2023-10-18 14:35:50 +08:00
|
|
|
import torch
|
|
|
|
import network
|
2023-11-04 10:35:15 +08:00
|
|
|
from lyco_helpers import factorization
|
2023-11-02 13:34:27 +08:00
|
|
|
from einops import rearrange
|
2023-10-18 14:35:50 +08:00
|
|
|
|
|
|
|
|
|
|
|
class ModuleTypeOFT(network.ModuleType):
|
|
|
|
def create_module(self, net: network.Network, weights: network.NetworkWeights):
|
2023-11-02 15:13:11 +08:00
|
|
|
if all(x in weights.w for x in ["oft_blocks"]) or all(x in weights.w for x in ["oft_diag"]):
|
2023-10-18 14:35:50 +08:00
|
|
|
return NetworkModuleOFT(net, weights)
|
|
|
|
|
|
|
|
return None
|
|
|
|
|
2023-11-04 10:35:15 +08:00
|
|
|
# adapted from kohya-ss' implementation https://github.com/kohya-ss/sd-scripts/blob/main/networks/oft.py
|
|
|
|
# and KohakuBlueleaf's implementation https://github.com/KohakuBlueleaf/LyCORIS/blob/dev/lycoris/modules/diag_oft.py
|
2023-10-18 14:35:50 +08:00
|
|
|
class NetworkModuleOFT(network.NetworkModule):
|
|
|
|
def __init__(self, net: network.Network, weights: network.NetworkWeights):
|
2023-10-18 19:16:01 +08:00
|
|
|
|
2023-10-18 14:35:50 +08:00
|
|
|
super().__init__(net, weights)
|
|
|
|
|
2023-11-02 15:13:11 +08:00
|
|
|
self.lin_module = None
|
2023-11-04 08:52:55 +08:00
|
|
|
self.org_module: list[torch.Module] = [self.sd_module]
|
2023-11-04 10:35:15 +08:00
|
|
|
|
2023-11-02 15:13:11 +08:00
|
|
|
# kohya-ss
|
|
|
|
if "oft_blocks" in weights.w.keys():
|
|
|
|
self.is_kohya = True
|
2023-11-05 05:54:36 +08:00
|
|
|
self.oft_blocks = weights.w["oft_blocks"] # (num_blocks, block_size, block_size)
|
2023-11-02 15:13:11 +08:00
|
|
|
self.alpha = weights.w["alpha"]
|
2023-11-05 05:54:36 +08:00
|
|
|
self.dim = self.oft_blocks.shape[0] # lora dim
|
|
|
|
#self.oft_blocks = rearrange(self.oft_blocks, 'k m ... -> (k m) ...')
|
2023-11-02 15:13:11 +08:00
|
|
|
elif "oft_diag" in weights.w.keys():
|
|
|
|
self.is_kohya = False
|
2023-11-05 05:54:36 +08:00
|
|
|
self.oft_blocks = weights.w["oft_diag"] # (num_blocks, block_size, block_size)
|
|
|
|
|
2023-11-02 15:13:11 +08:00
|
|
|
# alpha is rank if alpha is 0 or None
|
|
|
|
if self.alpha is None:
|
|
|
|
pass
|
2023-11-04 08:52:55 +08:00
|
|
|
self.dim = self.oft_blocks.shape[1] # FIXME: almost certainly incorrect, assumes tensor is shape [*, m, n]
|
2023-11-02 15:13:11 +08:00
|
|
|
else:
|
|
|
|
raise ValueError("oft_blocks or oft_diag must be in weights dict")
|
|
|
|
|
|
|
|
is_linear = type(self.sd_module) in [torch.nn.Linear, torch.nn.modules.linear.NonDynamicallyQuantizableLinear]
|
|
|
|
is_conv = type(self.sd_module) in [torch.nn.Conv2d]
|
2023-11-04 10:35:15 +08:00
|
|
|
is_other_linear = type(self.sd_module) in [torch.nn.MultiheadAttention]
|
|
|
|
|
2023-11-02 15:13:11 +08:00
|
|
|
if is_linear:
|
2023-10-18 14:35:50 +08:00
|
|
|
self.out_dim = self.sd_module.out_features
|
2023-11-02 15:13:11 +08:00
|
|
|
elif is_other_linear:
|
|
|
|
self.out_dim = self.sd_module.embed_dim
|
|
|
|
elif is_conv:
|
2023-10-18 14:35:50 +08:00
|
|
|
self.out_dim = self.sd_module.out_channels
|
2023-11-02 15:13:11 +08:00
|
|
|
else:
|
|
|
|
raise ValueError("sd_module must be Linear or Conv")
|
|
|
|
|
|
|
|
if self.is_kohya:
|
|
|
|
self.constraint = self.alpha * self.out_dim
|
2023-11-05 05:54:36 +08:00
|
|
|
self.num_blocks, self.block_size = factorization(self.out_dim, self.dim)
|
2023-11-02 15:13:11 +08:00
|
|
|
else:
|
|
|
|
self.constraint = None
|
2023-11-05 05:54:36 +08:00
|
|
|
self.block_size, self.num_blocks = factorization(self.out_dim, self.dim)
|
|
|
|
|
2023-11-02 15:13:11 +08:00
|
|
|
def merge_weight(self, R_weight, org_weight):
|
|
|
|
R_weight = R_weight.to(org_weight.device, dtype=org_weight.dtype)
|
|
|
|
if org_weight.dim() == 4:
|
|
|
|
weight = torch.einsum("oihw, op -> pihw", org_weight, R_weight)
|
|
|
|
else:
|
|
|
|
weight = torch.einsum("oi, op -> pi", org_weight, R_weight)
|
|
|
|
return weight
|
2023-10-22 07:07:45 +08:00
|
|
|
|
2023-10-20 03:41:17 +08:00
|
|
|
def get_weight(self, oft_blocks, multiplier=None):
|
2023-11-02 15:13:11 +08:00
|
|
|
if self.constraint is not None:
|
|
|
|
constraint = self.constraint.to(oft_blocks.device, dtype=oft_blocks.dtype)
|
2023-10-22 23:54:24 +08:00
|
|
|
|
2023-11-02 15:13:11 +08:00
|
|
|
block_Q = oft_blocks - oft_blocks.transpose(1, 2)
|
|
|
|
norm_Q = torch.norm(block_Q.flatten())
|
|
|
|
if self.constraint is not None:
|
|
|
|
new_norm_Q = torch.clamp(norm_Q, max=constraint)
|
|
|
|
else:
|
|
|
|
new_norm_Q = norm_Q
|
|
|
|
block_Q = block_Q * ((new_norm_Q + 1e-8) / (norm_Q + 1e-8))
|
2023-11-05 05:54:36 +08:00
|
|
|
m_I = torch.eye(self.num_blocks, device=oft_blocks.device).unsqueeze(0).repeat(self.block_size, 1, 1)
|
|
|
|
#m_I = torch.eye(self.block_size, device=oft_blocks.device).unsqueeze(0).repeat(self.num_blocks, 1, 1)
|
2023-11-02 15:13:11 +08:00
|
|
|
block_R = torch.matmul(m_I + block_Q, (m_I - block_Q).inverse())
|
2023-10-22 23:54:24 +08:00
|
|
|
|
2023-11-02 15:13:11 +08:00
|
|
|
block_R_weighted = multiplier * block_R + (1 - multiplier) * m_I
|
|
|
|
R = torch.block_diag(*block_R_weighted)
|
|
|
|
return R
|
2023-10-18 14:35:50 +08:00
|
|
|
|
2023-11-04 10:35:15 +08:00
|
|
|
def calc_updown_kohya(self, orig_weight, multiplier):
|
|
|
|
R = self.get_weight(self.oft_blocks, multiplier)
|
|
|
|
merged_weight = self.merge_weight(R, orig_weight)
|
2023-10-18 14:35:50 +08:00
|
|
|
|
2023-11-04 10:35:15 +08:00
|
|
|
updown = merged_weight.to(orig_weight.device, dtype=orig_weight.dtype) - orig_weight
|
|
|
|
output_shape = orig_weight.shape
|
|
|
|
orig_weight = orig_weight
|
|
|
|
return self.finalize_updown(updown, orig_weight, output_shape)
|
|
|
|
|
|
|
|
def calc_updown_kb(self, orig_weight, multiplier):
|
|
|
|
is_other_linear = type(self.sd_module) in [torch.nn.MultiheadAttention]
|
|
|
|
|
|
|
|
if not is_other_linear:
|
2023-11-05 05:54:36 +08:00
|
|
|
oft_blocks = self.oft_blocks.to(orig_weight.device, dtype=orig_weight.dtype)
|
|
|
|
|
2023-11-15 19:08:50 +08:00
|
|
|
# ensure skew-symmetric matrix
|
2023-11-05 05:54:36 +08:00
|
|
|
oft_blocks = oft_blocks - oft_blocks.transpose(1, 2)
|
|
|
|
|
|
|
|
R = oft_blocks.to(orig_weight.device, dtype=orig_weight.dtype)
|
|
|
|
R = R * multiplier + torch.eye(self.block_size, device=orig_weight.device)
|
2023-11-04 10:35:15 +08:00
|
|
|
|
2023-11-04 08:52:55 +08:00
|
|
|
merged_weight = rearrange(orig_weight, '(k n) ... -> k n ...', k=self.num_blocks, n=self.block_size)
|
|
|
|
merged_weight = torch.einsum(
|
|
|
|
'k n m, k n ... -> k m ...',
|
2023-11-05 05:54:36 +08:00
|
|
|
R,
|
2023-11-04 10:35:15 +08:00
|
|
|
merged_weight
|
2023-11-04 08:52:55 +08:00
|
|
|
)
|
|
|
|
merged_weight = rearrange(merged_weight, 'k m ... -> (k m) ...')
|
2023-11-04 10:35:15 +08:00
|
|
|
|
2023-11-04 08:52:55 +08:00
|
|
|
updown = merged_weight.to(orig_weight.device, dtype=orig_weight.dtype) - orig_weight
|
|
|
|
output_shape = orig_weight.shape
|
|
|
|
else:
|
2023-11-04 10:35:15 +08:00
|
|
|
# FIXME: skip MultiheadAttention for now
|
2023-11-05 05:54:36 +08:00
|
|
|
#up = self.lin_module.weight.to(orig_weight.device, dtype=orig_weight.dtype)
|
2023-11-04 08:52:55 +08:00
|
|
|
updown = torch.zeros([orig_weight.shape[1], orig_weight.shape[1]], device=orig_weight.device, dtype=orig_weight.dtype)
|
|
|
|
output_shape = (orig_weight.shape[1], orig_weight.shape[1])
|
2023-11-02 15:13:11 +08:00
|
|
|
|
2023-10-18 14:35:50 +08:00
|
|
|
return self.finalize_updown(updown, orig_weight, output_shape)
|
2023-10-23 00:31:15 +08:00
|
|
|
|
2023-11-04 10:35:15 +08:00
|
|
|
def calc_updown(self, orig_weight):
|
2023-11-15 19:08:50 +08:00
|
|
|
# if alpha is a very small number as in coft, calc_scale will return a almost zero number so we ignore it
|
|
|
|
#multiplier = self.multiplier() * self.calc_scale()
|
|
|
|
multiplier = self.multiplier()
|
|
|
|
|
2023-11-05 05:54:36 +08:00
|
|
|
return self.calc_updown_kb(orig_weight, multiplier)
|
2023-11-04 10:35:15 +08:00
|
|
|
|
2023-10-23 00:27:48 +08:00
|
|
|
# override to remove the multiplier/scale factor; it's already multiplied in get_weight
|
|
|
|
def finalize_updown(self, updown, orig_weight, output_shape, ex_bias=None):
|
|
|
|
#return super().finalize_updown(updown, orig_weight, output_shape, ex_bias)
|
|
|
|
|
|
|
|
if self.bias is not None:
|
|
|
|
updown = updown.reshape(self.bias.shape)
|
|
|
|
updown += self.bias.to(orig_weight.device, dtype=orig_weight.dtype)
|
|
|
|
updown = updown.reshape(output_shape)
|
|
|
|
|
|
|
|
if len(output_shape) == 4:
|
|
|
|
updown = updown.reshape(output_shape)
|
|
|
|
|
|
|
|
if orig_weight.size().numel() == updown.size().numel():
|
|
|
|
updown = updown.reshape(orig_weight.shape)
|
|
|
|
|
|
|
|
if ex_bias is not None:
|
|
|
|
ex_bias = ex_bias * self.multiplier()
|
|
|
|
|
|
|
|
return updown, ex_bias
|