mirror of
https://github.com/AUTOMATIC1111/stable-diffusion-webui.git
synced 2025-01-04 13:55:06 +08:00
94 lines
3.4 KiB
Python
94 lines
3.4 KiB
Python
import os
|
|
|
|
from modules import modelloader, errors
|
|
from modules.shared import cmd_opts, opts, hf_endpoint
|
|
from modules.upscaler import Upscaler, UpscalerData
|
|
from modules.upscaler_utils import upscale_with_model
|
|
|
|
|
|
class UpscalerDAT(Upscaler):
|
|
def __init__(self, user_path):
|
|
self.name = "DAT"
|
|
self.user_path = user_path
|
|
self.scalers = []
|
|
super().__init__()
|
|
|
|
for file in self.find_models(ext_filter=[".pt", ".pth"]):
|
|
name = modelloader.friendly_name(file)
|
|
scaler_data = UpscalerData(name, file, upscaler=self, scale=None)
|
|
self.scalers.append(scaler_data)
|
|
|
|
for model in get_dat_models(self):
|
|
if model.name in opts.dat_enabled_models:
|
|
self.scalers.append(model)
|
|
|
|
def do_upscale(self, img, path):
|
|
try:
|
|
info = self.load_model(path)
|
|
except Exception:
|
|
errors.report(f"Unable to load DAT model {path}", exc_info=True)
|
|
return img
|
|
|
|
model_descriptor = modelloader.load_spandrel_model(
|
|
info.local_data_path,
|
|
device=self.device,
|
|
prefer_half=(not cmd_opts.no_half and not cmd_opts.upcast_sampling),
|
|
expected_architecture="DAT",
|
|
)
|
|
return upscale_with_model(
|
|
model_descriptor,
|
|
img,
|
|
tile_size=opts.DAT_tile,
|
|
tile_overlap=opts.DAT_tile_overlap,
|
|
)
|
|
|
|
def load_model(self, path):
|
|
for scaler in self.scalers:
|
|
if scaler.data_path == path:
|
|
if scaler.local_data_path.startswith("http"):
|
|
scaler.local_data_path = modelloader.load_file_from_url(
|
|
scaler.data_path,
|
|
model_dir=self.model_download_path,
|
|
hash_prefix=scaler.sha256,
|
|
)
|
|
|
|
if os.path.getsize(scaler.local_data_path) < 200:
|
|
# Re-download if the file is too small, probably an LFS pointer
|
|
scaler.local_data_path = modelloader.load_file_from_url(
|
|
scaler.data_path,
|
|
model_dir=self.model_download_path,
|
|
hash_prefix=scaler.sha256,
|
|
re_download=True,
|
|
)
|
|
|
|
if not os.path.exists(scaler.local_data_path):
|
|
raise FileNotFoundError(f"DAT data missing: {scaler.local_data_path}")
|
|
return scaler
|
|
raise ValueError(f"Unable to find model info: {path}")
|
|
|
|
|
|
def get_dat_models(scaler):
|
|
return [
|
|
UpscalerData(
|
|
name="DAT x2",
|
|
path=f"{hf_endpoint}/w-e-w/DAT/resolve/main/experiments/pretrained_models/DAT/DAT_x2.pth",
|
|
scale=2,
|
|
upscaler=scaler,
|
|
sha256='7760aa96e4ee77e29d4f89c3a4486200042e019461fdb8aa286f49aa00b89b51',
|
|
),
|
|
UpscalerData(
|
|
name="DAT x3",
|
|
path=f"{hf_endpoint}/w-e-w/DAT/resolve/main/experiments/pretrained_models/DAT/DAT_x3.pth",
|
|
scale=3,
|
|
upscaler=scaler,
|
|
sha256='581973e02c06f90d4eb90acf743ec9604f56f3c2c6f9e1e2c2b38ded1f80d197',
|
|
),
|
|
UpscalerData(
|
|
name="DAT x4",
|
|
path=f"{hf_endpoint}/w-e-w/DAT/resolve/main/experiments/pretrained_models/DAT/DAT_x4.pth",
|
|
scale=4,
|
|
upscaler=scaler,
|
|
sha256='391a6ce69899dff5ea3214557e9d585608254579217169faf3d4c353caff049e',
|
|
),
|
|
]
|