mirror of
https://github.com/AUTOMATIC1111/stable-diffusion-webui.git
synced 2025-01-19 21:00:14 +08:00
Add support for Tensorboard for training embeddings
This commit is contained in:
parent
7f8ab1ee8f
commit
29e74d6e71
@ -254,6 +254,10 @@ options_templates.update(options_section(('training', "Training"), {
|
|||||||
"dataset_filename_join_string": OptionInfo(" ", "Filename join string"),
|
"dataset_filename_join_string": OptionInfo(" ", "Filename join string"),
|
||||||
"training_image_repeats_per_epoch": OptionInfo(1, "Number of repeats for a single input image per epoch; used only for displaying epoch number", gr.Number, {"precision": 0}),
|
"training_image_repeats_per_epoch": OptionInfo(1, "Number of repeats for a single input image per epoch; used only for displaying epoch number", gr.Number, {"precision": 0}),
|
||||||
"training_write_csv_every": OptionInfo(500, "Save an csv containing the loss to log directory every N steps, 0 to disable"),
|
"training_write_csv_every": OptionInfo(500, "Save an csv containing the loss to log directory every N steps, 0 to disable"),
|
||||||
|
"training_enable_tensorboard": OptionInfo(False, "Enable tensorboard logging."),
|
||||||
|
"training_tensorboard_save_images": OptionInfo(False, "Save generated images within tensorboard."),
|
||||||
|
"training_tensorboard_flush_every": OptionInfo(120, "How often, in seconds, to flush the pending tensorboard events and summaries to disk."),
|
||||||
|
|
||||||
}))
|
}))
|
||||||
|
|
||||||
options_templates.update(options_section(('sd', "Stable Diffusion"), {
|
options_templates.update(options_section(('sd', "Stable Diffusion"), {
|
||||||
|
@ -7,9 +7,11 @@ import tqdm
|
|||||||
import html
|
import html
|
||||||
import datetime
|
import datetime
|
||||||
import csv
|
import csv
|
||||||
|
import numpy as np
|
||||||
|
|
||||||
|
import torchvision.transforms
|
||||||
from PIL import Image, PngImagePlugin
|
from PIL import Image, PngImagePlugin
|
||||||
|
from torch.utils.tensorboard import SummaryWriter
|
||||||
from modules import shared, devices, sd_hijack, processing, sd_models
|
from modules import shared, devices, sd_hijack, processing, sd_models
|
||||||
import modules.textual_inversion.dataset
|
import modules.textual_inversion.dataset
|
||||||
from modules.textual_inversion.learn_schedule import LearnRateScheduler
|
from modules.textual_inversion.learn_schedule import LearnRateScheduler
|
||||||
@ -199,6 +201,19 @@ def write_loss(log_directory, filename, step, epoch_len, values):
|
|||||||
**values,
|
**values,
|
||||||
})
|
})
|
||||||
|
|
||||||
|
def tensorboard_add_scaler(tensorboard_writer, tag, value, step):
|
||||||
|
if shared.opts.training_enable_tensorboard:
|
||||||
|
tensorboard_writer.add_scalar(tag=tag,
|
||||||
|
scalar_value=value, global_step=step)
|
||||||
|
|
||||||
|
def tensorboard_add_image(tensorboard_writer, tag, pil_image, step):
|
||||||
|
if shared.opts.training_enable_tensorboard:
|
||||||
|
# Convert a pil image to a torch tensor
|
||||||
|
img_tensor = torch.as_tensor(np.array(pil_image, copy=True))
|
||||||
|
img_tensor = img_tensor.view(pil_image.size[1], pil_image.size[0], len(pil_image.getbands()))
|
||||||
|
img_tensor = img_tensor.permute((2, 0, 1))
|
||||||
|
|
||||||
|
tensorboard_writer.add_image(tag, img_tensor, global_step=step)
|
||||||
|
|
||||||
def train_embedding(embedding_name, learn_rate, batch_size, data_root, log_directory, training_width, training_height, steps, create_image_every, save_embedding_every, template_file, save_image_with_stored_embedding, preview_from_txt2img, preview_prompt, preview_negative_prompt, preview_steps, preview_sampler_index, preview_cfg_scale, preview_seed, preview_width, preview_height):
|
def train_embedding(embedding_name, learn_rate, batch_size, data_root, log_directory, training_width, training_height, steps, create_image_every, save_embedding_every, template_file, save_image_with_stored_embedding, preview_from_txt2img, preview_prompt, preview_negative_prompt, preview_steps, preview_sampler_index, preview_cfg_scale, preview_seed, preview_width, preview_height):
|
||||||
assert embedding_name, 'embedding not selected'
|
assert embedding_name, 'embedding not selected'
|
||||||
@ -252,6 +267,12 @@ def train_embedding(embedding_name, learn_rate, batch_size, data_root, log_direc
|
|||||||
scheduler = LearnRateScheduler(learn_rate, steps, ititial_step)
|
scheduler = LearnRateScheduler(learn_rate, steps, ititial_step)
|
||||||
optimizer = torch.optim.AdamW([embedding.vec], lr=scheduler.learn_rate)
|
optimizer = torch.optim.AdamW([embedding.vec], lr=scheduler.learn_rate)
|
||||||
|
|
||||||
|
if shared.opts.training_enable_tensorboard:
|
||||||
|
os.makedirs(os.path.join(log_directory, "tensorboard"), exist_ok=True)
|
||||||
|
tensorboard_writer = SummaryWriter(
|
||||||
|
log_dir=os.path.join(log_directory, "tensorboard"),
|
||||||
|
flush_secs=shared.opts.training_tensorboard_flush_every)
|
||||||
|
|
||||||
pbar = tqdm.tqdm(enumerate(ds), total=steps-ititial_step)
|
pbar = tqdm.tqdm(enumerate(ds), total=steps-ititial_step)
|
||||||
for i, entries in pbar:
|
for i, entries in pbar:
|
||||||
embedding.step = i + ititial_step
|
embedding.step = i + ititial_step
|
||||||
@ -270,6 +291,7 @@ def train_embedding(embedding_name, learn_rate, batch_size, data_root, log_direc
|
|||||||
del x
|
del x
|
||||||
|
|
||||||
losses[embedding.step % losses.shape[0]] = loss.item()
|
losses[embedding.step % losses.shape[0]] = loss.item()
|
||||||
|
|
||||||
|
|
||||||
optimizer.zero_grad()
|
optimizer.zero_grad()
|
||||||
loss.backward()
|
loss.backward()
|
||||||
@ -285,6 +307,12 @@ def train_embedding(embedding_name, learn_rate, batch_size, data_root, log_direc
|
|||||||
embedding.save(last_saved_file)
|
embedding.save(last_saved_file)
|
||||||
embedding_yet_to_be_embedded = True
|
embedding_yet_to_be_embedded = True
|
||||||
|
|
||||||
|
if shared.opts.training_enable_tensorboard:
|
||||||
|
tensorboard_add_scaler(tensorboard_writer, "Loss/train", losses.mean(), embedding.step)
|
||||||
|
tensorboard_add_scaler(tensorboard_writer, f"Loss/train/epoch-{epoch_num}", losses.mean(), epoch_step)
|
||||||
|
tensorboard_add_scaler(tensorboard_writer, "Learn rate/train", scheduler.learn_rate, embedding.step)
|
||||||
|
tensorboard_add_scaler(tensorboard_writer, f"Learn rate/train/epoch-{epoch_num}", scheduler.learn_rate, epoch_step)
|
||||||
|
|
||||||
write_loss(log_directory, "textual_inversion_loss.csv", embedding.step, len(ds), {
|
write_loss(log_directory, "textual_inversion_loss.csv", embedding.step, len(ds), {
|
||||||
"loss": f"{losses.mean():.7f}",
|
"loss": f"{losses.mean():.7f}",
|
||||||
"learn_rate": scheduler.learn_rate
|
"learn_rate": scheduler.learn_rate
|
||||||
@ -349,6 +377,7 @@ def train_embedding(embedding_name, learn_rate, batch_size, data_root, log_direc
|
|||||||
embedding_yet_to_be_embedded = False
|
embedding_yet_to_be_embedded = False
|
||||||
|
|
||||||
image.save(last_saved_image)
|
image.save(last_saved_image)
|
||||||
|
tensorboard_add_image(tensorboard_writer, f"Validation at epoch {epoch_num}", image, embedding.step)
|
||||||
|
|
||||||
last_saved_image += f", prompt: {preview_text}"
|
last_saved_image += f", prompt: {preview_text}"
|
||||||
|
|
||||||
|
Loading…
Reference in New Issue
Block a user