add some codes for robust

This commit is contained in:
wangqyqq 2023-12-27 10:20:56 +08:00
parent 9feb034e34
commit bfe418a58d
2 changed files with 16 additions and 13 deletions

View File

@ -108,17 +108,18 @@ def txt2img_image_conditioning(sd_model, x, width, height):
else: else:
sd = sd_model.model.state_dict() sd = sd_model.model.state_dict()
diffusion_model_input = sd.get('diffusion_model.input_blocks.0.0.weight', None) diffusion_model_input = sd.get('diffusion_model.input_blocks.0.0.weight', None)
if diffusion_model_input.shape[1] == 9: if diffusion_model_input is not None:
# The "masked-image" in this case will just be all 0.5 since the entire image is masked. if diffusion_model_input.shape[1] == 9:
image_conditioning = torch.ones(x.shape[0], 3, height, width, device=x.device) * 0.5 # The "masked-image" in this case will just be all 0.5 since the entire image is masked.
image_conditioning = images_tensor_to_samples(image_conditioning, image_conditioning = torch.ones(x.shape[0], 3, height, width, device=x.device) * 0.5
approximation_indexes.get(opts.sd_vae_encode_method)) image_conditioning = images_tensor_to_samples(image_conditioning,
approximation_indexes.get(opts.sd_vae_encode_method))
# Add the fake full 1s mask to the first dimension. # Add the fake full 1s mask to the first dimension.
image_conditioning = torch.nn.functional.pad(image_conditioning, (0, 0, 0, 0, 1, 0), value=1.0) image_conditioning = torch.nn.functional.pad(image_conditioning, (0, 0, 0, 0, 1, 0), value=1.0)
image_conditioning = image_conditioning.to(x.dtype) image_conditioning = image_conditioning.to(x.dtype)
return image_conditioning return image_conditioning
# Dummy zero conditioning if we're not using inpainting or unclip models. # Dummy zero conditioning if we're not using inpainting or unclip models.
# Still takes up a bit of memory, but no encoder call. # Still takes up a bit of memory, but no encoder call.
@ -378,8 +379,9 @@ class StableDiffusionProcessing:
sd = self.sampler.model_wrap.inner_model.model.state_dict() sd = self.sampler.model_wrap.inner_model.model.state_dict()
diffusion_model_input = sd.get('diffusion_model.input_blocks.0.0.weight', None) diffusion_model_input = sd.get('diffusion_model.input_blocks.0.0.weight', None)
if diffusion_model_input.shape[1] == 9: if diffusion_model_input is not None:
return self.inpainting_image_conditioning(source_image, latent_image, image_mask=image_mask) if diffusion_model_input.shape[1] == 9:
return self.inpainting_image_conditioning(source_image, latent_image, image_mask=image_mask)
# Dummy zero conditioning if we're not using inpainting or depth model. # Dummy zero conditioning if we're not using inpainting or depth model.
return latent_image.new_zeros(latent_image.shape[0], 5, 1, 1) return latent_image.new_zeros(latent_image.shape[0], 5, 1, 1)

View File

@ -36,8 +36,9 @@ def get_learned_conditioning(self: sgm.models.diffusion.DiffusionEngine, batch:
def apply_model(self: sgm.models.diffusion.DiffusionEngine, x, t, cond): def apply_model(self: sgm.models.diffusion.DiffusionEngine, x, t, cond):
sd = self.model.state_dict() sd = self.model.state_dict()
diffusion_model_input = sd.get('diffusion_model.input_blocks.0.0.weight', None) diffusion_model_input = sd.get('diffusion_model.input_blocks.0.0.weight', None)
if diffusion_model_input.shape[1] == 9: if diffusion_model_input is not None:
x = torch.cat([x] + cond['c_concat'], dim=1) if diffusion_model_input.shape[1] == 9:
x = torch.cat([x] + cond['c_concat'], dim=1)
return self.model(x, t, cond) return self.model(x, t, cond)