mirror of
https://github.com/AUTOMATIC1111/stable-diffusion-webui.git
synced 2025-01-18 04:10:11 +08:00
167 lines
6.0 KiB
Python
167 lines
6.0 KiB
Python
import contextlib
|
|
import os
|
|
from typing import Mapping
|
|
|
|
import safetensors
|
|
import torch
|
|
|
|
import k_diffusion
|
|
from modules.models.sd3.other_impls import SDClipModel, SDXLClipG, T5XXLModel, SD3Tokenizer
|
|
from modules.models.sd3.sd3_impls import BaseModel, SDVAE, SD3LatentFormat
|
|
|
|
from modules import shared, modelloader, devices
|
|
|
|
CLIPG_URL = "https://huggingface.co/stabilityai/stable-diffusion-3-medium/resolve/main/text_encoders/clip_g.safetensors"
|
|
CLIPG_CONFIG = {
|
|
"hidden_act": "gelu",
|
|
"hidden_size": 1280,
|
|
"intermediate_size": 5120,
|
|
"num_attention_heads": 20,
|
|
"num_hidden_layers": 32,
|
|
}
|
|
|
|
CLIPL_URL = "https://huggingface.co/stabilityai/stable-diffusion-3-medium/resolve/main/text_encoders/clip_l.safetensors"
|
|
CLIPL_CONFIG = {
|
|
"hidden_act": "quick_gelu",
|
|
"hidden_size": 768,
|
|
"intermediate_size": 3072,
|
|
"num_attention_heads": 12,
|
|
"num_hidden_layers": 12,
|
|
}
|
|
|
|
T5_URL = "https://huggingface.co/stabilityai/stable-diffusion-3-medium/resolve/main/text_encoders/t5xxl_fp16.safetensors"
|
|
T5_CONFIG = {
|
|
"d_ff": 10240,
|
|
"d_model": 4096,
|
|
"num_heads": 64,
|
|
"num_layers": 24,
|
|
"vocab_size": 32128,
|
|
}
|
|
|
|
|
|
class SafetensorsMapping(Mapping):
|
|
def __init__(self, file):
|
|
self.file = file
|
|
|
|
def __len__(self):
|
|
return len(self.file.keys())
|
|
|
|
def __iter__(self):
|
|
for key in self.file.keys():
|
|
yield key
|
|
|
|
def __getitem__(self, key):
|
|
return self.file.get_tensor(key)
|
|
|
|
|
|
class SD3Cond(torch.nn.Module):
|
|
def __init__(self, *args, **kwargs):
|
|
super().__init__(*args, **kwargs)
|
|
|
|
self.tokenizer = SD3Tokenizer()
|
|
|
|
with torch.no_grad():
|
|
self.clip_g = SDXLClipG(CLIPG_CONFIG, device="cpu", dtype=torch.float32)
|
|
self.clip_l = SDClipModel(layer="hidden", layer_idx=-2, device="cpu", dtype=torch.float32, layer_norm_hidden_state=False, return_projected_pooled=False, textmodel_json_config=CLIPL_CONFIG)
|
|
self.t5xxl = T5XXLModel(T5_CONFIG, device="cpu", dtype=torch.float32)
|
|
|
|
self.weights_loaded = False
|
|
|
|
def forward(self, prompts: list[str]):
|
|
res = []
|
|
|
|
for prompt in prompts:
|
|
tokens = self.tokenizer.tokenize_with_weights(prompt)
|
|
l_out, l_pooled = self.clip_l.encode_token_weights(tokens["l"])
|
|
g_out, g_pooled = self.clip_g.encode_token_weights(tokens["g"])
|
|
t5_out, t5_pooled = self.t5xxl.encode_token_weights(tokens["t5xxl"])
|
|
lg_out = torch.cat([l_out, g_out], dim=-1)
|
|
lg_out = torch.nn.functional.pad(lg_out, (0, 4096 - lg_out.shape[-1]))
|
|
lgt_out = torch.cat([lg_out, t5_out], dim=-2)
|
|
vector_out = torch.cat((l_pooled, g_pooled), dim=-1)
|
|
|
|
res.append({
|
|
'crossattn': lgt_out[0].to(devices.device),
|
|
'vector': vector_out[0].to(devices.device),
|
|
})
|
|
|
|
return res
|
|
|
|
def load_weights(self):
|
|
if self.weights_loaded:
|
|
return
|
|
|
|
clip_path = os.path.join(shared.models_path, "CLIP")
|
|
|
|
clip_g_file = modelloader.load_file_from_url(CLIPG_URL, model_dir=clip_path, file_name="clip_g.safetensors")
|
|
with safetensors.safe_open(clip_g_file, framework="pt") as file:
|
|
self.clip_g.transformer.load_state_dict(SafetensorsMapping(file))
|
|
|
|
clip_l_file = modelloader.load_file_from_url(CLIPL_URL, model_dir=clip_path, file_name="clip_l.safetensors")
|
|
with safetensors.safe_open(clip_l_file, framework="pt") as file:
|
|
self.clip_l.transformer.load_state_dict(SafetensorsMapping(file), strict=False)
|
|
|
|
t5_file = modelloader.load_file_from_url(T5_URL, model_dir=clip_path, file_name="t5xxl_fp16.safetensors")
|
|
with safetensors.safe_open(t5_file, framework="pt") as file:
|
|
self.t5xxl.transformer.load_state_dict(SafetensorsMapping(file), strict=False)
|
|
|
|
self.weights_loaded = True
|
|
|
|
def encode_embedding_init_text(self, init_text, nvpt):
|
|
return torch.tensor([[0]], device=devices.device) # XXX
|
|
|
|
|
|
class SD3Denoiser(k_diffusion.external.DiscreteSchedule):
|
|
def __init__(self, inner_model, sigmas):
|
|
super().__init__(sigmas, quantize=shared.opts.enable_quantization)
|
|
self.inner_model = inner_model
|
|
|
|
def forward(self, input, sigma, **kwargs):
|
|
return self.inner_model.apply_model(input, sigma, **kwargs)
|
|
|
|
|
|
class SD3Inferencer(torch.nn.Module):
|
|
def __init__(self, state_dict, shift=3, use_ema=False):
|
|
super().__init__()
|
|
|
|
self.shift = shift
|
|
|
|
with torch.no_grad():
|
|
self.model = BaseModel(shift=shift, state_dict=state_dict, prefix="model.diffusion_model.", device="cpu", dtype=devices.dtype)
|
|
self.first_stage_model = SDVAE(device="cpu", dtype=devices.dtype_vae)
|
|
self.first_stage_model.dtype = self.model.diffusion_model.dtype
|
|
|
|
self.alphas_cumprod = 1 / (self.model.model_sampling.sigmas ** 2 + 1)
|
|
|
|
self.cond_stage_model = SD3Cond()
|
|
self.cond_stage_key = 'txt'
|
|
|
|
self.parameterization = "eps"
|
|
self.model.conditioning_key = "crossattn"
|
|
|
|
self.latent_format = SD3LatentFormat()
|
|
self.latent_channels = 16
|
|
|
|
def after_load_weights(self):
|
|
self.cond_stage_model.load_weights()
|
|
|
|
def ema_scope(self):
|
|
return contextlib.nullcontext()
|
|
|
|
def get_learned_conditioning(self, batch: list[str]):
|
|
return self.cond_stage_model(batch)
|
|
|
|
def apply_model(self, x, t, cond):
|
|
return self.model.apply_model(x, t, c_crossattn=cond['crossattn'], y=cond['vector'])
|
|
|
|
def decode_first_stage(self, latent):
|
|
latent = self.latent_format.process_out(latent)
|
|
return self.first_stage_model.decode(latent)
|
|
|
|
def encode_first_stage(self, image):
|
|
latent = self.first_stage_model.encode(image)
|
|
return self.latent_format.process_in(latent)
|
|
|
|
def create_denoiser(self):
|
|
return SD3Denoiser(self, self.model.model_sampling.sigmas)
|