mirror of
https://github.com/AUTOMATIC1111/stable-diffusion-webui.git
synced 2025-01-06 15:15:05 +08:00
Add auto focal point cropping to Preprocess images
This algorithm plots a bunch of points of interest on the source image and averages their locations to find a center. Most points come from OpenCV. One point comes from an entropy model. OpenCV points account for 50% of the weight and the entropy based point is the other 50%. The center of all weighted points is calculated and a bounding box is drawn as close to centered over that point as possible.
This commit is contained in:
parent
f894dd552f
commit
abeec4b630
@ -1,5 +1,7 @@
|
|||||||
import os
|
import os
|
||||||
from PIL import Image, ImageOps
|
import cv2
|
||||||
|
import numpy as np
|
||||||
|
from PIL import Image, ImageOps, ImageDraw
|
||||||
import platform
|
import platform
|
||||||
import sys
|
import sys
|
||||||
import tqdm
|
import tqdm
|
||||||
@ -11,7 +13,7 @@ if cmd_opts.deepdanbooru:
|
|||||||
import modules.deepbooru as deepbooru
|
import modules.deepbooru as deepbooru
|
||||||
|
|
||||||
|
|
||||||
def preprocess(process_src, process_dst, process_width, process_height, process_flip, process_split, process_caption, process_caption_deepbooru=False):
|
def preprocess(process_src, process_dst, process_width, process_height, process_flip, process_split, process_caption, process_caption_deepbooru=False, process_entropy_focus=False):
|
||||||
try:
|
try:
|
||||||
if process_caption:
|
if process_caption:
|
||||||
shared.interrogator.load()
|
shared.interrogator.load()
|
||||||
@ -21,7 +23,7 @@ def preprocess(process_src, process_dst, process_width, process_height, process_
|
|||||||
db_opts[deepbooru.OPT_INCLUDE_RANKS] = False
|
db_opts[deepbooru.OPT_INCLUDE_RANKS] = False
|
||||||
deepbooru.create_deepbooru_process(opts.interrogate_deepbooru_score_threshold, db_opts)
|
deepbooru.create_deepbooru_process(opts.interrogate_deepbooru_score_threshold, db_opts)
|
||||||
|
|
||||||
preprocess_work(process_src, process_dst, process_width, process_height, process_flip, process_split, process_caption, process_caption_deepbooru)
|
preprocess_work(process_src, process_dst, process_width, process_height, process_flip, process_split, process_caption, process_caption_deepbooru, process_entropy_focus)
|
||||||
|
|
||||||
finally:
|
finally:
|
||||||
|
|
||||||
@ -33,7 +35,7 @@ def preprocess(process_src, process_dst, process_width, process_height, process_
|
|||||||
|
|
||||||
|
|
||||||
|
|
||||||
def preprocess_work(process_src, process_dst, process_width, process_height, process_flip, process_split, process_caption, process_caption_deepbooru=False):
|
def preprocess_work(process_src, process_dst, process_width, process_height, process_flip, process_split, process_caption, process_caption_deepbooru=False, process_entropy_focus=False):
|
||||||
width = process_width
|
width = process_width
|
||||||
height = process_height
|
height = process_height
|
||||||
src = os.path.abspath(process_src)
|
src = os.path.abspath(process_src)
|
||||||
@ -93,6 +95,8 @@ def preprocess_work(process_src, process_dst, process_width, process_height, pro
|
|||||||
is_tall = ratio > 1.35
|
is_tall = ratio > 1.35
|
||||||
is_wide = ratio < 1 / 1.35
|
is_wide = ratio < 1 / 1.35
|
||||||
|
|
||||||
|
processing_option_ran = False
|
||||||
|
|
||||||
if process_split and is_tall:
|
if process_split and is_tall:
|
||||||
img = img.resize((width, height * img.height // img.width))
|
img = img.resize((width, height * img.height // img.width))
|
||||||
|
|
||||||
@ -101,6 +105,8 @@ def preprocess_work(process_src, process_dst, process_width, process_height, pro
|
|||||||
|
|
||||||
bot = img.crop((0, img.height - height, width, img.height))
|
bot = img.crop((0, img.height - height, width, img.height))
|
||||||
save_pic(bot, index)
|
save_pic(bot, index)
|
||||||
|
|
||||||
|
processing_option_ran = True
|
||||||
elif process_split and is_wide:
|
elif process_split and is_wide:
|
||||||
img = img.resize((width * img.width // img.height, height))
|
img = img.resize((width * img.width // img.height, height))
|
||||||
|
|
||||||
@ -109,8 +115,143 @@ def preprocess_work(process_src, process_dst, process_width, process_height, pro
|
|||||||
|
|
||||||
right = img.crop((img.width - width, 0, img.width, height))
|
right = img.crop((img.width - width, 0, img.width, height))
|
||||||
save_pic(right, index)
|
save_pic(right, index)
|
||||||
else:
|
|
||||||
|
processing_option_ran = True
|
||||||
|
|
||||||
|
if process_entropy_focus and (is_tall or is_wide):
|
||||||
|
if is_tall:
|
||||||
|
img = img.resize((width, height * img.height // img.width))
|
||||||
|
else:
|
||||||
|
img = img.resize((width * img.width // img.height, height))
|
||||||
|
|
||||||
|
x_focal_center, y_focal_center = image_central_focal_point(img, width, height)
|
||||||
|
|
||||||
|
# take the focal point and turn it into crop coordinates that try to center over the focal
|
||||||
|
# point but then get adjusted back into the frame
|
||||||
|
y_half = int(height / 2)
|
||||||
|
x_half = int(width / 2)
|
||||||
|
|
||||||
|
x1 = x_focal_center - x_half
|
||||||
|
if x1 < 0:
|
||||||
|
x1 = 0
|
||||||
|
elif x1 + width > img.width:
|
||||||
|
x1 = img.width - width
|
||||||
|
|
||||||
|
y1 = y_focal_center - y_half
|
||||||
|
if y1 < 0:
|
||||||
|
y1 = 0
|
||||||
|
elif y1 + height > img.height:
|
||||||
|
y1 = img.height - height
|
||||||
|
|
||||||
|
x2 = x1 + width
|
||||||
|
y2 = y1 + height
|
||||||
|
|
||||||
|
crop = [x1, y1, x2, y2]
|
||||||
|
|
||||||
|
focal = img.crop(tuple(crop))
|
||||||
|
save_pic(focal, index)
|
||||||
|
|
||||||
|
processing_option_ran = True
|
||||||
|
|
||||||
|
if not processing_option_ran:
|
||||||
img = images.resize_image(1, img, width, height)
|
img = images.resize_image(1, img, width, height)
|
||||||
save_pic(img, index)
|
save_pic(img, index)
|
||||||
|
|
||||||
shared.state.nextjob()
|
shared.state.nextjob()
|
||||||
|
|
||||||
|
|
||||||
|
def image_central_focal_point(im, target_width, target_height):
|
||||||
|
focal_points = []
|
||||||
|
|
||||||
|
focal_points.extend(
|
||||||
|
image_focal_points(im)
|
||||||
|
)
|
||||||
|
|
||||||
|
fp_entropy = image_entropy_point(im, target_width, target_height)
|
||||||
|
fp_entropy['weight'] = len(focal_points) + 1 # about half of the weight to entropy
|
||||||
|
|
||||||
|
focal_points.append(fp_entropy)
|
||||||
|
|
||||||
|
weight = 0.0
|
||||||
|
x = 0.0
|
||||||
|
y = 0.0
|
||||||
|
for focal_point in focal_points:
|
||||||
|
weight += focal_point['weight']
|
||||||
|
x += focal_point['x'] * focal_point['weight']
|
||||||
|
y += focal_point['y'] * focal_point['weight']
|
||||||
|
avg_x = round(x // weight)
|
||||||
|
avg_y = round(y // weight)
|
||||||
|
|
||||||
|
return avg_x, avg_y
|
||||||
|
|
||||||
|
|
||||||
|
def image_focal_points(im):
|
||||||
|
grayscale = im.convert("L")
|
||||||
|
|
||||||
|
# naive attempt at preventing focal points from collecting at watermarks near the bottom
|
||||||
|
gd = ImageDraw.Draw(grayscale)
|
||||||
|
gd.rectangle([0, im.height*.9, im.width, im.height], fill="#999")
|
||||||
|
|
||||||
|
np_im = np.array(grayscale)
|
||||||
|
|
||||||
|
points = cv2.goodFeaturesToTrack(
|
||||||
|
np_im,
|
||||||
|
maxCorners=50,
|
||||||
|
qualityLevel=0.04,
|
||||||
|
minDistance=min(grayscale.width, grayscale.height)*0.05,
|
||||||
|
useHarrisDetector=False,
|
||||||
|
)
|
||||||
|
|
||||||
|
if points is None:
|
||||||
|
return []
|
||||||
|
|
||||||
|
focal_points = []
|
||||||
|
for point in points:
|
||||||
|
x, y = point.ravel()
|
||||||
|
focal_points.append({
|
||||||
|
'x': x,
|
||||||
|
'y': y,
|
||||||
|
'weight': 1.0
|
||||||
|
})
|
||||||
|
|
||||||
|
return focal_points
|
||||||
|
|
||||||
|
|
||||||
|
def image_entropy_point(im, crop_width, crop_height):
|
||||||
|
img = im.copy()
|
||||||
|
# just make it easier to slide the test crop with images oriented the same way
|
||||||
|
if (img.size[0] < img.size[1]):
|
||||||
|
portrait = True
|
||||||
|
img = img.rotate(90, expand=1)
|
||||||
|
|
||||||
|
e_max = 0
|
||||||
|
crop_current = [0, 0, crop_width, crop_height]
|
||||||
|
crop_best = crop_current
|
||||||
|
while crop_current[2] < img.size[0]:
|
||||||
|
crop = img.crop(tuple(crop_current))
|
||||||
|
e = image_entropy(crop)
|
||||||
|
|
||||||
|
if (e_max < e):
|
||||||
|
e_max = e
|
||||||
|
crop_best = list(crop_current)
|
||||||
|
|
||||||
|
crop_current[0] += 4
|
||||||
|
crop_current[2] += 4
|
||||||
|
|
||||||
|
x_mid = int((crop_best[2] - crop_best[0])/2)
|
||||||
|
y_mid = int((crop_best[3] - crop_best[1])/2)
|
||||||
|
|
||||||
|
return {
|
||||||
|
'x': x_mid,
|
||||||
|
'y': y_mid,
|
||||||
|
'weight': 1.0
|
||||||
|
}
|
||||||
|
|
||||||
|
|
||||||
|
def image_entropy(im):
|
||||||
|
# greyscale image entropy
|
||||||
|
band = np.asarray(im.convert("L"))
|
||||||
|
hist, _ = np.histogram(band, bins=range(0, 256))
|
||||||
|
hist = hist[hist > 0]
|
||||||
|
return -np.log2(hist / hist.sum()).sum()
|
||||||
|
|
||||||
|
Loading…
Reference in New Issue
Block a user