stable-diffusion-webui/extensions-builtin/Lora/network_oft.py

Ignoring revisions in .git-blame-ignore-revs. Click here to bypass and see the normal blame view.

201 lines
8.2 KiB
Python
Raw Normal View History

2023-10-18 14:35:50 +08:00
import torch
import network
from einops import rearrange
from modules import devices
2023-10-18 14:35:50 +08:00
class ModuleTypeOFT(network.ModuleType):
def create_module(self, net: network.Network, weights: network.NetworkWeights):
if all(x in weights.w for x in ["oft_blocks"]) or all(x in weights.w for x in ["oft_diag"]):
2023-10-18 14:35:50 +08:00
return NetworkModuleOFT(net, weights)
return None
# adapted from kohya's implementation https://github.com/kohya-ss/sd-scripts/blob/main/networks/oft.py
2023-10-18 14:35:50 +08:00
class NetworkModuleOFT(network.NetworkModule):
def __init__(self, net: network.Network, weights: network.NetworkWeights):
2023-10-18 19:16:01 +08:00
2023-10-18 14:35:50 +08:00
super().__init__(net, weights)
self.lin_module = None
# kohya-ss
if "oft_blocks" in weights.w.keys():
self.is_kohya = True
self.oft_blocks = weights.w["oft_blocks"]
self.alpha = weights.w["alpha"]
self.dim = self.oft_blocks.shape[0]
elif "oft_diag" in weights.w.keys():
self.is_kohya = False
self.oft_blocks = weights.w["oft_diag"]
# alpha is rank if alpha is 0 or None
if self.alpha is None:
pass
self.dim = self.oft_blocks.shape[0] # FIXME: almost certainly incorrect, assumes tensor is shape [*, m, n]
else:
raise ValueError("oft_blocks or oft_diag must be in weights dict")
is_linear = type(self.sd_module) in [torch.nn.Linear, torch.nn.modules.linear.NonDynamicallyQuantizableLinear]
is_conv = type(self.sd_module) in [torch.nn.Conv2d]
is_other_linear = type(self.sd_module) in [ torch.nn.MultiheadAttention]
#if "Linear" in self.sd_module.__class__.__name__ or is_linear:
if is_linear:
2023-10-18 14:35:50 +08:00
self.out_dim = self.sd_module.out_features
#elif hasattr(self.sd_module, "embed_dim"):
# self.out_dim = self.sd_module.embed_dim
#else:
# raise ValueError("Linear sd_module must have out_features or embed_dim")
elif is_other_linear:
self.out_dim = self.sd_module.embed_dim
elif is_conv:
2023-10-18 14:35:50 +08:00
self.out_dim = self.sd_module.out_channels
else:
raise ValueError("sd_module must be Linear or Conv")
2023-10-18 14:35:50 +08:00
if self.is_kohya:
self.num_blocks = self.dim
self.block_size = self.out_dim // self.num_blocks
self.constraint = self.alpha * self.out_dim
#elif is_linear or is_conv:
else:
self.num_blocks, self.block_size = factorization(self.out_dim, self.dim)
self.constraint = None
2023-10-18 14:35:50 +08:00
2023-10-18 19:16:01 +08:00
self.org_module: list[torch.Module] = [self.sd_module]
2023-10-22 07:07:45 +08:00
# if is_other_linear:
# weight = self.oft_blocks.reshape(self.oft_blocks.shape[0], -1)
# module = torch.nn.Linear(weight.shape[1], weight.shape[0], bias=False)
# with torch.no_grad():
# if weight.shape != module.weight.shape:
# weight = weight.reshape(module.weight.shape)
# module.weight.copy_(weight)
# module.to(device=devices.cpu, dtype=devices.dtype)
# module.weight.requires_grad_(False)
# self.lin_module = module
#return module
def merge_weight(self, R_weight, org_weight):
R_weight = R_weight.to(org_weight.device, dtype=org_weight.dtype)
if org_weight.dim() == 4:
weight = torch.einsum("oihw, op -> pihw", org_weight, R_weight)
else:
weight = torch.einsum("oi, op -> pi", org_weight, R_weight)
#weight = torch.einsum(
# "k n m, k n ... -> k m ...",
# self.oft_diag * scale + torch.eye(self.block_size, device=device),
# org_weight
#)
return weight
2023-10-22 07:07:45 +08:00
def get_weight(self, oft_blocks, multiplier=None):
if self.constraint is not None:
constraint = self.constraint.to(oft_blocks.device, dtype=oft_blocks.dtype)
2023-10-22 23:54:24 +08:00
block_Q = oft_blocks - oft_blocks.transpose(1, 2)
norm_Q = torch.norm(block_Q.flatten())
if self.constraint is not None:
new_norm_Q = torch.clamp(norm_Q, max=constraint)
else:
new_norm_Q = norm_Q
block_Q = block_Q * ((new_norm_Q + 1e-8) / (norm_Q + 1e-8))
m_I = torch.eye(self.block_size, device=oft_blocks.device).unsqueeze(0).repeat(self.num_blocks, 1, 1)
block_R = torch.matmul(m_I + block_Q, (m_I - block_Q).inverse())
2023-10-22 23:54:24 +08:00
block_R_weighted = multiplier * block_R + (1 - multiplier) * m_I
R = torch.block_diag(*block_R_weighted)
return R
#return self.oft_blocks
2023-10-18 14:35:50 +08:00
def calc_updown(self, orig_weight):
multiplier = self.multiplier() * self.calc_scale()
R = self.get_weight(self.oft_blocks, multiplier)
#R = self.oft_blocks.to(orig_weight.device, dtype=orig_weight.dtype)
merged_weight = self.merge_weight(R, orig_weight)
#if self.lin_module is not None:
# R = self.lin_module.weight.to(orig_weight.device, dtype=orig_weight.dtype)
# weight = torch.mul(torch.mul(R, multiplier), orig_weight)
#else:
# orig_weight = rearrange(orig_weight, '(k n) ... -> k n ...', k=self.num_blocks, n=self.block_size)
# weight = torch.einsum(
# 'k n m, k n ... -> k m ...',
# R * multiplier + torch.eye(self.block_size, device=orig_weight.device),
# orig_weight
# )
# weight = rearrange(weight, 'k m ... -> (k m) ...')
updown = merged_weight.to(orig_weight.device, dtype=orig_weight.dtype) - orig_weight
#updown = weight.to(orig_weight.device, dtype=orig_weight.dtype) - orig_weight
output_shape = orig_weight.shape
2023-10-22 23:54:24 +08:00
orig_weight = orig_weight
2023-10-18 19:27:44 +08:00
2023-10-18 14:35:50 +08:00
return self.finalize_updown(updown, orig_weight, output_shape)
2023-10-23 00:31:15 +08:00
# override to remove the multiplier/scale factor; it's already multiplied in get_weight
def finalize_updown(self, updown, orig_weight, output_shape, ex_bias=None):
#return super().finalize_updown(updown, orig_weight, output_shape, ex_bias)
if self.bias is not None:
updown = updown.reshape(self.bias.shape)
updown += self.bias.to(orig_weight.device, dtype=orig_weight.dtype)
updown = updown.reshape(output_shape)
if len(output_shape) == 4:
updown = updown.reshape(output_shape)
if orig_weight.size().numel() == updown.size().numel():
updown = updown.reshape(orig_weight.shape)
if ex_bias is not None:
ex_bias = ex_bias * self.multiplier()
return updown, ex_bias
# copied from https://github.com/KohakuBlueleaf/LyCORIS/blob/dev/lycoris/modules/lokr.py
def factorization(dimension: int, factor:int=-1) -> tuple[int, int]:
'''
return a tuple of two value of input dimension decomposed by the number closest to factor
second value is higher or equal than first value.
In LoRA with Kroneckor Product, first value is a value for weight scale.
secon value is a value for weight.
Becuase of non-commutative property, AB BA. Meaning of two matrices is slightly different.
examples)
factor
-1 2 4 8 16 ...
127 -> 1, 127 127 -> 1, 127 127 -> 1, 127 127 -> 1, 127 127 -> 1, 127
128 -> 8, 16 128 -> 2, 64 128 -> 4, 32 128 -> 8, 16 128 -> 8, 16
250 -> 10, 25 250 -> 2, 125 250 -> 2, 125 250 -> 5, 50 250 -> 10, 25
360 -> 8, 45 360 -> 2, 180 360 -> 4, 90 360 -> 8, 45 360 -> 12, 30
512 -> 16, 32 512 -> 2, 256 512 -> 4, 128 512 -> 8, 64 512 -> 16, 32
1024 -> 32, 32 1024 -> 2, 512 1024 -> 4, 256 1024 -> 8, 128 1024 -> 16, 64
'''
if factor > 0 and (dimension % factor) == 0:
m = factor
n = dimension // factor
if m > n:
n, m = m, n
return m, n
if factor < 0:
factor = dimension
m, n = 1, dimension
length = m + n
while m<n:
new_m = m + 1
while dimension%new_m != 0:
new_m += 1
new_n = dimension // new_m
if new_m + new_n > length or new_m>factor:
break
else:
m, n = new_m, new_n
if m > n:
n, m = m, n
return m, n