stable-diffusion-webui/modules/sd_models.py

306 lines
11 KiB
Python
Raw Normal View History

import collections
import os.path
import sys
import gc
from collections import namedtuple
import torch
import re
from omegaconf import OmegaConf
from ldm.util import instantiate_from_config
2022-10-30 22:54:31 +08:00
from modules import shared, modelloader, devices, script_callbacks, sd_vae
from modules.paths import models_path
from modules.sd_hijack_inpainting import do_inpainting_hijack, should_hijack_inpainting
model_dir = "Stable-diffusion"
model_path = os.path.abspath(os.path.join(models_path, model_dir))
CheckpointInfo = namedtuple("CheckpointInfo", ['filename', 'title', 'hash', 'model_name', 'config'])
checkpoints_list = {}
checkpoints_loaded = collections.OrderedDict()
try:
# this silences the annoying "Some weights of the model checkpoint were not used when initializing..." message at start.
2022-10-16 23:53:56 +08:00
from transformers import logging, CLIPModel
logging.set_verbosity_error()
except Exception:
pass
def setup_model():
if not os.path.exists(model_path):
os.makedirs(model_path)
list_models()
def checkpoint_tiles():
convert = lambda name: int(name) if name.isdigit() else name.lower()
alphanumeric_key = lambda key: [convert(c) for c in re.split('([0-9]+)', key)]
return sorted([x.title for x in checkpoints_list.values()], key = alphanumeric_key)
def list_models():
checkpoints_list.clear()
model_list = modelloader.load_models(model_path=model_path, command_path=shared.cmd_opts.ckpt_dir, ext_filter=[".ckpt"])
def modeltitle(path, shorthash):
abspath = os.path.abspath(path)
if shared.cmd_opts.ckpt_dir is not None and abspath.startswith(shared.cmd_opts.ckpt_dir):
name = abspath.replace(shared.cmd_opts.ckpt_dir, '')
elif abspath.startswith(model_path):
name = abspath.replace(model_path, '')
else:
name = os.path.basename(path)
if name.startswith("\\") or name.startswith("/"):
name = name[1:]
shortname = os.path.splitext(name.replace("/", "_").replace("\\", "_"))[0]
return f'{name} [{shorthash}]', shortname
cmd_ckpt = shared.cmd_opts.ckpt
if os.path.exists(cmd_ckpt):
h = model_hash(cmd_ckpt)
title, short_model_name = modeltitle(cmd_ckpt, h)
checkpoints_list[title] = CheckpointInfo(cmd_ckpt, title, h, short_model_name, shared.cmd_opts.config)
shared.opts.data['sd_model_checkpoint'] = title
elif cmd_ckpt is not None and cmd_ckpt != shared.default_sd_model_file:
print(f"Checkpoint in --ckpt argument not found (Possible it was moved to {model_path}: {cmd_ckpt}", file=sys.stderr)
for filename in model_list:
h = model_hash(filename)
title, short_model_name = modeltitle(filename, h)
basename, _ = os.path.splitext(filename)
config = basename + ".yaml"
if not os.path.exists(config):
config = shared.cmd_opts.config
checkpoints_list[title] = CheckpointInfo(filename, title, h, short_model_name, config)
2022-09-29 05:30:09 +08:00
def get_closet_checkpoint_match(searchString):
2022-09-30 02:08:03 +08:00
applicable = sorted([info for info in checkpoints_list.values() if searchString in info.title], key = lambda x:len(x.title))
if len(applicable) > 0:
2022-09-29 05:30:09 +08:00
return applicable[0]
return None
def model_hash(filename):
try:
with open(filename, "rb") as file:
import hashlib
m = hashlib.sha256()
file.seek(0x100000)
m.update(file.read(0x10000))
return m.hexdigest()[0:8]
except FileNotFoundError:
return 'NOFILE'
def select_checkpoint():
model_checkpoint = shared.opts.sd_model_checkpoint
checkpoint_info = checkpoints_list.get(model_checkpoint, None)
if checkpoint_info is not None:
return checkpoint_info
if len(checkpoints_list) == 0:
print(f"No checkpoints found. When searching for checkpoints, looked at:", file=sys.stderr)
if shared.cmd_opts.ckpt is not None:
print(f" - file {os.path.abspath(shared.cmd_opts.ckpt)}", file=sys.stderr)
print(f" - directory {model_path}", file=sys.stderr)
if shared.cmd_opts.ckpt_dir is not None:
print(f" - directory {os.path.abspath(shared.cmd_opts.ckpt_dir)}", file=sys.stderr)
print(f"Can't run without a checkpoint. Find and place a .ckpt file into any of those locations. The program will exit.", file=sys.stderr)
exit(1)
checkpoint_info = next(iter(checkpoints_list.values()))
if model_checkpoint is not None:
print(f"Checkpoint {model_checkpoint} not found; loading fallback {checkpoint_info.title}", file=sys.stderr)
return checkpoint_info
chckpoint_dict_replacements = {
'cond_stage_model.transformer.embeddings.': 'cond_stage_model.transformer.text_model.embeddings.',
'cond_stage_model.transformer.encoder.': 'cond_stage_model.transformer.text_model.encoder.',
'cond_stage_model.transformer.final_layer_norm.': 'cond_stage_model.transformer.text_model.final_layer_norm.',
}
def transform_checkpoint_dict_key(k):
for text, replacement in chckpoint_dict_replacements.items():
if k.startswith(text):
k = replacement + k[len(text):]
return k
def get_state_dict_from_checkpoint(pl_sd):
if "state_dict" in pl_sd:
pl_sd = pl_sd["state_dict"]
sd = {}
for k, v in pl_sd.items():
new_key = transform_checkpoint_dict_key(k)
if new_key is not None:
sd[new_key] = v
2022-10-19 17:45:30 +08:00
pl_sd.clear()
pl_sd.update(sd)
return pl_sd
def load_model_weights(model, checkpoint_info, vae_file="auto"):
checkpoint_file = checkpoint_info.filename
sd_model_hash = checkpoint_info.hash
cache_enabled = shared.opts.sd_checkpoint_cache > 0
if cache_enabled:
sd_vae.restore_base_vae(model)
2022-10-31 17:27:27 +08:00
vae_file = sd_vae.resolve_vae(checkpoint_file, vae_file=vae_file)
if cache_enabled and checkpoint_info in checkpoints_loaded:
# use checkpoint cache
vae_name = sd_vae.get_filename(vae_file) if vae_file else None
vae_message = f" with {vae_name} VAE" if vae_name else ""
print(f"Loading weights [{sd_model_hash}]{vae_message} from cache")
model.load_state_dict(checkpoints_loaded[checkpoint_info])
else:
# load from file
print(f"Loading weights [{sd_model_hash}] from {checkpoint_file}")
2022-10-15 15:35:18 +08:00
pl_sd = torch.load(checkpoint_file, map_location=shared.weight_load_location)
if "global_step" in pl_sd:
print(f"Global Step: {pl_sd['global_step']}")
sd = get_state_dict_from_checkpoint(pl_sd)
del pl_sd
model.load_state_dict(sd, strict=False)
del sd
if cache_enabled:
# cache newly loaded model
checkpoints_loaded[checkpoint_info] = model.state_dict().copy()
if shared.cmd_opts.opt_channelslast:
model.to(memory_format=torch.channels_last)
if not shared.cmd_opts.no_half:
2022-11-02 19:41:29 +08:00
vae = model.first_stage_model
# with --no-half-vae, remove VAE from model when doing half() to prevent its weights from being converted to float16
if shared.cmd_opts.no_half_vae:
model.first_stage_model = None
model.half()
2022-11-02 19:41:29 +08:00
model.first_stage_model = vae
devices.dtype = torch.float32 if shared.cmd_opts.no_half else torch.float16
devices.dtype_vae = torch.float32 if shared.cmd_opts.no_half or shared.cmd_opts.no_half_vae else torch.float16
model.first_stage_model.to(devices.dtype_vae)
2022-11-02 19:41:29 +08:00
# clean up cache if limit is reached
if cache_enabled:
while len(checkpoints_loaded) > shared.opts.sd_checkpoint_cache + 1: # we need to count the current model
2022-10-31 17:27:27 +08:00
checkpoints_loaded.popitem(last=False) # LRU
model.sd_model_hash = sd_model_hash
2022-10-09 03:12:24 +08:00
model.sd_model_checkpoint = checkpoint_file
model.sd_checkpoint_info = checkpoint_info
sd_vae.clear_loaded_vae()
sd_vae.load_vae(model, vae_file)
def load_model(checkpoint_info=None):
from modules import lowvram, sd_hijack
checkpoint_info = checkpoint_info or select_checkpoint()
if checkpoint_info.config != shared.cmd_opts.config:
print(f"Loading config from: {checkpoint_info.config}")
if shared.sd_model:
sd_hijack.model_hijack.undo_hijack(shared.sd_model)
shared.sd_model = None
gc.collect()
devices.torch_gc()
sd_config = OmegaConf.load(checkpoint_info.config)
if should_hijack_inpainting(checkpoint_info):
# Hardcoded config for now...
sd_config.model.target = "ldm.models.diffusion.ddpm.LatentInpaintDiffusion"
sd_config.model.params.use_ema = False
sd_config.model.params.conditioning_key = "hybrid"
sd_config.model.params.unet_config.params.in_channels = 9
# Create a "fake" config with a different name so that we know to unload it when switching models.
checkpoint_info = checkpoint_info._replace(config=checkpoint_info.config.replace(".yaml", "-inpainting.yaml"))
do_inpainting_hijack()
sd_model = instantiate_from_config(sd_config.model)
load_model_weights(sd_model, checkpoint_info)
if shared.cmd_opts.lowvram or shared.cmd_opts.medvram:
lowvram.setup_for_low_vram(sd_model, shared.cmd_opts.medvram)
else:
sd_model.to(shared.device)
sd_hijack.model_hijack.hijack(sd_model)
sd_model.eval()
shared.sd_model = sd_model
script_callbacks.model_loaded_callback(sd_model)
print(f"Model loaded.")
return sd_model
def reload_model_weights(sd_model=None, info=None):
from modules import lowvram, devices, sd_hijack
checkpoint_info = info or select_checkpoint()
2022-11-02 01:25:08 +08:00
if not sd_model:
sd_model = shared.sd_model
2022-10-09 03:12:24 +08:00
if sd_model.sd_model_checkpoint == checkpoint_info.filename:
return
if sd_model.sd_checkpoint_info.config != checkpoint_info.config or should_hijack_inpainting(checkpoint_info) != should_hijack_inpainting(sd_model.sd_checkpoint_info):
del sd_model
checkpoints_loaded.clear()
load_model(checkpoint_info)
return shared.sd_model
if shared.cmd_opts.lowvram or shared.cmd_opts.medvram:
lowvram.send_everything_to_cpu()
else:
sd_model.to(devices.cpu)
sd_hijack.model_hijack.undo_hijack(sd_model)
load_model_weights(sd_model, checkpoint_info)
sd_hijack.model_hijack.hijack(sd_model)
script_callbacks.model_loaded_callback(sd_model)
if not shared.cmd_opts.lowvram and not shared.cmd_opts.medvram:
sd_model.to(devices.device)
print(f"Weights loaded.")
return sd_model