mirror of
https://github.com/AUTOMATIC1111/stable-diffusion-webui.git
synced 2024-12-29 19:05:05 +08:00
commit
b8c3664934
@ -76,6 +76,16 @@ def kl_optimal(n, sigma_min, sigma_max, device):
|
||||
sigmas = torch.tan(step_indices / n * alpha_min + (1.0 - step_indices / n) * alpha_max)
|
||||
return sigmas
|
||||
|
||||
|
||||
def simple_scheduler(n, sigma_min, sigma_max, inner_model, device):
|
||||
sigs = []
|
||||
ss = len(inner_model.sigmas) / n
|
||||
for x in range(n):
|
||||
sigs += [float(inner_model.sigmas[-(1 + int(x * ss))])]
|
||||
sigs += [0.0]
|
||||
return torch.FloatTensor(sigs).to(device)
|
||||
|
||||
|
||||
def normal_scheduler(n, sigma_min, sigma_max, inner_model, device, sgm=False, floor=False):
|
||||
start = inner_model.sigma_to_t(torch.tensor(sigma_max))
|
||||
end = inner_model.sigma_to_t(torch.tensor(sigma_min))
|
||||
@ -92,6 +102,7 @@ def normal_scheduler(n, sigma_min, sigma_max, inner_model, device, sgm=False, fl
|
||||
sigs += [0.0]
|
||||
return torch.FloatTensor(sigs).to(device)
|
||||
|
||||
|
||||
def ddim_scheduler(n, sigma_min, sigma_max, inner_model, device):
|
||||
sigs = []
|
||||
ss = max(len(inner_model.sigmas) // n, 1)
|
||||
@ -113,6 +124,7 @@ schedulers = [
|
||||
Scheduler('sgm_uniform', 'SGM Uniform', sgm_uniform, need_inner_model=True, aliases=["SGMUniform"]),
|
||||
Scheduler('kl_optimal', 'KL Optimal', kl_optimal),
|
||||
Scheduler('align_your_steps', 'Align Your Steps', get_align_your_steps_sigmas),
|
||||
Scheduler('simple', 'Simple', simple_scheduler, need_inner_model=True),
|
||||
Scheduler('normal', 'Normal', normal_scheduler, need_inner_model=True),
|
||||
Scheduler('ddim', 'DDIM', ddim_scheduler, need_inner_model=True),
|
||||
]
|
||||
|
Loading…
Reference in New Issue
Block a user