stable-diffusion-webui/modules/sd_samplers_common.py

Ignoring revisions in .git-blame-ignore-revs. Click here to bypass and see the normal blame view.

356 lines
13 KiB
Python
Raw Normal View History

import inspect
from collections import namedtuple
import numpy as np
import torch
from PIL import Image
2023-08-06 22:01:07 +08:00
from modules import devices, images, sd_vae_approx, sd_samplers, sd_vae_taesd, shared, sd_models
from modules.shared import opts, state
import k_diffusion.sampling
2022-09-03 22:21:15 +08:00
SamplerDataTuple = namedtuple('SamplerData', ['name', 'constructor', 'aliases', 'options'])
class SamplerData(SamplerDataTuple):
def total_steps(self, steps):
if self.options.get("second_order", False):
steps = steps * 2
return steps
2022-09-03 22:21:15 +08:00
2022-09-19 21:42:56 +08:00
def setup_img2img_steps(p, steps=None):
if opts.img2img_fix_steps or steps is not None:
requested_steps = (steps or p.steps)
steps = int(requested_steps / min(p.denoising_strength, 0.999)) if p.denoising_strength > 0 else 0
t_enc = requested_steps - 1
else:
steps = p.steps
t_enc = int(min(p.denoising_strength, 0.999) * steps)
return steps, t_enc
approximation_indexes = {"Full": 0, "Approx NN": 1, "Approx cheap": 2, "TAESD": 3}
2022-12-25 03:39:00 +08:00
2023-08-04 13:38:52 +08:00
def samples_to_images_tensor(sample, approximation=None, model=None):
"""Transforms 4-channel latent space images into 3-channel RGB image tensors, with values in range [-1, 1]."""
2023-08-18 08:03:26 +08:00
if approximation is None or (shared.state.interrupted and opts.live_preview_fast_interrupt):
approximation = approximation_indexes.get(opts.show_progress_type, 0)
from modules import lowvram
if approximation == 0 and lowvram.is_enabled(shared.sd_model) and not shared.opts.live_preview_allow_lowvram_full:
approximation = 1
if approximation == 2:
2023-08-04 13:38:52 +08:00
x_sample = sd_vae_approx.cheap_approximation(sample)
elif approximation == 1:
2023-08-04 13:38:52 +08:00
x_sample = sd_vae_approx.model()(sample.to(devices.device, devices.dtype)).detach()
elif approximation == 3:
2023-08-16 11:21:12 +08:00
x_sample = sd_vae_taesd.decoder_model()(sample.to(devices.device, devices.dtype)).detach()
2023-08-04 13:38:52 +08:00
x_sample = x_sample * 2 - 1
else:
2023-08-04 13:38:52 +08:00
if model is None:
model = shared.sd_model
with devices.without_autocast(): # fixes an issue with unstable VAEs that are flaky even in fp32
x_sample = model.decode_first_stage(sample.to(model.first_stage_model.dtype))
2023-08-04 13:40:20 +08:00
2023-08-04 13:38:52 +08:00
return x_sample
def single_sample_to_image(sample, approximation=None):
x_sample = samples_to_images_tensor(sample.unsqueeze(0), approximation)[0] * 0.5 + 0.5
2022-12-25 03:39:00 +08:00
2023-05-17 17:39:07 +08:00
x_sample = torch.clamp(x_sample, min=0.0, max=1.0)
x_sample = 255. * np.moveaxis(x_sample.cpu().numpy(), 0, 2)
x_sample = x_sample.astype(np.uint8)
return Image.fromarray(x_sample)
def decode_first_stage(model, x):
x = x.to(devices.dtype_vae)
approx_index = approximation_indexes.get(opts.sd_vae_decode_method, 0)
return samples_to_images_tensor(x, approx_index, model)
2022-12-25 03:39:00 +08:00
def sample_to_image(samples, index=0, approximation=None):
return single_sample_to_image(samples[index], approximation)
2022-12-25 03:39:00 +08:00
def samples_to_image_grid(samples, approximation=None):
return images.image_grid([single_sample_to_image(sample, approximation) for sample in samples])
2023-08-04 13:38:52 +08:00
def images_tensor_to_samples(image, approximation=None, model=None):
'''image[0, 1] -> latent'''
if approximation is None:
approximation = approximation_indexes.get(opts.sd_vae_encode_method, 0)
if approximation == 3:
image = image.to(devices.device, devices.dtype)
2023-08-04 17:55:52 +08:00
x_latent = sd_vae_taesd.encoder_model()(image)
2023-08-04 13:38:52 +08:00
else:
if model is None:
model = shared.sd_model
model.first_stage_model.to(devices.dtype_vae)
2023-08-04 13:38:52 +08:00
image = image.to(shared.device, dtype=devices.dtype_vae)
image = image * 2 - 1
if len(image) > 1:
x_latent = torch.stack([
model.get_first_stage_encoding(
model.encode_first_stage(torch.unsqueeze(img, 0))
)[0]
for img in image
])
else:
x_latent = model.get_first_stage_encoding(model.encode_first_stage(image))
2023-08-04 13:38:52 +08:00
return x_latent
def store_latent(decoded):
state.current_latent = decoded
if opts.live_previews_enable and opts.show_progress_every_n_steps > 0 and shared.state.sampling_step % opts.show_progress_every_n_steps == 0:
if not shared.parallel_processing_allowed:
shared.state.assign_current_image(sample_to_image(decoded))
def is_sampler_using_eta_noise_seed_delta(p):
"""returns whether sampler from config will use eta noise seed delta for image creation"""
sampler_config = sd_samplers.find_sampler_config(p.sampler_name)
eta = p.eta
if eta is None and p.sampler is not None:
eta = p.sampler.eta
if eta is None and sampler_config is not None:
eta = 0 if sampler_config.options.get("default_eta_is_0", False) else 1.0
if eta == 0:
return False
return sampler_config.options.get("uses_ensd", False)
class InterruptedException(BaseException):
pass
def replace_torchsde_browinan():
import torchsde._brownian.brownian_interval
def torchsde_randn(size, dtype, device, seed):
return devices.randn_local(seed, size).to(device=device, dtype=dtype)
torchsde._brownian.brownian_interval._randn = torchsde_randn
replace_torchsde_browinan()
2023-08-06 22:01:07 +08:00
2024-03-02 12:39:59 +08:00
def apply_refiner(cfg_denoiser, sigma=None):
2024-03-02 15:36:48 +08:00
if opts.refiner_switch_by_sample_steps or sigma is None:
completed_ratio = cfg_denoiser.step / cfg_denoiser.total_steps
2024-03-02 12:39:59 +08:00
cfg_denoiser.p.extra_generation_params["Refiner switch by sampling steps"] = True
else:
# torch.max(sigma) only to handle rare case where we might have different sigmas in the same batch
try:
timestep = torch.argmin(torch.abs(cfg_denoiser.inner_model.sigmas - torch.max(sigma)))
2024-03-02 12:39:59 +08:00
except AttributeError: # for samplers that don't use sigmas (DDIM) sigma is actually the timestep
timestep = torch.max(sigma).to(dtype=int)
completed_ratio = (999 - timestep) / 1000
refiner_switch_at = cfg_denoiser.p.refiner_switch_at
refiner_checkpoint_info = cfg_denoiser.p.refiner_checkpoint_info
2023-08-06 22:01:07 +08:00
if refiner_switch_at is not None and completed_ratio < refiner_switch_at:
return False
if refiner_checkpoint_info is None or shared.sd_model.sd_checkpoint_info == refiner_checkpoint_info:
2023-08-09 03:17:25 +08:00
return False
if getattr(cfg_denoiser.p, "enable_hr", False):
is_second_pass = cfg_denoiser.p.is_hr_pass
if opts.hires_fix_refiner_pass == "first pass" and is_second_pass:
return False
if opts.hires_fix_refiner_pass == "second pass" and not is_second_pass:
return False
if opts.hires_fix_refiner_pass != "second pass":
cfg_denoiser.p.extra_generation_params['Hires refiner'] = opts.hires_fix_refiner_pass
cfg_denoiser.p.extra_generation_params['Refiner'] = refiner_checkpoint_info.short_title
cfg_denoiser.p.extra_generation_params['Refiner switch at'] = refiner_switch_at
with sd_models.SkipWritingToConfig():
sd_models.reload_model_weights(info=refiner_checkpoint_info)
devices.torch_gc()
cfg_denoiser.p.setup_conds()
cfg_denoiser.update_inner_model()
2023-08-06 22:01:07 +08:00
return True
2023-08-06 22:01:07 +08:00
class TorchHijack:
"""This is here to replace torch.randn_like of k-diffusion.
k-diffusion has random_sampler argument for most samplers, but not for all, so
this is needed to properly replace every use of torch.randn_like.
We need to replace to make images generated in batches to be same as images generated individually."""
def __init__(self, p):
self.rng = p.rng
def __getattr__(self, item):
if item == 'randn_like':
return self.randn_like
if hasattr(torch, item):
return getattr(torch, item)
raise AttributeError(f"'{type(self).__name__}' object has no attribute '{item}'")
def randn_like(self, x):
return self.rng.next()
class Sampler:
def __init__(self, funcname):
self.funcname = funcname
self.func = funcname
self.extra_params = []
self.sampler_noises = None
self.stop_at = None
self.eta = None
self.config: SamplerData = None # set by the function calling the constructor
self.last_latent = None
self.s_min_uncond = None
self.s_churn = 0.0
self.s_tmin = 0.0
self.s_tmax = float('inf')
self.s_noise = 1.0
self.eta_option_field = 'eta_ancestral'
self.eta_infotext_field = 'Eta'
self.eta_default = 1.0
self.conditioning_key = shared.sd_model.model.conditioning_key
2023-08-09 03:09:40 +08:00
self.p = None
self.model_wrap_cfg = None
2023-08-09 03:09:40 +08:00
self.sampler_extra_args = None
self.options = {}
def callback_state(self, d):
step = d['i']
if self.stop_at is not None and step > self.stop_at:
raise InterruptedException
state.sampling_step = step
shared.total_tqdm.update()
def launch_sampling(self, steps, func):
2023-08-09 03:09:40 +08:00
self.model_wrap_cfg.steps = steps
self.model_wrap_cfg.total_steps = self.config.total_steps(steps)
state.sampling_steps = steps
state.sampling_step = 0
try:
return func()
except RecursionError:
print(
'Encountered RecursionError during sampling, returning last latent. '
'rho >5 with a polyexponential scheduler may cause this error. '
'You should try to use a smaller rho value instead.'
)
return self.last_latent
except InterruptedException:
return self.last_latent
def number_of_needed_noises(self, p):
return p.steps
def initialize(self, p) -> dict:
2023-08-09 03:09:40 +08:00
self.p = p
self.model_wrap_cfg.p = p
self.model_wrap_cfg.mask = p.mask if hasattr(p, 'mask') else None
self.model_wrap_cfg.nmask = p.nmask if hasattr(p, 'nmask') else None
self.model_wrap_cfg.step = 0
self.model_wrap_cfg.image_cfg_scale = getattr(p, 'image_cfg_scale', None)
self.eta = p.eta if p.eta is not None else getattr(opts, self.eta_option_field, 0.0)
self.s_min_uncond = getattr(p, 's_min_uncond', 0.0)
k_diffusion.sampling.torch = TorchHijack(p)
extra_params_kwargs = {}
for param_name in self.extra_params:
if hasattr(p, param_name) and param_name in inspect.signature(self.func).parameters:
extra_params_kwargs[param_name] = getattr(p, param_name)
if 'eta' in inspect.signature(self.func).parameters:
if self.eta != self.eta_default:
p.extra_generation_params[self.eta_infotext_field] = self.eta
extra_params_kwargs['eta'] = self.eta
if len(self.extra_params) > 0:
s_churn = getattr(opts, 's_churn', p.s_churn)
s_tmin = getattr(opts, 's_tmin', p.s_tmin)
s_tmax = getattr(opts, 's_tmax', p.s_tmax) or self.s_tmax # 0 = inf
s_noise = getattr(opts, 's_noise', p.s_noise)
2023-08-13 20:22:24 +08:00
if 's_churn' in extra_params_kwargs and s_churn != self.s_churn:
extra_params_kwargs['s_churn'] = s_churn
p.s_churn = s_churn
p.extra_generation_params['Sigma churn'] = s_churn
2023-08-13 20:22:24 +08:00
if 's_tmin' in extra_params_kwargs and s_tmin != self.s_tmin:
extra_params_kwargs['s_tmin'] = s_tmin
p.s_tmin = s_tmin
p.extra_generation_params['Sigma tmin'] = s_tmin
2023-08-13 20:22:24 +08:00
if 's_tmax' in extra_params_kwargs and s_tmax != self.s_tmax:
extra_params_kwargs['s_tmax'] = s_tmax
p.s_tmax = s_tmax
p.extra_generation_params['Sigma tmax'] = s_tmax
2023-08-13 20:22:24 +08:00
if 's_noise' in extra_params_kwargs and s_noise != self.s_noise:
extra_params_kwargs['s_noise'] = s_noise
p.s_noise = s_noise
p.extra_generation_params['Sigma noise'] = s_noise
return extra_params_kwargs
def create_noise_sampler(self, x, sigmas, p):
"""For DPM++ SDE: manually create noise sampler to enable deterministic results across different batch sizes"""
if shared.opts.no_dpmpp_sde_batch_determinism:
return None
from k_diffusion.sampling import BrownianTreeNoiseSampler
sigma_min, sigma_max = sigmas[sigmas > 0].min(), sigmas.max()
current_iter_seeds = p.all_seeds[p.iteration * p.batch_size:(p.iteration + 1) * p.batch_size]
return BrownianTreeNoiseSampler(x, sigma_min, sigma_max, seed=current_iter_seeds)
def sample(self, p, x, conditioning, unconditional_conditioning, steps=None, image_conditioning=None):
raise NotImplementedError()
def sample_img2img(self, p, x, noise, conditioning, unconditional_conditioning, steps=None, image_conditioning=None):
raise NotImplementedError()
2024-01-28 03:30:12 +08:00
def add_infotext(self, p):
if self.model_wrap_cfg.padded_cond_uncond:
p.extra_generation_params["Pad conds"] = True
if self.model_wrap_cfg.padded_cond_uncond_v0:
p.extra_generation_params["Pad conds v0"] = True