2023-11-10 11:06:26 +08:00
|
|
|
from modules import shared
|
|
|
|
from modules.sd_hijack_utils import CondFunc
|
|
|
|
|
|
|
|
has_ipex = False
|
|
|
|
try:
|
|
|
|
import torch
|
2023-12-02 15:54:25 +08:00
|
|
|
import intel_extension_for_pytorch as ipex # noqa: F401
|
2023-11-10 11:06:26 +08:00
|
|
|
has_ipex = True
|
|
|
|
except Exception:
|
|
|
|
pass
|
|
|
|
|
|
|
|
|
2023-12-02 14:00:46 +08:00
|
|
|
def check_for_xpu():
|
|
|
|
return has_ipex and hasattr(torch, 'xpu') and torch.xpu.is_available()
|
2023-11-10 11:06:26 +08:00
|
|
|
|
|
|
|
|
|
|
|
def get_xpu_device_string():
|
|
|
|
if shared.cmd_opts.device_id is not None:
|
|
|
|
return f"xpu:{shared.cmd_opts.device_id}"
|
|
|
|
return "xpu"
|
|
|
|
|
2023-12-02 14:00:46 +08:00
|
|
|
|
|
|
|
def torch_xpu_gc():
|
|
|
|
with torch.xpu.device(get_xpu_device_string()):
|
|
|
|
torch.xpu.empty_cache()
|
|
|
|
|
|
|
|
|
|
|
|
has_xpu = check_for_xpu()
|
2023-11-10 11:06:26 +08:00
|
|
|
|
|
|
|
if has_xpu:
|
2023-12-02 14:00:46 +08:00
|
|
|
# W/A for https://github.com/intel/intel-extension-for-pytorch/issues/452: torch.Generator API doesn't support XPU device
|
2023-11-10 11:06:26 +08:00
|
|
|
CondFunc('torch.Generator',
|
|
|
|
lambda orig_func, device=None: torch.xpu.Generator(device),
|
2023-12-02 14:00:46 +08:00
|
|
|
lambda orig_func, device=None: device is not None and device.type == "xpu")
|
2023-11-10 11:06:26 +08:00
|
|
|
|
2023-12-02 14:00:46 +08:00
|
|
|
# W/A for some OPs that could not handle different input dtypes
|
2023-11-10 11:06:26 +08:00
|
|
|
CondFunc('torch.nn.functional.layer_norm',
|
|
|
|
lambda orig_func, input, normalized_shape=None, weight=None, *args, **kwargs:
|
|
|
|
orig_func(input.to(weight.data.dtype), normalized_shape, weight, *args, **kwargs),
|
|
|
|
lambda orig_func, input, normalized_shape=None, weight=None, *args, **kwargs:
|
|
|
|
weight is not None and input.dtype != weight.data.dtype)
|
|
|
|
CondFunc('torch.nn.modules.GroupNorm.forward',
|
|
|
|
lambda orig_func, self, input: orig_func(self, input.to(self.weight.data.dtype)),
|
|
|
|
lambda orig_func, self, input: input.dtype != self.weight.data.dtype)
|
2023-12-02 14:00:46 +08:00
|
|
|
CondFunc('torch.nn.modules.linear.Linear.forward',
|
|
|
|
lambda orig_func, self, input: orig_func(self, input.to(self.weight.data.dtype)),
|
|
|
|
lambda orig_func, self, input: input.dtype != self.weight.data.dtype)
|
|
|
|
CondFunc('torch.nn.modules.conv.Conv2d.forward',
|
|
|
|
lambda orig_func, self, input: orig_func(self, input.to(self.weight.data.dtype)),
|
|
|
|
lambda orig_func, self, input: input.dtype != self.weight.data.dtype)
|