mirror of
https://github.com/AUTOMATIC1111/stable-diffusion-webui.git
synced 2025-01-01 20:35:06 +08:00
add lora bundle system
This commit is contained in:
parent
7d60076b8b
commit
2aa485b5af
@ -93,6 +93,7 @@ class Network: # LoraModule
|
||||
self.unet_multiplier = 1.0
|
||||
self.dyn_dim = None
|
||||
self.modules = {}
|
||||
self.bundle_embeddings = {}
|
||||
self.mtime = None
|
||||
|
||||
self.mentioned_name = None
|
||||
|
@ -15,6 +15,7 @@ import torch
|
||||
from typing import Union
|
||||
|
||||
from modules import shared, devices, sd_models, errors, scripts, sd_hijack
|
||||
from modules.textual_inversion.textual_inversion import Embedding
|
||||
|
||||
module_types = [
|
||||
network_lora.ModuleTypeLora(),
|
||||
@ -149,9 +150,15 @@ def load_network(name, network_on_disk):
|
||||
is_sd2 = 'model_transformer_resblocks' in shared.sd_model.network_layer_mapping
|
||||
|
||||
matched_networks = {}
|
||||
bundle_embeddings = {}
|
||||
|
||||
for key_network, weight in sd.items():
|
||||
key_network_without_network_parts, network_part = key_network.split(".", 1)
|
||||
if key_network_without_network_parts == "bundle_emb":
|
||||
emb_name, vec_name = network_part.split(".", 1)
|
||||
emb_dict = bundle_embeddings.get(emb_name, {})
|
||||
emb_dict[vec_name] = weight
|
||||
bundle_embeddings[emb_name] = emb_dict
|
||||
|
||||
key = convert_diffusers_name_to_compvis(key_network_without_network_parts, is_sd2)
|
||||
sd_module = shared.sd_model.network_layer_mapping.get(key, None)
|
||||
@ -195,6 +202,8 @@ def load_network(name, network_on_disk):
|
||||
|
||||
net.modules[key] = net_module
|
||||
|
||||
net.bundle_embeddings = bundle_embeddings
|
||||
|
||||
if keys_failed_to_match:
|
||||
logging.debug(f"Network {network_on_disk.filename} didn't match keys: {keys_failed_to_match}")
|
||||
|
||||
@ -210,11 +219,14 @@ def purge_networks_from_memory():
|
||||
|
||||
|
||||
def load_networks(names, te_multipliers=None, unet_multipliers=None, dyn_dims=None):
|
||||
emb_db = sd_hijack.model_hijack.embedding_db
|
||||
already_loaded = {}
|
||||
|
||||
for net in loaded_networks:
|
||||
if net.name in names:
|
||||
already_loaded[net.name] = net
|
||||
for emb_name in net.bundle_embeddings:
|
||||
emb_db.register_embedding_by_name(None, shared.sd_model, emb_name)
|
||||
|
||||
loaded_networks.clear()
|
||||
|
||||
@ -257,6 +269,41 @@ def load_networks(names, te_multipliers=None, unet_multipliers=None, dyn_dims=No
|
||||
net.dyn_dim = dyn_dims[i] if dyn_dims else 1.0
|
||||
loaded_networks.append(net)
|
||||
|
||||
for emb_name, data in net.bundle_embeddings.items():
|
||||
# textual inversion embeddings
|
||||
if 'string_to_param' in data:
|
||||
param_dict = data['string_to_param']
|
||||
param_dict = getattr(param_dict, '_parameters', param_dict) # fix for torch 1.12.1 loading saved file from torch 1.11
|
||||
assert len(param_dict) == 1, 'embedding file has multiple terms in it'
|
||||
emb = next(iter(param_dict.items()))[1]
|
||||
vec = emb.detach().to(devices.device, dtype=torch.float32)
|
||||
shape = vec.shape[-1]
|
||||
vectors = vec.shape[0]
|
||||
elif type(data) == dict and 'clip_g' in data and 'clip_l' in data: # SDXL embedding
|
||||
vec = {k: v.detach().to(devices.device, dtype=torch.float32) for k, v in data.items()}
|
||||
shape = data['clip_g'].shape[-1] + data['clip_l'].shape[-1]
|
||||
vectors = data['clip_g'].shape[0]
|
||||
elif type(data) == dict and type(next(iter(data.values()))) == torch.Tensor: # diffuser concepts
|
||||
assert len(data.keys()) == 1, 'embedding file has multiple terms in it'
|
||||
|
||||
emb = next(iter(data.values()))
|
||||
if len(emb.shape) == 1:
|
||||
emb = emb.unsqueeze(0)
|
||||
vec = emb.detach().to(devices.device, dtype=torch.float32)
|
||||
shape = vec.shape[-1]
|
||||
vectors = vec.shape[0]
|
||||
else:
|
||||
raise Exception(f"Couldn't identify {emb_name} in lora: {name} as neither textual inversion embedding nor diffuser concept.")
|
||||
|
||||
embedding = Embedding(vec, emb_name)
|
||||
embedding.vectors = vectors
|
||||
embedding.shape = shape
|
||||
|
||||
if emb_db.expected_shape == -1 or emb_db.expected_shape == embedding.shape:
|
||||
emb_db.register_embedding(embedding, shared.sd_model)
|
||||
else:
|
||||
emb_db.skipped_embeddings[name] = embedding
|
||||
|
||||
if failed_to_load_networks:
|
||||
sd_hijack.model_hijack.comments.append("Networks not found: " + ", ".join(failed_to_load_networks))
|
||||
|
||||
@ -565,6 +612,7 @@ extra_network_lora = None
|
||||
available_networks = {}
|
||||
available_network_aliases = {}
|
||||
loaded_networks = []
|
||||
loaded_bundle_embeddings = {}
|
||||
networks_in_memory = {}
|
||||
available_network_hash_lookup = {}
|
||||
forbidden_network_aliases = {}
|
||||
|
Loading…
Reference in New Issue
Block a user