stable-diffusion-webui/modules/xpu_specific.py

Ignoring revisions in .git-blame-ignore-revs. Click here to bypass and see the normal blame view.

125 lines
5.3 KiB
Python
Raw Normal View History

2023-11-10 11:06:26 +08:00
from modules import shared
from modules.sd_hijack_utils import CondFunc
has_ipex = False
try:
import torch
2023-12-02 15:54:25 +08:00
import intel_extension_for_pytorch as ipex # noqa: F401
2023-11-10 11:06:26 +08:00
has_ipex = True
except Exception:
pass
def check_for_xpu():
return has_ipex and hasattr(torch, 'xpu') and torch.xpu.is_available()
2023-11-10 11:06:26 +08:00
def get_xpu_device_string():
if shared.cmd_opts.device_id is not None:
return f"xpu:{shared.cmd_opts.device_id}"
return "xpu"
def torch_xpu_gc():
with torch.xpu.device(get_xpu_device_string()):
torch.xpu.empty_cache()
has_xpu = check_for_xpu()
2023-11-10 11:06:26 +08:00
2023-12-18 18:00:01 +08:00
# Arc GPU cannot allocate a single block larger than 4GB: https://github.com/intel/compute-runtime/issues/627
# Here we implement a slicing algorithm to split large batch size into smaller chunks,
# so that SDPA of each chunk wouldn't require any allocation larger than ARC_SINGLE_ALLOCATION_LIMIT.
# The heuristic limit (TOTAL_VRAM // 8) is tuned for Intel Arc A770 16G and Arc A750 8G,
# which is the best trade-off between VRAM usage and performance.
2023-12-18 19:44:52 +08:00
ARC_SINGLE_ALLOCATION_LIMIT = {}
2023-12-18 18:00:01 +08:00
orig_sdp_attn_func = torch.nn.functional.scaled_dot_product_attention
def torch_xpu_scaled_dot_product_attention(
query, key, value, attn_mask=None, dropout_p=0.0, is_causal=False, *args, **kwargs
):
# cast to same dtype first
key = key.to(query.dtype)
value = value.to(query.dtype)
N = query.shape[:-2] # Batch size
L = query.size(-2) # Target sequence length
E = query.size(-1) # Embedding dimension of the query and key
S = key.size(-2) # Source sequence length
Ev = value.size(-1) # Embedding dimension of the value
total_batch_size = torch.numel(torch.empty(N))
2023-12-18 19:44:52 +08:00
device_id = query.device.index
if device_id not in ARC_SINGLE_ALLOCATION_LIMIT:
ARC_SINGLE_ALLOCATION_LIMIT[device_id] = min(torch.xpu.get_device_properties(device_id).total_memory // 8, 4 * 1024 * 1024 * 1024)
batch_size_limit = max(1, ARC_SINGLE_ALLOCATION_LIMIT[device_id] // (L * S * query.element_size()))
2023-12-18 18:00:01 +08:00
if total_batch_size <= batch_size_limit:
return orig_sdp_attn_func(
query,
key,
value,
attn_mask,
dropout_p,
is_causal,
*args, **kwargs
)
query = torch.reshape(query, (-1, L, E))
key = torch.reshape(key, (-1, S, E))
value = torch.reshape(value, (-1, S, Ev))
if attn_mask is not None:
attn_mask = attn_mask.view(-1, L, S)
chunk_count = (total_batch_size + batch_size_limit - 1) // batch_size_limit
outputs = []
for i in range(chunk_count):
attn_mask_chunk = (
None
if attn_mask is None
else attn_mask[i * batch_size_limit : (i + 1) * batch_size_limit, :, :]
)
chunk_output = orig_sdp_attn_func(
query[i * batch_size_limit : (i + 1) * batch_size_limit, :, :],
key[i * batch_size_limit : (i + 1) * batch_size_limit, :, :],
value[i * batch_size_limit : (i + 1) * batch_size_limit, :, :],
attn_mask_chunk,
dropout_p,
is_causal,
*args, **kwargs
)
outputs.append(chunk_output)
result = torch.cat(outputs, dim=0)
return torch.reshape(result, (*N, L, Ev))
2023-11-10 11:06:26 +08:00
if has_xpu:
# W/A for https://github.com/intel/intel-extension-for-pytorch/issues/452: torch.Generator API doesn't support XPU device
2023-11-10 11:06:26 +08:00
CondFunc('torch.Generator',
lambda orig_func, device=None: torch.xpu.Generator(device),
lambda orig_func, device=None: device is not None and device.type == "xpu")
2023-11-10 11:06:26 +08:00
# W/A for some OPs that could not handle different input dtypes
2023-11-10 11:06:26 +08:00
CondFunc('torch.nn.functional.layer_norm',
lambda orig_func, input, normalized_shape=None, weight=None, *args, **kwargs:
orig_func(input.to(weight.data.dtype), normalized_shape, weight, *args, **kwargs),
lambda orig_func, input, normalized_shape=None, weight=None, *args, **kwargs:
weight is not None and input.dtype != weight.data.dtype)
CondFunc('torch.nn.modules.GroupNorm.forward',
lambda orig_func, self, input: orig_func(self, input.to(self.weight.data.dtype)),
lambda orig_func, self, input: input.dtype != self.weight.data.dtype)
CondFunc('torch.nn.modules.linear.Linear.forward',
lambda orig_func, self, input: orig_func(self, input.to(self.weight.data.dtype)),
lambda orig_func, self, input: input.dtype != self.weight.data.dtype)
CondFunc('torch.nn.modules.conv.Conv2d.forward',
lambda orig_func, self, input: orig_func(self, input.to(self.weight.data.dtype)),
lambda orig_func, self, input: input.dtype != self.weight.data.dtype)
CondFunc('torch.bmm',
lambda orig_func, input, mat2, out=None: orig_func(input.to(mat2.dtype), mat2, out=out),
lambda orig_func, input, mat2, out=None: input.dtype != mat2.dtype)
2023-12-09 18:09:45 +08:00
CondFunc('torch.cat',
lambda orig_func, tensors, dim=0, out=None: orig_func([t.to(tensors[0].dtype) for t in tensors], dim=dim, out=out),
lambda orig_func, tensors, dim=0, out=None: not all(t.dtype == tensors[0].dtype for t in tensors))
CondFunc('torch.nn.functional.scaled_dot_product_attention',
2023-12-18 18:00:01 +08:00
lambda orig_func, *args, **kwargs: torch_xpu_scaled_dot_product_attention(*args, **kwargs),
lambda orig_func, query, *args, **kwargs: query.is_xpu)