stable-diffusion-webui/extensions-builtin/Lora/network_oft.py

150 lines
6.4 KiB
Python
Raw Normal View History

2023-10-18 14:35:50 +08:00
import torch
import network
from lyco_helpers import factorization
from einops import rearrange
2023-10-18 14:35:50 +08:00
class ModuleTypeOFT(network.ModuleType):
def create_module(self, net: network.Network, weights: network.NetworkWeights):
if all(x in weights.w for x in ["oft_blocks"]) or all(x in weights.w for x in ["oft_diag"]):
2023-10-18 14:35:50 +08:00
return NetworkModuleOFT(net, weights)
return None
# adapted from kohya-ss' implementation https://github.com/kohya-ss/sd-scripts/blob/main/networks/oft.py
# and KohakuBlueleaf's implementation https://github.com/KohakuBlueleaf/LyCORIS/blob/dev/lycoris/modules/diag_oft.py
2023-10-18 14:35:50 +08:00
class NetworkModuleOFT(network.NetworkModule):
def __init__(self, net: network.Network, weights: network.NetworkWeights):
2023-10-18 19:16:01 +08:00
2023-10-18 14:35:50 +08:00
super().__init__(net, weights)
self.lin_module = None
2023-11-04 08:52:55 +08:00
self.org_module: list[torch.Module] = [self.sd_module]
# kohya-ss
if "oft_blocks" in weights.w.keys():
self.is_kohya = True
self.oft_blocks = weights.w["oft_blocks"]
self.alpha = weights.w["alpha"]
self.dim = self.oft_blocks.shape[0]
elif "oft_diag" in weights.w.keys():
self.is_kohya = False
self.oft_blocks = weights.w["oft_diag"]
# alpha is rank if alpha is 0 or None
if self.alpha is None:
pass
2023-11-04 08:52:55 +08:00
self.dim = self.oft_blocks.shape[1] # FIXME: almost certainly incorrect, assumes tensor is shape [*, m, n]
else:
raise ValueError("oft_blocks or oft_diag must be in weights dict")
is_linear = type(self.sd_module) in [torch.nn.Linear, torch.nn.modules.linear.NonDynamicallyQuantizableLinear]
is_conv = type(self.sd_module) in [torch.nn.Conv2d]
is_other_linear = type(self.sd_module) in [torch.nn.MultiheadAttention]
if is_linear:
2023-10-18 14:35:50 +08:00
self.out_dim = self.sd_module.out_features
elif is_other_linear:
self.out_dim = self.sd_module.embed_dim
elif is_conv:
2023-10-18 14:35:50 +08:00
self.out_dim = self.sd_module.out_channels
else:
raise ValueError("sd_module must be Linear or Conv")
if self.is_kohya:
self.num_blocks = self.dim
self.block_size = self.out_dim // self.num_blocks
self.constraint = self.alpha * self.out_dim
else:
2023-11-04 08:52:55 +08:00
self.block_size, self.num_blocks = factorization(self.out_dim, self.dim)
self.constraint = None
2023-10-18 14:35:50 +08:00
def merge_weight(self, R_weight, org_weight):
R_weight = R_weight.to(org_weight.device, dtype=org_weight.dtype)
if org_weight.dim() == 4:
weight = torch.einsum("oihw, op -> pihw", org_weight, R_weight)
else:
weight = torch.einsum("oi, op -> pi", org_weight, R_weight)
return weight
2023-10-22 07:07:45 +08:00
def get_weight(self, oft_blocks, multiplier=None):
if self.constraint is not None:
constraint = self.constraint.to(oft_blocks.device, dtype=oft_blocks.dtype)
2023-10-22 23:54:24 +08:00
block_Q = oft_blocks - oft_blocks.transpose(1, 2)
norm_Q = torch.norm(block_Q.flatten())
if self.constraint is not None:
new_norm_Q = torch.clamp(norm_Q, max=constraint)
else:
new_norm_Q = norm_Q
block_Q = block_Q * ((new_norm_Q + 1e-8) / (norm_Q + 1e-8))
m_I = torch.eye(self.block_size, device=oft_blocks.device).unsqueeze(0).repeat(self.num_blocks, 1, 1)
block_R = torch.matmul(m_I + block_Q, (m_I - block_Q).inverse())
2023-10-22 23:54:24 +08:00
block_R_weighted = multiplier * block_R + (1 - multiplier) * m_I
R = torch.block_diag(*block_R_weighted)
return R
2023-10-18 14:35:50 +08:00
def calc_updown_kohya(self, orig_weight, multiplier):
R = self.get_weight(self.oft_blocks, multiplier)
merged_weight = self.merge_weight(R, orig_weight)
2023-10-18 14:35:50 +08:00
updown = merged_weight.to(orig_weight.device, dtype=orig_weight.dtype) - orig_weight
output_shape = orig_weight.shape
orig_weight = orig_weight
return self.finalize_updown(updown, orig_weight, output_shape)
def calc_updown_kb(self, orig_weight, multiplier):
is_other_linear = type(self.sd_module) in [torch.nn.MultiheadAttention]
if not is_other_linear:
2023-11-04 08:52:55 +08:00
if is_other_linear and orig_weight.shape[0] != orig_weight.shape[1]:
orig_weight=orig_weight.permute(1, 0)
2023-11-04 08:52:55 +08:00
R = self.oft_blocks.to(orig_weight.device, dtype=orig_weight.dtype)
merged_weight = rearrange(orig_weight, '(k n) ... -> k n ...', k=self.num_blocks, n=self.block_size)
merged_weight = torch.einsum(
'k n m, k n ... -> k m ...',
R * multiplier + torch.eye(self.block_size, device=orig_weight.device),
merged_weight
2023-11-04 08:52:55 +08:00
)
merged_weight = rearrange(merged_weight, 'k m ... -> (k m) ...')
2023-11-04 08:52:55 +08:00
if is_other_linear and orig_weight.shape[0] != orig_weight.shape[1]:
orig_weight=orig_weight.permute(1, 0)
2023-11-04 08:52:55 +08:00
updown = merged_weight.to(orig_weight.device, dtype=orig_weight.dtype) - orig_weight
output_shape = orig_weight.shape
else:
# FIXME: skip MultiheadAttention for now
2023-11-04 08:52:55 +08:00
updown = torch.zeros([orig_weight.shape[1], orig_weight.shape[1]], device=orig_weight.device, dtype=orig_weight.dtype)
output_shape = (orig_weight.shape[1], orig_weight.shape[1])
2023-10-18 14:35:50 +08:00
return self.finalize_updown(updown, orig_weight, output_shape)
2023-10-23 00:31:15 +08:00
def calc_updown(self, orig_weight):
multiplier = self.multiplier() * self.calc_scale()
if self.is_kohya:
return self.calc_updown_kohya(orig_weight, multiplier)
else:
return self.calc_updown_kb(orig_weight, multiplier)
# override to remove the multiplier/scale factor; it's already multiplied in get_weight
def finalize_updown(self, updown, orig_weight, output_shape, ex_bias=None):
#return super().finalize_updown(updown, orig_weight, output_shape, ex_bias)
if self.bias is not None:
updown = updown.reshape(self.bias.shape)
updown += self.bias.to(orig_weight.device, dtype=orig_weight.dtype)
updown = updown.reshape(output_shape)
if len(output_shape) == 4:
updown = updown.reshape(output_shape)
if orig_weight.size().numel() == updown.size().numel():
updown = updown.reshape(orig_weight.shape)
if ex_bias is not None:
ex_bias = ex_bias * self.multiplier()
return updown, ex_bias