mirror of
https://github.com/AUTOMATIC1111/stable-diffusion-webui.git
synced 2025-01-01 12:25:06 +08:00
some stylistic changes for the sampler code
This commit is contained in:
parent
aefe1325df
commit
79d6e9cd32
@ -1,17 +1,20 @@
|
|||||||
import torch
|
import torch
|
||||||
|
import tqdm
|
||||||
import k_diffusion.sampling
|
import k_diffusion.sampling
|
||||||
|
|
||||||
|
|
||||||
@torch.no_grad()
|
@torch.no_grad()
|
||||||
def restart_sampler(model, x, sigmas, extra_args=None, callback=None, disable=None, s_noise=1., restart_list = None):
|
def restart_sampler(model, x, sigmas, extra_args=None, callback=None, disable=None, s_noise=1., restart_list=None):
|
||||||
"""Implements restart sampling in Restart Sampling for Improving Generative Processes (2023)"""
|
"""Implements restart sampling in Restart Sampling for Improving Generative Processes (2023)
|
||||||
'''Restart_list format: {min_sigma: [ restart_steps, restart_times, max_sigma]}'''
|
Restart_list format: {min_sigma: [ restart_steps, restart_times, max_sigma]}
|
||||||
'''If restart_list is None: will choose restart_list automatically, otherwise will use the given restart_list'''
|
If restart_list is None: will choose restart_list automatically, otherwise will use the given restart_list
|
||||||
from tqdm.auto import trange
|
"""
|
||||||
extra_args = {} if extra_args is None else extra_args
|
extra_args = {} if extra_args is None else extra_args
|
||||||
s_in = x.new_ones([x.shape[0]])
|
s_in = x.new_ones([x.shape[0]])
|
||||||
step_id = 0
|
step_id = 0
|
||||||
from k_diffusion.sampling import to_d, get_sigmas_karras
|
from k_diffusion.sampling import to_d, get_sigmas_karras
|
||||||
def heun_step(x, old_sigma, new_sigma, second_order = True):
|
|
||||||
|
def heun_step(x, old_sigma, new_sigma, second_order=True):
|
||||||
nonlocal step_id
|
nonlocal step_id
|
||||||
denoised = model(x, old_sigma * s_in, **extra_args)
|
denoised = model(x, old_sigma * s_in, **extra_args)
|
||||||
d = to_d(x, old_sigma, denoised)
|
d = to_d(x, old_sigma, denoised)
|
||||||
@ -30,6 +33,7 @@ def restart_sampler(model, x, sigmas, extra_args=None, callback=None, disable=No
|
|||||||
x = x + d_prime * dt
|
x = x + d_prime * dt
|
||||||
step_id += 1
|
step_id += 1
|
||||||
return x
|
return x
|
||||||
|
|
||||||
steps = sigmas.shape[0] - 1
|
steps = sigmas.shape[0] - 1
|
||||||
if restart_list is None:
|
if restart_list is None:
|
||||||
if steps >= 20:
|
if steps >= 20:
|
||||||
@ -41,11 +45,10 @@ def restart_sampler(model, x, sigmas, extra_args=None, callback=None, disable=No
|
|||||||
sigmas = get_sigmas_karras(steps - restart_steps * restart_times, sigmas[-2].item(), sigmas[0].item(), device=sigmas.device)
|
sigmas = get_sigmas_karras(steps - restart_steps * restart_times, sigmas[-2].item(), sigmas[0].item(), device=sigmas.device)
|
||||||
restart_list = {0.1: [restart_steps + 1, restart_times, 2]}
|
restart_list = {0.1: [restart_steps + 1, restart_times, 2]}
|
||||||
else:
|
else:
|
||||||
restart_list = dict()
|
restart_list = {}
|
||||||
temp_list = dict()
|
|
||||||
for key, value in restart_list.items():
|
restart_list = {int(torch.argmin(abs(sigmas - key), dim=0)): value for key, value in restart_list.items()}
|
||||||
temp_list[int(torch.argmin(abs(sigmas - key), dim=0))] = value
|
|
||||||
restart_list = temp_list
|
|
||||||
step_list = []
|
step_list = []
|
||||||
for i in range(len(sigmas) - 1):
|
for i in range(len(sigmas) - 1):
|
||||||
step_list.append((sigmas[i], sigmas[i + 1]))
|
step_list.append((sigmas[i], sigmas[i + 1]))
|
||||||
@ -58,13 +61,14 @@ def restart_sampler(model, x, sigmas, extra_args=None, callback=None, disable=No
|
|||||||
while restart_times > 0:
|
while restart_times > 0:
|
||||||
restart_times -= 1
|
restart_times -= 1
|
||||||
step_list.extend([(old_sigma, new_sigma) for (old_sigma, new_sigma) in zip(sigma_restart[:-1], sigma_restart[1:])])
|
step_list.extend([(old_sigma, new_sigma) for (old_sigma, new_sigma) in zip(sigma_restart[:-1], sigma_restart[1:])])
|
||||||
last_sigma = None
|
|
||||||
for i in trange(len(step_list), disable=disable):
|
|
||||||
if last_sigma is None:
|
|
||||||
last_sigma = step_list[i][0]
|
|
||||||
elif last_sigma < step_list[i][0]:
|
|
||||||
x = x + k_diffusion.sampling.torch.randn_like(x) * s_noise * (step_list[i][0] ** 2 - last_sigma ** 2) ** 0.5
|
|
||||||
x = heun_step(x, step_list[i][0], step_list[i][1])
|
|
||||||
last_sigma = step_list[i][1]
|
|
||||||
return x
|
|
||||||
|
|
||||||
|
last_sigma = None
|
||||||
|
for old_sigma, new_sigma in tqdm.tqdm(step_list, disable=disable):
|
||||||
|
if last_sigma is None:
|
||||||
|
last_sigma = old_sigma
|
||||||
|
elif last_sigma < old_sigma:
|
||||||
|
x = x + k_diffusion.sampling.torch.randn_like(x) * s_noise * (old_sigma ** 2 - last_sigma ** 2) ** 0.5
|
||||||
|
x = heun_step(x, old_sigma, new_sigma)
|
||||||
|
last_sigma = new_sigma
|
||||||
|
|
||||||
|
return x
|
||||||
|
Loading…
Reference in New Issue
Block a user