning,
2023-03-29 06:18:28 +08:00
'cond_scale': p.cfg_scale,
's_min_uncond': self.s_min_uncond
}
samples = self.launch_sampling(steps, lambda: self.func(self.model_wrap_cfg, x, extra_args=self.sampler_extra_args, disable=False, callback=self.callback_state, **extra_params_kwargs))
2024-01-28 03:30:12 +08:00
self.add_infotext(p)
2022-09-19 21:42:56 +08:00
return samples