mirror of
https://github.com/AUTOMATIC1111/stable-diffusion-webui.git
synced 2025-01-17 03:40:14 +08:00
Added prompt matrix to img2img
refactoring: separated duplicate code from img2img and txt2img into a single function
This commit is contained in:
parent
cb118c4036
commit
aa67540eba
236
webui.py
236
webui.py
@ -97,16 +97,21 @@ class KDiffusionSampler:
|
|||||||
sigmas = self.model_wrap.get_sigmas(S)
|
sigmas = self.model_wrap.get_sigmas(S)
|
||||||
x = x_T * sigmas[0]
|
x = x_T * sigmas[0]
|
||||||
model_wrap_cfg = CFGDenoiser(self.model_wrap)
|
model_wrap_cfg = CFGDenoiser(self.model_wrap)
|
||||||
|
|
||||||
samples_ddim = K.sampling.sample_lms(model_wrap_cfg, x, sigmas, extra_args={'cond': conditioning, 'uncond': unconditional_conditioning, 'cond_scale': unconditional_guidance_scale}, disable=False)
|
samples_ddim = K.sampling.sample_lms(model_wrap_cfg, x, sigmas, extra_args={'cond': conditioning, 'uncond': unconditional_conditioning, 'cond_scale': unconditional_guidance_scale}, disable=False)
|
||||||
|
|
||||||
return samples_ddim, None
|
return samples_ddim, None
|
||||||
|
|
||||||
|
|
||||||
def create_random_tensors(seed, shape, count, same_seed=False):
|
def create_random_tensors(shape, seeds):
|
||||||
xs = []
|
xs = []
|
||||||
for i in range(count):
|
for seed in seeds:
|
||||||
current_seed = seed if same_seed else seed + i
|
torch.manual_seed(seed)
|
||||||
torch.manual_seed(current_seed)
|
|
||||||
|
# randn results depend on device; gpu and cpu get different results for same seed;
|
||||||
|
# the way I see it, it's better to do this on CPU, so that everyone gets same result;
|
||||||
|
# but the original script had it like this so i do not dare change it for now because
|
||||||
|
# it will break everyone's seeds.
|
||||||
xs.append(torch.randn(shape, device=device))
|
xs.append(torch.randn(shape, device=device))
|
||||||
x = torch.stack(xs)
|
x = torch.stack(xs)
|
||||||
return x
|
return x
|
||||||
@ -190,7 +195,7 @@ def draw_prompt_matrix(im, width, height, all_prompts):
|
|||||||
color_inactive = (153, 153, 153)
|
color_inactive = (153, 153, 153)
|
||||||
|
|
||||||
pad_top = height // 4
|
pad_top = height // 4
|
||||||
pad_left = width * 3 // 4
|
pad_left = width * 3 // 4 if len(all_prompts) > 2 else 0
|
||||||
|
|
||||||
cols = im.width // width
|
cols = im.width // width
|
||||||
rows = im.height // height
|
rows = im.height // height
|
||||||
@ -226,63 +231,53 @@ def draw_prompt_matrix(im, width, height, all_prompts):
|
|||||||
return result
|
return result
|
||||||
|
|
||||||
|
|
||||||
def dream(prompt: str, ddim_steps: int, sampler_name: str, use_GFPGAN: bool, prompt_matrix: bool, ddim_eta: float, n_iter: int, n_samples: int, cfg_scale: float, seed: int, height: int, width: int):
|
def process_images(outpath, func_init, func_sample, prompt, seed, sampler_name, batch_size, n_iter, steps, cfg_scale, width, height, prompt_matrix, use_GFPGAN):
|
||||||
torch.cuda.empty_cache()
|
"""this is the main loop that both txt2img and img2img use; it calls func_init once inside all the scopes and func_sample once per batch"""
|
||||||
|
|
||||||
outpath = opt.outdir or "outputs/txt2img-samples"
|
assert prompt is not None
|
||||||
|
torch.cuda.empty_cache()
|
||||||
|
|
||||||
if seed == -1:
|
if seed == -1:
|
||||||
seed = random.randrange(4294967294)
|
seed = random.randrange(4294967294)
|
||||||
|
|
||||||
seed = int(seed)
|
seed = int(seed)
|
||||||
keep_same_seed = False
|
|
||||||
|
|
||||||
if sampler_name == 'PLMS':
|
|
||||||
sampler = PLMSSampler(model)
|
|
||||||
elif sampler_name == 'DDIM':
|
|
||||||
sampler = DDIMSampler(model)
|
|
||||||
elif sampler_name == 'k-diffusion':
|
|
||||||
sampler = KDiffusionSampler(model)
|
|
||||||
else:
|
|
||||||
raise Exception("Unknown sampler: " + sampler_name)
|
|
||||||
|
|
||||||
os.makedirs(outpath, exist_ok=True)
|
os.makedirs(outpath, exist_ok=True)
|
||||||
|
|
||||||
batch_size = n_samples
|
|
||||||
|
|
||||||
assert prompt is not None
|
|
||||||
prompts = batch_size * [prompt]
|
|
||||||
|
|
||||||
sample_path = os.path.join(outpath, "samples")
|
sample_path = os.path.join(outpath, "samples")
|
||||||
os.makedirs(sample_path, exist_ok=True)
|
os.makedirs(sample_path, exist_ok=True)
|
||||||
base_count = len(os.listdir(sample_path))
|
base_count = len(os.listdir(sample_path))
|
||||||
grid_count = len(os.listdir(outpath)) - 1
|
grid_count = len(os.listdir(outpath)) - 1
|
||||||
|
|
||||||
prompt_matrix_prompts = []
|
|
||||||
prompt_matrix_parts = []
|
prompt_matrix_parts = []
|
||||||
if prompt_matrix:
|
if prompt_matrix:
|
||||||
keep_same_seed = True
|
all_prompts = []
|
||||||
|
|
||||||
prompt_matrix_parts = prompt.split("|")
|
prompt_matrix_parts = prompt.split("|")
|
||||||
combination_count = 2 ** (len(prompt_matrix_parts)-1)
|
combination_count = 2 ** (len(prompt_matrix_parts) - 1)
|
||||||
for combination_num in range(combination_count):
|
for combination_num in range(combination_count):
|
||||||
current = prompt_matrix_parts[0]
|
current = prompt_matrix_parts[0]
|
||||||
|
|
||||||
for n, text in enumerate(prompt_matrix_parts[1:]):
|
for n, text in enumerate(prompt_matrix_parts[1:]):
|
||||||
if combination_num & (2**n) > 0:
|
if combination_num & (2 ** n) > 0:
|
||||||
current += ("" if text.strip().startswith(",") else ", ") + text
|
current += ("" if text.strip().startswith(",") else ", ") + text
|
||||||
|
|
||||||
prompt_matrix_prompts.append(current)
|
all_prompts.append(current)
|
||||||
n_iter = math.ceil(len(prompt_matrix_prompts) / batch_size)
|
|
||||||
|
|
||||||
print(f"Prompt matrix will create {len(prompt_matrix_prompts)} images using a total of {n_iter} batches.")
|
n_iter = math.ceil(len(all_prompts) / batch_size)
|
||||||
|
all_seeds = len(all_prompts) * [seed]
|
||||||
|
|
||||||
|
print(f"Prompt matrix will create {len(all_prompts)} images using a total of {n_iter} batches.")
|
||||||
|
else:
|
||||||
|
all_prompts = batch_size * n_iter * [prompt]
|
||||||
|
all_seeds = [seed + x for x in range(len(all_prompts))]
|
||||||
|
|
||||||
precision_scope = autocast if opt.precision == "autocast" else nullcontext
|
precision_scope = autocast if opt.precision == "autocast" else nullcontext
|
||||||
output_images = []
|
output_images = []
|
||||||
with torch.no_grad(), precision_scope("cuda"), model.ema_scope():
|
with torch.no_grad(), precision_scope("cuda"), model.ema_scope():
|
||||||
|
init_data = func_init()
|
||||||
|
|
||||||
for n in range(n_iter):
|
for n in range(n_iter):
|
||||||
if prompt_matrix:
|
prompts = all_prompts[n * batch_size:(n + 1) * batch_size]
|
||||||
prompts = prompt_matrix_prompts[n*batch_size:(n+1)*batch_size]
|
seeds = all_seeds[n * batch_size:(n + 1) * batch_size]
|
||||||
|
|
||||||
uc = None
|
uc = None
|
||||||
if cfg_scale != 1.0:
|
if cfg_scale != 1.0:
|
||||||
@ -290,14 +285,11 @@ def dream(prompt: str, ddim_steps: int, sampler_name: str, use_GFPGAN: bool, pro
|
|||||||
if isinstance(prompts, tuple):
|
if isinstance(prompts, tuple):
|
||||||
prompts = list(prompts)
|
prompts = list(prompts)
|
||||||
c = model.get_learned_conditioning(prompts)
|
c = model.get_learned_conditioning(prompts)
|
||||||
shape = [opt_C, height // opt_f, width // opt_f]
|
|
||||||
|
|
||||||
batch_seed = seed if keep_same_seed else seed + n * len(prompts)
|
|
||||||
|
|
||||||
# we manually generate all input noises because each one should have a specific seed
|
# we manually generate all input noises because each one should have a specific seed
|
||||||
x = create_random_tensors(batch_seed, shape, count=len(prompts), same_seed=keep_same_seed)
|
x = create_random_tensors([opt_C, height // opt_f, width // opt_f], seeds=seeds)
|
||||||
|
|
||||||
samples_ddim, _ = sampler.sample(S=ddim_steps, conditioning=c, batch_size=len(prompts), shape=shape, verbose=False, unconditional_guidance_scale=cfg_scale, unconditional_conditioning=uc, eta=ddim_eta, x_T=x)
|
samples_ddim = func_sample(init_data=init_data, x=x, conditioning=c, unconditional_conditioning=uc)
|
||||||
|
|
||||||
x_samples_ddim = model.decode_first_stage(samples_ddim)
|
x_samples_ddim = model.decode_first_stage(samples_ddim)
|
||||||
x_samples_ddim = torch.clamp((x_samples_ddim + 1.0) / 2.0, min=0.0, max=1.0)
|
x_samples_ddim = torch.clamp((x_samples_ddim + 1.0) / 2.0, min=0.0, max=1.0)
|
||||||
@ -312,7 +304,7 @@ def dream(prompt: str, ddim_steps: int, sampler_name: str, use_GFPGAN: bool, pro
|
|||||||
x_sample = restored_img
|
x_sample = restored_img
|
||||||
|
|
||||||
image = Image.fromarray(x_sample)
|
image = Image.fromarray(x_sample)
|
||||||
filename = f"{base_count:05}-{seed if keep_same_seed else batch_seed + i}_{prompts[i].replace(' ', '_').translate({ord(x): '' for x in invalid_filename_chars})[:128]}.png"
|
filename = f"{base_count:05}-{seeds[i]}_{prompts[i].replace(' ', '_').translate({ord(x): '' for x in invalid_filename_chars})[:128]}.png"
|
||||||
|
|
||||||
image.save(os.path.join(sample_path, filename))
|
image.save(os.path.join(sample_path, filename))
|
||||||
|
|
||||||
@ -323,21 +315,68 @@ def dream(prompt: str, ddim_steps: int, sampler_name: str, use_GFPGAN: bool, pro
|
|||||||
grid = image_grid(output_images, batch_size, round_down=prompt_matrix)
|
grid = image_grid(output_images, batch_size, round_down=prompt_matrix)
|
||||||
|
|
||||||
if prompt_matrix:
|
if prompt_matrix:
|
||||||
|
|
||||||
|
try:
|
||||||
grid = draw_prompt_matrix(grid, width, height, prompt_matrix_parts)
|
grid = draw_prompt_matrix(grid, width, height, prompt_matrix_parts)
|
||||||
|
except Exception:
|
||||||
|
import traceback
|
||||||
|
print("Error creating prompt_matrix text:", file=sys.stderr)
|
||||||
|
print(traceback.format_exc(), file=sys.stderr)
|
||||||
|
|
||||||
output_images.insert(0, grid)
|
output_images.insert(0, grid)
|
||||||
|
|
||||||
grid.save(os.path.join(outpath, f'grid-{grid_count:04}.png'))
|
grid.save(os.path.join(outpath, f'grid-{grid_count:04}.png'))
|
||||||
grid_count += 1
|
grid_count += 1
|
||||||
|
|
||||||
del sampler
|
|
||||||
|
|
||||||
info = f"""
|
info = f"""
|
||||||
{prompt}
|
{prompt}
|
||||||
Steps: {ddim_steps}, Sampler: {sampler_name}, CFG scale: {cfg_scale}, Seed: {seed}{', GFPGAN' if use_GFPGAN and GFPGAN is not None else ''}
|
Steps: {steps}, Sampler: {sampler_name}, CFG scale: {cfg_scale}, Seed: {seed}{', GFPGAN' if use_GFPGAN and GFPGAN is not None else ''}
|
||||||
""".strip()
|
""".strip()
|
||||||
|
|
||||||
return output_images, seed, info
|
return output_images, seed, info
|
||||||
|
|
||||||
|
|
||||||
|
def txt2img(prompt: str, ddim_steps: int, sampler_name: str, use_GFPGAN: bool, prompt_matrix: bool, ddim_eta: float, n_iter: int, batch_size: int, cfg_scale: float, seed: int, height: int, width: int):
|
||||||
|
outpath = opt.outdir or "outputs/txt2img-samples"
|
||||||
|
|
||||||
|
if sampler_name == 'PLMS':
|
||||||
|
sampler = PLMSSampler(model)
|
||||||
|
elif sampler_name == 'DDIM':
|
||||||
|
sampler = DDIMSampler(model)
|
||||||
|
elif sampler_name == 'k-diffusion':
|
||||||
|
sampler = KDiffusionSampler(model)
|
||||||
|
else:
|
||||||
|
raise Exception("Unknown sampler: " + sampler_name)
|
||||||
|
|
||||||
|
def init():
|
||||||
|
pass
|
||||||
|
|
||||||
|
def sample(init_data, x, conditioning, unconditional_conditioning):
|
||||||
|
samples_ddim, _ = sampler.sample(S=ddim_steps, conditioning=conditioning, batch_size=int(x.shape[0]), shape=x[0].shape, verbose=False, unconditional_guidance_scale=cfg_scale, unconditional_conditioning=unconditional_conditioning, eta=ddim_eta, x_T=x)
|
||||||
|
return samples_ddim
|
||||||
|
|
||||||
|
output_images, seed, info = process_images(
|
||||||
|
outpath=outpath,
|
||||||
|
func_init=init,
|
||||||
|
func_sample=sample,
|
||||||
|
prompt=prompt,
|
||||||
|
seed=seed,
|
||||||
|
sampler_name=sampler_name,
|
||||||
|
batch_size=batch_size,
|
||||||
|
n_iter=n_iter,
|
||||||
|
steps=ddim_steps,
|
||||||
|
cfg_scale=cfg_scale,
|
||||||
|
width=width,
|
||||||
|
height=height,
|
||||||
|
prompt_matrix=prompt_matrix,
|
||||||
|
use_GFPGAN=use_GFPGAN
|
||||||
|
)
|
||||||
|
|
||||||
|
del sampler
|
||||||
|
|
||||||
|
return output_images, seed, info
|
||||||
|
|
||||||
|
|
||||||
class Flagging(gr.FlaggingCallback):
|
class Flagging(gr.FlaggingCallback):
|
||||||
|
|
||||||
def setup(self, components, flagging_dir: str):
|
def setup(self, components, flagging_dir: str):
|
||||||
@ -348,7 +387,7 @@ class Flagging(gr.FlaggingCallback):
|
|||||||
|
|
||||||
os.makedirs("log/images", exist_ok=True)
|
os.makedirs("log/images", exist_ok=True)
|
||||||
|
|
||||||
# those must match the "dream" function
|
# those must match the "txt2img" function
|
||||||
prompt, ddim_steps, sampler_name, use_GFPGAN, prompt_matrix, ddim_eta, n_iter, n_samples, cfg_scale, request_seed, height, width, images, seed, comment = flag_data
|
prompt, ddim_steps, sampler_name, use_GFPGAN, prompt_matrix, ddim_eta, n_iter, n_samples, cfg_scale, request_seed, height, width, images, seed, comment = flag_data
|
||||||
|
|
||||||
filenames = []
|
filenames = []
|
||||||
@ -379,8 +418,8 @@ class Flagging(gr.FlaggingCallback):
|
|||||||
print("Logged:", filenames[0])
|
print("Logged:", filenames[0])
|
||||||
|
|
||||||
|
|
||||||
dream_interface = gr.Interface(
|
txt2img_interface = gr.Interface(
|
||||||
dream,
|
txt2img,
|
||||||
inputs=[
|
inputs=[
|
||||||
gr.Textbox(label="Prompt", placeholder="A corgi wearing a top hat as an oil painting.", lines=1),
|
gr.Textbox(label="Prompt", placeholder="A corgi wearing a top hat as an oil painting.", lines=1),
|
||||||
gr.Slider(minimum=1, maximum=150, step=1, label="Sampling Steps", value=50),
|
gr.Slider(minimum=1, maximum=150, step=1, label="Sampling Steps", value=50),
|
||||||
@ -406,104 +445,70 @@ dream_interface = gr.Interface(
|
|||||||
)
|
)
|
||||||
|
|
||||||
|
|
||||||
def translation(prompt: str, init_img, ddim_steps: int, use_GFPGAN: bool, ddim_eta: float, n_iter: int, n_samples: int, cfg_scale: float, denoising_strength: float, seed: int, height: int, width: int):
|
def img2img(prompt: str, init_img, ddim_steps: int, use_GFPGAN: bool, prompt_matrix, n_iter: int, batch_size: int, cfg_scale: float, denoising_strength: float, seed: int, height: int, width: int):
|
||||||
torch.cuda.empty_cache()
|
|
||||||
|
|
||||||
outpath = opt.outdir or "outputs/img2img-samples"
|
outpath = opt.outdir or "outputs/img2img-samples"
|
||||||
|
|
||||||
if seed == -1:
|
sampler = KDiffusionSampler(model)
|
||||||
seed = random.randrange(4294967294)
|
|
||||||
|
|
||||||
model_wrap = K.external.CompVisDenoiser(model)
|
assert 0. <= denoising_strength <= 1., 'can only work with strength in [0.0, 1.0]'
|
||||||
|
t_enc = int(denoising_strength * ddim_steps)
|
||||||
os.makedirs(outpath, exist_ok=True)
|
|
||||||
|
|
||||||
batch_size = n_samples
|
|
||||||
|
|
||||||
assert prompt is not None
|
|
||||||
|
|
||||||
sample_path = os.path.join(outpath, "samples")
|
|
||||||
os.makedirs(sample_path, exist_ok=True)
|
|
||||||
base_count = len(os.listdir(sample_path))
|
|
||||||
grid_count = len(os.listdir(outpath)) - 1
|
|
||||||
|
|
||||||
|
def init():
|
||||||
image = init_img.convert("RGB")
|
image = init_img.convert("RGB")
|
||||||
image = image.resize((width, height), resample=Image.Resampling.LANCZOS)
|
image = image.resize((width, height), resample=Image.Resampling.LANCZOS)
|
||||||
image = np.array(image).astype(np.float32) / 255.0
|
image = np.array(image).astype(np.float32) / 255.0
|
||||||
image = image[None].transpose(0, 3, 1, 2)
|
image = image[None].transpose(0, 3, 1, 2)
|
||||||
image = torch.from_numpy(image)
|
image = torch.from_numpy(image)
|
||||||
|
|
||||||
output_images = []
|
|
||||||
precision_scope = autocast if opt.precision == "autocast" else nullcontext
|
|
||||||
with torch.no_grad(), precision_scope("cuda"), model.ema_scope():
|
|
||||||
init_image = 2. * image - 1.
|
init_image = 2. * image - 1.
|
||||||
init_image = init_image.to(device)
|
init_image = init_image.to(device)
|
||||||
init_image = repeat(init_image, '1 ... -> b ...', b=batch_size)
|
init_image = repeat(init_image, '1 ... -> b ...', b=batch_size)
|
||||||
init_latent = model.get_first_stage_encoding(model.encode_first_stage(init_image)) # move to latent space
|
init_latent = model.get_first_stage_encoding(model.encode_first_stage(init_image)) # move to latent space
|
||||||
x0 = init_latent
|
|
||||||
|
|
||||||
assert 0. <= denoising_strength <= 1., 'can only work with strength in [0.0, 1.0]'
|
return init_latent,
|
||||||
t_enc = int(denoising_strength * ddim_steps)
|
|
||||||
|
|
||||||
for n in range(n_iter):
|
def sample(init_data, x, conditioning, unconditional_conditioning):
|
||||||
prompts = batch_size * [prompt]
|
x0, = init_data
|
||||||
|
|
||||||
uc = None
|
sigmas = sampler.model_wrap.get_sigmas(ddim_steps)
|
||||||
if cfg_scale != 1.0:
|
noise = x * sigmas[ddim_steps - t_enc - 1]
|
||||||
uc = model.get_learned_conditioning(batch_size * [""])
|
|
||||||
if isinstance(prompts, tuple):
|
|
||||||
prompts = list(prompts)
|
|
||||||
c = model.get_learned_conditioning(prompts)
|
|
||||||
|
|
||||||
batch_seed = seed + n * len(prompts)
|
|
||||||
|
|
||||||
sigmas = model_wrap.get_sigmas(ddim_steps)
|
|
||||||
noise = create_random_tensors(batch_seed, x0.shape[1:], count=len(prompts))
|
|
||||||
noise = noise * sigmas[ddim_steps - t_enc - 1]
|
|
||||||
|
|
||||||
xi = x0 + noise
|
xi = x0 + noise
|
||||||
sigma_sched = sigmas[ddim_steps - t_enc - 1:]
|
sigma_sched = sigmas[ddim_steps - t_enc - 1:]
|
||||||
model_wrap_cfg = CFGDenoiser(model_wrap)
|
model_wrap_cfg = CFGDenoiser(sampler.model_wrap)
|
||||||
extra_args = {'cond': c, 'uncond': uc, 'cond_scale': cfg_scale}
|
samples_ddim = K.sampling.sample_lms(model_wrap_cfg, xi, sigma_sched, extra_args={'cond': conditioning, 'uncond': unconditional_conditioning, 'cond_scale': cfg_scale}, disable=False)
|
||||||
|
return samples_ddim
|
||||||
|
|
||||||
samples_ddim = K.sampling.sample_lms(model_wrap_cfg, xi, sigma_sched, extra_args=extra_args, disable=False)
|
output_images, seed, info = process_images(
|
||||||
x_samples_ddim = model.decode_first_stage(samples_ddim)
|
outpath=outpath,
|
||||||
x_samples_ddim = torch.clamp((x_samples_ddim + 1.0) / 2.0, min=0.0, max=1.0)
|
func_init=init,
|
||||||
|
func_sample=sample,
|
||||||
|
prompt=prompt,
|
||||||
|
seed=seed,
|
||||||
|
sampler_name='k-diffusion',
|
||||||
|
batch_size=batch_size,
|
||||||
|
n_iter=n_iter,
|
||||||
|
steps=ddim_steps,
|
||||||
|
cfg_scale=cfg_scale,
|
||||||
|
width=width,
|
||||||
|
height=height,
|
||||||
|
prompt_matrix=prompt_matrix,
|
||||||
|
use_GFPGAN=use_GFPGAN
|
||||||
|
)
|
||||||
|
|
||||||
if not opt.skip_save or not opt.skip_grid:
|
del sampler
|
||||||
for i, x_sample in enumerate(x_samples_ddim):
|
|
||||||
x_sample = 255. * rearrange(x_sample.cpu().numpy(), 'c h w -> h w c')
|
|
||||||
x_sample = x_sample.astype(np.uint8)
|
|
||||||
|
|
||||||
if use_GFPGAN and GFPGAN is not None:
|
return output_images, seed, info
|
||||||
cropped_faces, restored_faces, restored_img = GFPGAN.enhance(x_sample, has_aligned=False, only_center_face=False, paste_back=True)
|
|
||||||
x_sample = restored_img
|
|
||||||
|
|
||||||
image = Image.fromarray(x_sample)
|
|
||||||
image.save(os.path.join(sample_path, f"{base_count:05}-{batch_seed+i}_{prompt.replace(' ', '_').translate({ord(x): '' for x in invalid_filename_chars})[:128]}.png"))
|
|
||||||
|
|
||||||
output_images.append(image)
|
|
||||||
base_count += 1
|
|
||||||
|
|
||||||
if not opt.skip_grid:
|
|
||||||
# additionally, save as grid
|
|
||||||
grid = image_grid(output_images, batch_size)
|
|
||||||
grid.save(os.path.join(outpath, f'grid-{grid_count:04}.png'))
|
|
||||||
grid_count += 1
|
|
||||||
|
|
||||||
return output_images, seed
|
|
||||||
|
|
||||||
|
|
||||||
# prompt, init_img, ddim_steps, plms, ddim_eta, n_iter, n_samples, cfg_scale, denoising_strength, seed
|
|
||||||
|
|
||||||
img2img_interface = gr.Interface(
|
img2img_interface = gr.Interface(
|
||||||
translation,
|
img2img,
|
||||||
inputs=[
|
inputs=[
|
||||||
gr.Textbox(placeholder="A fantasy landscape, trending on artstation.", lines=1),
|
gr.Textbox(placeholder="A fantasy landscape, trending on artstation.", lines=1),
|
||||||
gr.Image(value="https://raw.githubusercontent.com/CompVis/stable-diffusion/main/assets/stable-samples/img2img/sketch-mountains-input.jpg", source="upload", interactive=True, type="pil"),
|
gr.Image(value="https://raw.githubusercontent.com/CompVis/stable-diffusion/main/assets/stable-samples/img2img/sketch-mountains-input.jpg", source="upload", interactive=True, type="pil"),
|
||||||
gr.Slider(minimum=1, maximum=150, step=1, label="Sampling Steps", value=50),
|
gr.Slider(minimum=1, maximum=150, step=1, label="Sampling Steps", value=50),
|
||||||
gr.Checkbox(label='Fix faces using GFPGAN', value=False, visible=GFPGAN is not None),
|
gr.Checkbox(label='Fix faces using GFPGAN', value=False, visible=GFPGAN is not None),
|
||||||
gr.Slider(minimum=0.0, maximum=1.0, step=0.01, label="DDIM ETA", value=0.0, visible=False),
|
gr.Checkbox(label='Create prompt matrix (separate multiple prompts using |, and get all combinations of them)', value=False),
|
||||||
gr.Slider(minimum=1, maximum=16, step=1, label='Batch count (how many batches of images to generate)', value=1),
|
gr.Slider(minimum=1, maximum=16, step=1, label='Batch count (how many batches of images to generate)', value=1),
|
||||||
gr.Slider(minimum=1, maximum=8, step=1, label='Batch size (how many images are in a batch; memory-hungry)', value=1),
|
gr.Slider(minimum=1, maximum=8, step=1, label='Batch size (how many images are in a batch; memory-hungry)', value=1),
|
||||||
gr.Slider(minimum=1.0, maximum=15.0, step=0.5, label='Classifier Free Guidance Scale (how strongly the image should follow the prompt)', value=7.0),
|
gr.Slider(minimum=1.0, maximum=15.0, step=0.5, label='Classifier Free Guidance Scale (how strongly the image should follow the prompt)', value=7.0),
|
||||||
@ -514,7 +519,8 @@ img2img_interface = gr.Interface(
|
|||||||
],
|
],
|
||||||
outputs=[
|
outputs=[
|
||||||
gr.Gallery(),
|
gr.Gallery(),
|
||||||
gr.Number(label='Seed')
|
gr.Number(label='Seed'),
|
||||||
|
gr.Textbox(label="Copy-paste generation parameters"),
|
||||||
],
|
],
|
||||||
title="Stable Diffusion Image-to-Image",
|
title="Stable Diffusion Image-to-Image",
|
||||||
description="Generate images from images with Stable Diffusion",
|
description="Generate images from images with Stable Diffusion",
|
||||||
@ -522,7 +528,7 @@ img2img_interface = gr.Interface(
|
|||||||
)
|
)
|
||||||
|
|
||||||
interfaces = [
|
interfaces = [
|
||||||
(dream_interface, "txt2img"),
|
(txt2img_interface, "txt2img"),
|
||||||
(img2img_interface, "img2img")
|
(img2img_interface, "img2img")
|
||||||
]
|
]
|
||||||
|
|
||||||
|
Loading…
Reference in New Issue
Block a user