2022-09-07 17:32:28 +08:00
|
|
|
import os
|
2022-09-10 18:53:10 +08:00
|
|
|
|
|
|
|
import cv2
|
2022-09-07 17:32:28 +08:00
|
|
|
import torch
|
|
|
|
|
2022-09-26 23:27:18 +08:00
|
|
|
import modules.face_restoration
|
|
|
|
import modules.shared
|
2023-06-01 00:56:37 +08:00
|
|
|
from modules import shared, devices, modelloader, errors
|
2023-01-26 01:00:09 +08:00
|
|
|
from modules.paths import models_path
|
2022-09-07 17:32:28 +08:00
|
|
|
|
2022-09-26 22:29:50 +08:00
|
|
|
model_dir = "Codeformer"
|
|
|
|
model_path = os.path.join(models_path, model_dir)
|
|
|
|
model_url = 'https://github.com/sczhou/CodeFormer/releases/download/v0.1.0/codeformer.pth'
|
2022-09-07 17:32:28 +08:00
|
|
|
|
2022-09-07 18:35:02 +08:00
|
|
|
codeformer = None
|
2022-09-07 17:32:28 +08:00
|
|
|
|
2022-09-26 22:29:50 +08:00
|
|
|
|
2023-12-25 20:43:51 +08:00
|
|
|
class FaceRestorerCodeFormer(modules.face_restoration.FaceRestoration):
|
|
|
|
def name(self):
|
|
|
|
return "CodeFormer"
|
|
|
|
|
|
|
|
def __init__(self, dirname):
|
|
|
|
self.net = None
|
|
|
|
self.face_helper = None
|
|
|
|
self.cmd_dir = dirname
|
|
|
|
|
|
|
|
def create_models(self):
|
|
|
|
from facexlib.detection import retinaface
|
|
|
|
from facexlib.utils.face_restoration_helper import FaceRestoreHelper
|
|
|
|
|
|
|
|
if self.net is not None and self.face_helper is not None:
|
|
|
|
self.net.to(devices.device_codeformer)
|
|
|
|
return self.net, self.face_helper
|
|
|
|
model_paths = modelloader.load_models(
|
|
|
|
model_path,
|
|
|
|
model_url,
|
|
|
|
self.cmd_dir,
|
|
|
|
download_name='codeformer-v0.1.0.pth',
|
|
|
|
ext_filter=['.pth'],
|
|
|
|
)
|
|
|
|
|
|
|
|
if len(model_paths) != 0:
|
|
|
|
ckpt_path = model_paths[0]
|
|
|
|
else:
|
|
|
|
print("Unable to load codeformer model.")
|
|
|
|
return None, None
|
|
|
|
net = modelloader.load_spandrel_model(ckpt_path, device=devices.device_codeformer)
|
|
|
|
|
|
|
|
if hasattr(retinaface, 'device'):
|
|
|
|
retinaface.device = devices.device_codeformer
|
|
|
|
|
|
|
|
face_helper = FaceRestoreHelper(
|
|
|
|
upscale_factor=1,
|
|
|
|
face_size=512,
|
|
|
|
crop_ratio=(1, 1),
|
|
|
|
det_model='retinaface_resnet50',
|
|
|
|
save_ext='png',
|
|
|
|
use_parse=True,
|
|
|
|
device=devices.device_codeformer,
|
|
|
|
)
|
|
|
|
|
|
|
|
self.net = net
|
|
|
|
self.face_helper = face_helper
|
|
|
|
|
|
|
|
def send_model_to(self, device):
|
|
|
|
self.net.to(device)
|
|
|
|
self.face_helper.face_det.to(device)
|
|
|
|
self.face_helper.face_parse.to(device)
|
|
|
|
|
|
|
|
def restore(self, np_image, w=None):
|
2022-09-07 17:32:28 +08:00
|
|
|
from torchvision.transforms.functional import normalize
|
2023-05-10 13:43:42 +08:00
|
|
|
from basicsr.utils import img2tensor, tensor2img
|
2023-12-25 20:43:51 +08:00
|
|
|
np_image = np_image[:, :, ::-1]
|
2022-09-07 17:32:28 +08:00
|
|
|
|
2023-12-25 20:43:51 +08:00
|
|
|
original_resolution = np_image.shape[0:2]
|
2022-09-07 17:32:28 +08:00
|
|
|
|
2023-12-25 20:43:51 +08:00
|
|
|
self.create_models()
|
|
|
|
if self.net is None or self.face_helper is None:
|
|
|
|
return np_image
|
2022-09-07 17:32:28 +08:00
|
|
|
|
2023-12-25 20:43:51 +08:00
|
|
|
self.send_model_to(devices.device_codeformer)
|
2022-09-07 17:32:28 +08:00
|
|
|
|
2023-12-25 20:43:51 +08:00
|
|
|
self.face_helper.clean_all()
|
|
|
|
self.face_helper.read_image(np_image)
|
|
|
|
self.face_helper.get_face_landmarks_5(only_center_face=False, resize=640, eye_dist_threshold=5)
|
|
|
|
self.face_helper.align_warp_face()
|
2022-10-04 17:32:22 +08:00
|
|
|
|
2023-12-25 20:43:51 +08:00
|
|
|
for cropped_face in self.face_helper.cropped_faces:
|
|
|
|
cropped_face_t = img2tensor(cropped_face / 255., bgr2rgb=True, float32=True)
|
|
|
|
normalize(cropped_face_t, (0.5, 0.5, 0.5), (0.5, 0.5, 0.5), inplace=True)
|
|
|
|
cropped_face_t = cropped_face_t.unsqueeze(0).to(devices.device_codeformer)
|
2022-09-07 17:32:28 +08:00
|
|
|
|
2023-12-25 20:43:51 +08:00
|
|
|
try:
|
|
|
|
with torch.no_grad():
|
|
|
|
res = self.net(cropped_face_t, w=w if w is not None else shared.opts.code_former_weight, adain=True)
|
|
|
|
if isinstance(res, tuple):
|
|
|
|
output = res[0]
|
|
|
|
else:
|
|
|
|
output = res
|
|
|
|
if not isinstance(res, torch.Tensor):
|
|
|
|
raise TypeError(f"Expected torch.Tensor, got {type(res)}")
|
|
|
|
restored_face = tensor2img(output, rgb2bgr=True, min_max=(-1, 1))
|
|
|
|
del output
|
|
|
|
devices.torch_gc()
|
|
|
|
except Exception:
|
|
|
|
errors.report('Failed inference for CodeFormer', exc_info=True)
|
|
|
|
restored_face = tensor2img(cropped_face_t, rgb2bgr=True, min_max=(-1, 1))
|
2022-09-10 18:53:10 +08:00
|
|
|
|
2023-12-25 20:43:51 +08:00
|
|
|
restored_face = restored_face.astype('uint8')
|
|
|
|
self.face_helper.add_restored_face(restored_face)
|
2022-09-26 22:29:50 +08:00
|
|
|
|
2023-12-25 20:43:51 +08:00
|
|
|
self.face_helper.get_inverse_affine(None)
|
2022-10-04 17:32:22 +08:00
|
|
|
|
2023-12-25 20:43:51 +08:00
|
|
|
restored_img = self.face_helper.paste_faces_to_input_image()
|
|
|
|
restored_img = restored_img[:, :, ::-1]
|
2022-09-07 17:32:28 +08:00
|
|
|
|
2023-12-25 20:43:51 +08:00
|
|
|
if original_resolution != restored_img.shape[0:2]:
|
|
|
|
restored_img = cv2.resize(
|
|
|
|
restored_img,
|
|
|
|
(0, 0),
|
|
|
|
fx=original_resolution[1]/restored_img.shape[1],
|
|
|
|
fy=original_resolution[0]/restored_img.shape[0],
|
|
|
|
interpolation=cv2.INTER_LINEAR,
|
|
|
|
)
|
2022-09-07 17:32:28 +08:00
|
|
|
|
2023-12-25 20:43:51 +08:00
|
|
|
self.face_helper.clean_all()
|
2022-09-07 17:32:28 +08:00
|
|
|
|
2023-12-25 20:43:51 +08:00
|
|
|
if shared.opts.face_restoration_unload:
|
|
|
|
self.send_model_to(devices.cpu)
|
2022-09-07 17:32:28 +08:00
|
|
|
|
2023-12-25 20:43:51 +08:00
|
|
|
return restored_img
|
2022-09-07 17:32:28 +08:00
|
|
|
|
|
|
|
|
2023-12-25 20:43:51 +08:00
|
|
|
def setup_model(dirname):
|
|
|
|
os.makedirs(model_path, exist_ok=True)
|
|
|
|
try:
|
2022-09-07 18:35:02 +08:00
|
|
|
global codeformer
|
2022-09-26 22:29:50 +08:00
|
|
|
codeformer = FaceRestorerCodeFormer(dirname)
|
2022-09-07 18:35:02 +08:00
|
|
|
shared.face_restorers.append(codeformer)
|
2022-09-07 17:32:28 +08:00
|
|
|
except Exception:
|
2023-06-01 00:56:37 +08:00
|
|
|
errors.report("Error setting up CodeFormer", exc_info=True)
|