mirror of
https://github.com/AUTOMATIC1111/stable-diffusion-webui.git
synced 2025-01-19 21:00:14 +08:00
Add upscaler to img2img
This commit is contained in:
parent
68999d0b15
commit
7ea5d395c4
@ -282,8 +282,8 @@ Steps: 20, Sampler: Euler a, CFG scale: 7, Seed: 965400086, Size: 512x512, Model
|
|||||||
res["Hires resize-1"] = 0
|
res["Hires resize-1"] = 0
|
||||||
res["Hires resize-2"] = 0
|
res["Hires resize-2"] = 0
|
||||||
|
|
||||||
if "Img2Img Upscale" not in res:
|
if "Img2Img upscale" not in res:
|
||||||
res["Img2Img Upscale"] = 1
|
res["Img2Img upscale"] = 1
|
||||||
|
|
||||||
restore_old_hires_fix_params(res)
|
restore_old_hires_fix_params(res)
|
||||||
|
|
||||||
|
@ -78,7 +78,7 @@ def process_batch(p, input_dir, output_dir, inpaint_mask_dir, args):
|
|||||||
processed_image.save(os.path.join(output_dir, filename))
|
processed_image.save(os.path.join(output_dir, filename))
|
||||||
|
|
||||||
|
|
||||||
def img2img(id_task: str, mode: int, prompt: str, negative_prompt: str, prompt_styles, init_img, sketch, init_img_with_mask, inpaint_color_sketch, inpaint_color_sketch_orig, init_img_inpaint, init_mask_inpaint, steps: int, sampler_index: int, mask_blur: int, mask_alpha: float, inpainting_fill: int, restore_faces: bool, tiling: bool, n_iter: int, batch_size: int, cfg_scale: float, image_cfg_scale: float, denoising_strength: float, seed: int, subseed: int, subseed_strength: float, seed_resize_from_h: int, seed_resize_from_w: int, seed_enable_extras: bool, height: int, width: int, scale: float, resize_mode: int, inpaint_full_res: bool, inpaint_full_res_padding: int, inpainting_mask_invert: int, img2img_batch_input_dir: str, img2img_batch_output_dir: str, img2img_batch_inpaint_mask_dir: str, override_settings_texts, *args):
|
def img2img(id_task: str, mode: int, prompt: str, negative_prompt: str, prompt_styles, init_img, sketch, init_img_with_mask, inpaint_color_sketch, inpaint_color_sketch_orig, init_img_inpaint, init_mask_inpaint, steps: int, sampler_index: int, mask_blur: int, mask_alpha: float, inpainting_fill: int, restore_faces: bool, tiling: bool, n_iter: int, batch_size: int, cfg_scale: float, image_cfg_scale: float, denoising_strength: float, seed: int, subseed: int, subseed_strength: float, seed_resize_from_h: int, seed_resize_from_w: int, seed_enable_extras: bool, height: int, width: int, scale: float, upscaler: str, resize_mode: int, inpaint_full_res: bool, inpaint_full_res_padding: int, inpainting_mask_invert: int, img2img_batch_input_dir: str, img2img_batch_output_dir: str, img2img_batch_inpaint_mask_dir: str, override_settings_texts, *args):
|
||||||
override_settings = create_override_settings_dict(override_settings_texts)
|
override_settings = create_override_settings_dict(override_settings_texts)
|
||||||
|
|
||||||
is_batch = mode == 5
|
is_batch = mode == 5
|
||||||
@ -150,6 +150,7 @@ def img2img(id_task: str, mode: int, prompt: str, negative_prompt: str, prompt_s
|
|||||||
inpainting_mask_invert=inpainting_mask_invert,
|
inpainting_mask_invert=inpainting_mask_invert,
|
||||||
override_settings=override_settings,
|
override_settings=override_settings,
|
||||||
scale=scale,
|
scale=scale,
|
||||||
|
upscaler=upscaler,
|
||||||
)
|
)
|
||||||
|
|
||||||
p.scripts = modules.scripts.scripts_txt2img
|
p.scripts = modules.scripts.scripts_txt2img
|
||||||
|
@ -929,7 +929,7 @@ class StableDiffusionProcessingTxt2Img(StableDiffusionProcessing):
|
|||||||
class StableDiffusionProcessingImg2Img(StableDiffusionProcessing):
|
class StableDiffusionProcessingImg2Img(StableDiffusionProcessing):
|
||||||
sampler = None
|
sampler = None
|
||||||
|
|
||||||
def __init__(self, init_images: Optional[list] = None, resize_mode: int = 0, denoising_strength: float = 0.75, image_cfg_scale: Optional[float] = None, mask: Any = None, mask_blur: int = 4, inpainting_fill: int = 0, inpaint_full_res: bool = True, inpaint_full_res_padding: int = 0, inpainting_mask_invert: int = 0, initial_noise_multiplier: Optional[float] = None, scale: float = 0, **kwargs):
|
def __init__(self, init_images: Optional[list] = None, resize_mode: int = 0, denoising_strength: float = 0.75, image_cfg_scale: Optional[float] = None, mask: Any = None, mask_blur: int = 4, inpainting_fill: int = 0, inpaint_full_res: bool = True, inpaint_full_res_padding: int = 0, inpainting_mask_invert: int = 0, initial_noise_multiplier: Optional[float] = None, scale: float = 0, upscaler: Optional[str] = None, **kwargs):
|
||||||
super().__init__(**kwargs)
|
super().__init__(**kwargs)
|
||||||
|
|
||||||
self.init_images = init_images
|
self.init_images = init_images
|
||||||
@ -950,6 +950,7 @@ class StableDiffusionProcessingImg2Img(StableDiffusionProcessing):
|
|||||||
self.nmask = None
|
self.nmask = None
|
||||||
self.image_conditioning = None
|
self.image_conditioning = None
|
||||||
self.scale = scale
|
self.scale = scale
|
||||||
|
self.upscaler = upscaler
|
||||||
|
|
||||||
def get_final_size(self):
|
def get_final_size(self):
|
||||||
if self.scale > 1:
|
if self.scale > 1:
|
||||||
@ -966,7 +967,16 @@ class StableDiffusionProcessingImg2Img(StableDiffusionProcessing):
|
|||||||
crop_region = None
|
crop_region = None
|
||||||
|
|
||||||
if self.scale > 1:
|
if self.scale > 1:
|
||||||
self.extra_generation_params["Img2Img Upscale"] = self.scale
|
self.extra_generation_params["Img2Img upscale"] = self.scale
|
||||||
|
|
||||||
|
# Non-latent upscalers are run before sampling
|
||||||
|
# Latent upscalers are run during sampling
|
||||||
|
init_upscaler = None
|
||||||
|
if self.upscaler is not None:
|
||||||
|
self.extra_generation_params["Img2Img upscaler"] = self.upscaler
|
||||||
|
if self.upscaler not in shared.latent_upscale_modes:
|
||||||
|
assert len([x for x in shared.sd_upscalers if x.name == self.upscaler]) > 0, f"could not find upscaler named {self.upscaler}"
|
||||||
|
init_upscaler = self.upscaler
|
||||||
|
|
||||||
self.width, self.height = self.get_final_size()
|
self.width, self.height = self.get_final_size()
|
||||||
|
|
||||||
@ -992,7 +1002,7 @@ class StableDiffusionProcessingImg2Img(StableDiffusionProcessing):
|
|||||||
image_mask = images.resize_image(2, mask, self.width, self.height)
|
image_mask = images.resize_image(2, mask, self.width, self.height)
|
||||||
self.paste_to = (x1, y1, x2-x1, y2-y1)
|
self.paste_to = (x1, y1, x2-x1, y2-y1)
|
||||||
else:
|
else:
|
||||||
image_mask = images.resize_image(self.resize_mode, image_mask, self.width, self.height)
|
image_mask = images.resize_image(self.resize_mode, image_mask, self.width, self.height, init_upscaler)
|
||||||
np_mask = np.array(image_mask)
|
np_mask = np.array(image_mask)
|
||||||
np_mask = np.clip((np_mask.astype(np.float32)) * 2, 0, 255).astype(np.uint8)
|
np_mask = np.clip((np_mask.astype(np.float32)) * 2, 0, 255).astype(np.uint8)
|
||||||
self.mask_for_overlay = Image.fromarray(np_mask)
|
self.mask_for_overlay = Image.fromarray(np_mask)
|
||||||
@ -1009,7 +1019,7 @@ class StableDiffusionProcessingImg2Img(StableDiffusionProcessing):
|
|||||||
image = images.flatten(img, opts.img2img_background_color)
|
image = images.flatten(img, opts.img2img_background_color)
|
||||||
|
|
||||||
if crop_region is None and self.resize_mode != 3:
|
if crop_region is None and self.resize_mode != 3:
|
||||||
image = images.resize_image(self.resize_mode, image, self.width, self.height)
|
image = images.resize_image(self.resize_mode, image, self.width, self.height, init_upscaler)
|
||||||
|
|
||||||
if image_mask is not None:
|
if image_mask is not None:
|
||||||
image_masked = Image.new('RGBa', (image.width, image.height))
|
image_masked = Image.new('RGBa', (image.width, image.height))
|
||||||
@ -1054,8 +1064,9 @@ class StableDiffusionProcessingImg2Img(StableDiffusionProcessing):
|
|||||||
|
|
||||||
self.init_latent = self.sd_model.get_first_stage_encoding(self.sd_model.encode_first_stage(image))
|
self.init_latent = self.sd_model.get_first_stage_encoding(self.sd_model.encode_first_stage(image))
|
||||||
|
|
||||||
if self.resize_mode == 3:
|
latent_scale_mode = shared.latent_upscale_modes.get(self.upscaler, None) if self.upscaler is not None else shared.latent_upscale_modes.get(shared.latent_upscale_default_mode, "nearest")
|
||||||
self.init_latent = torch.nn.functional.interpolate(self.init_latent, size=(self.height // opt_f, self.width // opt_f), mode="bilinear")
|
if latent_scale_mode is not None:
|
||||||
|
self.init_latent = torch.nn.functional.interpolate(self.init_latent, size=(self.height // opt_f, self.width // opt_f), mode=latent_scale_mode["mode"], antialias=latent_scale_mode["antialias"])
|
||||||
|
|
||||||
if image_mask is not None:
|
if image_mask is not None:
|
||||||
init_mask = latent_mask
|
init_mask = latent_mask
|
||||||
|
@ -767,7 +767,7 @@ def create_ui():
|
|||||||
)
|
)
|
||||||
|
|
||||||
with FormRow():
|
with FormRow():
|
||||||
resize_mode = gr.Radio(label="Resize mode", elem_id="resize_mode", choices=["Just resize", "Crop and resize", "Resize and fill", "Just resize (latent upscale)"], type="index", value="Just resize")
|
resize_mode = gr.Radio(label="Resize mode", elem_id="resize_mode", choices=["Just resize", "Crop and resize", "Resize and fill"], type="index", value="Just resize")
|
||||||
|
|
||||||
for category in ordered_ui_categories():
|
for category in ordered_ui_categories():
|
||||||
if category == "sampler":
|
if category == "sampler":
|
||||||
@ -797,6 +797,8 @@ def create_ui():
|
|||||||
with FormRow():
|
with FormRow():
|
||||||
cfg_scale = gr.Slider(minimum=1.0, maximum=30.0, step=0.5, label='CFG Scale', value=7.0, elem_id="img2img_cfg_scale")
|
cfg_scale = gr.Slider(minimum=1.0, maximum=30.0, step=0.5, label='CFG Scale', value=7.0, elem_id="img2img_cfg_scale")
|
||||||
image_cfg_scale = gr.Slider(minimum=0, maximum=3.0, step=0.05, label='Image CFG Scale', value=1.5, elem_id="img2img_image_cfg_scale", visible=shared.sd_model and shared.sd_model.cond_stage_key == "edit")
|
image_cfg_scale = gr.Slider(minimum=0, maximum=3.0, step=0.05, label='Image CFG Scale', value=1.5, elem_id="img2img_image_cfg_scale", visible=shared.sd_model and shared.sd_model.cond_stage_key == "edit")
|
||||||
|
with FormRow():
|
||||||
|
upscaler = gr.Dropdown(label="Upscaler", elem_id="img2img_upscaler", choices=[*shared.latent_upscale_modes, *[x.name for x in shared.sd_upscalers]], value=shared.latent_upscale_default_mode)
|
||||||
denoising_strength = gr.Slider(minimum=0.0, maximum=1.0, step=0.01, label='Denoising strength', value=0.75, elem_id="img2img_denoising_strength")
|
denoising_strength = gr.Slider(minimum=0.0, maximum=1.0, step=0.01, label='Denoising strength', value=0.75, elem_id="img2img_denoising_strength")
|
||||||
|
|
||||||
elif category == "seed":
|
elif category == "seed":
|
||||||
@ -934,6 +936,7 @@ def create_ui():
|
|||||||
height,
|
height,
|
||||||
width,
|
width,
|
||||||
scale,
|
scale,
|
||||||
|
upscaler,
|
||||||
resize_mode,
|
resize_mode,
|
||||||
inpaint_full_res,
|
inpaint_full_res,
|
||||||
inpaint_full_res_padding,
|
inpaint_full_res_padding,
|
||||||
@ -1019,7 +1022,8 @@ def create_ui():
|
|||||||
(seed, "Seed"),
|
(seed, "Seed"),
|
||||||
(width, "Size-1"),
|
(width, "Size-1"),
|
||||||
(height, "Size-2"),
|
(height, "Size-2"),
|
||||||
(scale, "Img2Img Upscale"),
|
(scale, "Img2Img upscale"),
|
||||||
|
(upscaler, "Img2Img upscaler"),
|
||||||
(batch_size, "Batch size"),
|
(batch_size, "Batch size"),
|
||||||
(subseed, "Variation seed"),
|
(subseed, "Variation seed"),
|
||||||
(subseed_strength, "Variation seed strength"),
|
(subseed_strength, "Variation seed strength"),
|
||||||
|
@ -220,6 +220,7 @@ axis_options = [
|
|||||||
AxisOption("Clip skip", int, apply_clip_skip),
|
AxisOption("Clip skip", int, apply_clip_skip),
|
||||||
AxisOption("Denoising", float, apply_field("denoising_strength")),
|
AxisOption("Denoising", float, apply_field("denoising_strength")),
|
||||||
AxisOptionTxt2Img("Hires upscaler", str, apply_field("hr_upscaler"), choices=lambda: [*shared.latent_upscale_modes, *[x.name for x in shared.sd_upscalers]]),
|
AxisOptionTxt2Img("Hires upscaler", str, apply_field("hr_upscaler"), choices=lambda: [*shared.latent_upscale_modes, *[x.name for x in shared.sd_upscalers]]),
|
||||||
|
AxisOptionImg2Img("Upscaler", str, apply_field("upscaler"), choices=lambda: [*shared.latent_upscale_modes, *[x.name for x in shared.sd_upscalers]]),
|
||||||
AxisOptionImg2Img("Cond. Image Mask Weight", float, apply_field("inpainting_mask_weight")),
|
AxisOptionImg2Img("Cond. Image Mask Weight", float, apply_field("inpainting_mask_weight")),
|
||||||
AxisOption("VAE", str, apply_vae, cost=0.7, choices=lambda: list(sd_vae.vae_dict)),
|
AxisOption("VAE", str, apply_vae, cost=0.7, choices=lambda: list(sd_vae.vae_dict)),
|
||||||
AxisOption("Styles", str, apply_styles, choices=lambda: list(shared.prompt_styles.styles)),
|
AxisOption("Styles", str, apply_styles, choices=lambda: list(shared.prompt_styles.styles)),
|
||||||
|
Loading…
Reference in New Issue
Block a user