Compare commits

...

685 Commits

Author SHA1 Message Date
Ναρουσέ·μ·γιουμεμί·Χινακάννα
7ef1986778
Add warnings for files related to Onnx exports (#2385)
* Fix Onnx Export And Support TensorRT

* Add files via upload

* Update attentions_onnx.py

* Update models_onnx.py

* Update models_onnx.py

* Add files via upload

* Add files via upload
2024-11-24 23:09:44 +08:00
yxlllc
709bbbac1a
optimize nsf inference (#2387) 2024-11-24 21:36:41 +08:00
Ναρουσέ·μ·γιουμεμί·Χινακάννα
1376ce739d
Fix onnx export & Support TensorRT (#2384)
* Fix Onnx Export And Support TensorRT

* Add files via upload
2024-11-24 00:27:28 +08:00
纸巾
9ae3af4a7d
移除音频文件路径 Unicode 控制字符 (#2334) 2024-11-23 20:46:42 +08:00
RVC-Boss
3548b4f1a5
Update requirements-ipex.txt 2024-09-05 13:57:11 +08:00
RVC-Boss
1963b7d5e4
Update requirements-win-for-realtime_vc_gui-dml.txt 2024-09-05 11:53:11 +08:00
RVC-Boss
e954fa98d3
Update requirements-win-for-realtime_vc_gui.txt 2024-09-05 11:53:07 +08:00
Coming
cfc1e24489
fix: dlmodels.sh exits after download single file (#2175) 2024-08-28 16:41:39 +08:00
Dafterfly
b405aed417
Translate Chinese text in English README (#2172) 2024-08-28 16:40:41 +08:00
pato-pan
7e3965c673
Update requirements.txt (#2203)
aria2 needs to be required.
2024-08-28 16:40:28 +08:00
T-NEX
4d1379989f
Update README.ja.md (#2231)
This commit changed the single quotes to back quotes where they were used in the Markdown.
2024-08-28 16:38:15 +08:00
keitarou
7a81606a03
fixed pip version (#2238) 2024-08-28 16:36:43 +08:00
NaGaii1994
22473bac0e
fix poetry (#2246) 2024-08-28 16:36:23 +08:00
RVC-Boss
94e5c40f79
Merge pull request #2256 from mannanshukla/patch-1
fix spelling
2024-08-28 16:36:04 +08:00
Mannan Shukla
7d897dbf60
fix spelling 2024-08-16 22:16:31 -04:00
RVC-Boss
85829da3a0
Rollback 231006 version,fix "forcing fp32 infer"
Rollback 231006 version,fix "forcing fp32 infer"
2024-07-28 16:47:43 +08:00
RVC-Boss
413fa2591f
Rollback 231006 version,fix "forcing fp32 infer"
Rollback 231006 version,fix "forcing fp32 infer"
2024-07-28 16:46:05 +08:00
RVC-Boss
b8361c92d0
Rollback 231006 version,fix "forcing fp32 infer"
Rollback 231006 version,fix "forcing fp32 infer"
2024-07-28 16:45:47 +08:00
RVC-Boss
4aa2a89374
Merge pull request #2177 from AurevoirXavier/main
fix: allow path name contains special characters
2024-07-28 16:32:06 +08:00
RVC-Boss
5524451963
Update requirements.txt 2024-07-05 18:41:23 +08:00
Xavier Lau
81ca3253c7
Allow path name contains special characters 2024-07-03 18:42:58 +08:00
RVC-Boss
83d6a64e67
Merge pull request #2159 from tkyaji/upgrade_librosa
fix: Updated librosa to version 0.10.2
2024-07-01 10:08:22 +08:00
RVC-Boss
9899757d07
Merge pull request #2164 from FChin39/main
feat: Add API Code for Enhanced Functionality
2024-06-30 15:06:09 +08:00
RVC-Boss
c31c7bce4e
Merge pull request #2160 from tkyaji/missing_traceback
fix: The import for traceback is missing.
2024-06-30 15:05:40 +08:00
Freidrichin
ce66d5b40e Update API code for release version
API code for 240604 version and 231006 version
2024-06-27 19:32:34 +08:00
tkyaji
d8ec4e1fee The import for traceback is missing. 2024-06-26 22:15:01 +09:00
tkyaji
330bdd9692 fix: Updated librosa to version 0.10.2
There is a bug in librosa 0.9.1.
https://github.com/librosa/librosa/pull/1594

As a result, an error occurs when executing the "Vocals/Accompaniment Separation & Reverberation Removal" function.

To address this issue, librosa has been upgraded to version 0.10.2.
Additionally, torchcrepe has been upgraded due to its dependency on librosa.
2024-06-26 21:59:55 +09:00
Freidrichin
c44a81b39e Update api.py 2024-06-25 19:05:05 +08:00
Freidrichin
39fc6f2c10 Create api.py
Create the initial API Python file for easy expansion and use.
2024-06-24 22:19:42 +08:00
RVC-Boss
1f1755fe3d
Update audio.py 2024-06-14 19:56:10 +08:00
RVC-Boss
776d28c66f
Update PULL_REQUEST_TEMPLATE.md 2024-06-09 16:09:12 +08:00
RVC-Boss
2ac522f4ca
Merge pull request #2117 from HuanLinOTO/feat-fallback-encoding
feat: fallback to system encoding when fail to read file with utf-8
2024-06-09 00:20:50 +08:00
多玩幻灵qwq
f0dd73a419
feat: fallback to system encoding when fail to read file with utf-8 2024-06-09 00:05:12 +08:00
源文雨
64b78bed3b 20240604 2024-06-05 18:10:59 +09:00
github-actions[bot]
6061f636f8
chore(format): run black on main (#1851)
Co-authored-by: github-actions[bot] <github-actions[bot]@users.noreply.github.com>
2024-03-01 18:26:12 +09:00
RVC-Boss
a3ee455191
Add files via upload 2024-03-01 17:23:43 +08:00
RVC-Boss
c22b912576
Merge pull request #1850 from RVC-Project/dev
chore(sync): merge dev into main
2024-03-01 16:08:14 +08:00
RVC-Boss
3dcd78855b
Merge branch 'main' into dev 2024-03-01 16:07:24 +08:00
RVC-Boss
67f934539b
Merge pull request #1803 from Butyllithium/dev
修复所有语言REARMED中更新日志的链接错误
2024-03-01 15:04:40 +08:00
CatMatrix
bf17b8b758 修复所有语言更新日志的链接错误 2024-02-09 04:37:39 +08:00
Zzzyt
f513f0b2e0
Fix half argument (#1683) (#1775)
* for GTX1650

* testing torch-profiler

* no more profiler & change default audio

* longer slice

* fluid container

* cache rmvpe and ui tweaks

* get my changes back after merge

* format code

* only load rmvpe when necessary

* fix rmvpe & config bug

* fix is_half again

* manual sync with upstream

* fix bool() for is_half

* revert changes for PR

* revert again

* typo

* match lower case
2024-01-30 12:51:40 +09:00
Albert Softie
401db68aba
make dlmodels.sh executable before running (#1771) 2024-01-27 16:13:34 +09:00
RVC-Boss
8c0cec1c9e
Merge pull request #1768 from RVC-Project/formatter-main
chore(format): run black on main
2024-01-26 16:10:24 +08:00
RVC-Boss
c09d1bcfac
Merge pull request #1769 from RVC-Project/formatter-dev
chore(format): run black on dev
2024-01-26 16:10:23 +08:00
github-actions[bot]
005f097fec chore(format): run black on main 2024-01-26 08:10:04 +00:00
github-actions[bot]
738e55f05c chore(format): run black on dev 2024-01-26 08:09:56 +00:00
RVC-Boss
8790ab69e0
Update infer-web.py 2024-01-26 16:09:42 +08:00
RVC-Boss
850ec480d0
Update infer-web.py 2024-01-26 16:09:39 +08:00
RVC-Boss
9602ea649c
Update train.py 2024-01-26 16:03:00 +08:00
RVC-Boss
b304564c9e
Update train.py 2024-01-26 16:01:14 +08:00
github-actions[bot]
35c83e88df
chore(format): run black on dev (#1763)
Co-authored-by: github-actions[bot] <github-actions[bot]@users.noreply.github.com>
2024-01-25 21:55:23 +09:00
源文雨
3b2a1d081c feat(gui): trained_xxxx.index hint (fix #1070) 2024-01-25 21:53:29 +09:00
github-actions[bot]
918ab7b62f
chore(format): run black on dev (#1758)
Co-authored-by: github-actions[bot] <github-actions[bot]@users.noreply.github.com>
2024-01-25 21:05:02 +09:00
Ftps
5c55d5378b
fix run.sh on mac (#1755) 2024-01-25 21:04:29 +09:00
RVC-Boss
5dbdbab2c1
Update audio.py 2024-01-23 15:15:11 +08:00
RVC-Boss
d187257944
Update audio.py 2024-01-23 15:15:04 +08:00
github-actions[bot]
267192fd92
chore(format): run black on dev (#1750)
Co-authored-by: github-actions[bot] <github-actions[bot]@users.noreply.github.com>
2024-01-22 22:31:55 +09:00
源文雨
380fd52085 optimize(infer-web): silent httpx INFO logging
and add rmvpe downloading in dlmodels.bat
2024-01-22 22:28:09 +09:00
源文雨
55b3fad19e chore(pip): add requirements-py311.txt (fix #1155) 2024-01-22 21:58:12 +09:00
源文雨
03692a261e chore(pip): remove some unnecessary version restrictions
in order to enable installation on pyver>3.11
2024-01-22 21:33:17 +09:00
源文雨
6141253fba drop: overwrite of config jsons & feat: read index from assets/indices 2024-01-22 17:18:59 +09:00
github-actions[bot]
3a80032e74
chore(i18n): sync locale on dev (#1748)
Co-authored-by: github-actions[bot] <github-actions[bot]@users.noreply.github.com>
2024-01-21 20:20:25 +09:00
Pengoose
f29f39cdef
chore(docs): update docs(ko, ja) & i18n ko translation data (#1744)
* add i18n translation data(ko_KR.json)

* update README.ko.md

* update README.ja.md

* update Changelog_KO.md

* add Changelog_JA.md

* add faq_ko.md

* add faq_ja.md
2024-01-21 20:18:59 +09:00
源文雨
b7d02d3cf2 chore: link Português to READMEs 2024-01-18 00:04:37 +09:00
github-actions[bot]
7dd326c97a
chore(i18n): sync locale on dev (#1733)
Co-authored-by: github-actions[bot] <github-actions[bot]@users.noreply.github.com>
2024-01-17 23:57:14 +09:00
nr1a
68f286b6a1
Added support for L4&RTX6000 GPU in WebUI (#1738)
* support L4

* add RTX6000
2024-01-17 23:56:35 +09:00
Rafael Godoy
016e8754b9
Translation of RVC into Portuguese in i18n (#1719)
* Translation of RVC into Portuguese in i18n

Added the Brazilian Portuguese language to the project.

* Removal of external links

Removed external links to approve the request.

* Removed external links and translated in real time

More other links I found and removed and fixed some translations that were missing in realtime-gui

* Translation of doc

* FAQ with original and adapted questions:

- All translated original FAQs
- Additional new FAQs adapted to the reality of my country

* adding translated images
2024-01-17 02:02:38 +09:00
github-actions[bot]
8d5c34601b
chore(format): run black on dev (#1731)
Co-authored-by: github-actions[bot] <github-actions[bot]@users.noreply.github.com>
2024-01-16 20:32:37 +09:00
github-actions[bot]
4e8e235024
chore(i18n): sync locale on dev (#1730)
Co-authored-by: github-actions[bot] <github-actions[bot]@users.noreply.github.com>
2024-01-16 20:31:53 +09:00
Sơn Phan Trung
53051852f1
refactor(dlmodels.sh): get the script posix compliant, rework functions. (#1723) 2024-01-16 20:31:10 +09:00
Chengjia Jiang
49434901d8
fix: 多显卡训练时logger未赋值引用 (#1722)
modified:   infer/modules/train/train.py
2024-01-16 20:30:10 +09:00
Adachi
f6fa0c9cd9
typo: README.md (#1725) 2024-01-16 20:23:42 +09:00
yxlllc
c3e65cdf96
optimize: realtime inference (#1693)
* update real-time gui

* update real-time gui

* update real-time gui
2024-01-16 20:22:55 +09:00
NightWatcher314
26e2805f0e
fix poetry part for README.md (#1715)
* Update README.md

* Delete pyproject.toml

* Delete poetry.lock

* Update README.md
2024-01-14 17:04:30 +09:00
github-actions[bot]
4f7b6b2b9e
chore(format): run black on dev (#1717)
Co-authored-by: github-actions[bot] <github-actions[bot]@users.noreply.github.com>
2024-01-14 16:43:14 +09:00
Rice Cake
bb4d185a57
Update README.en.md (#1716)
Co-authored-by: 源文雨 <41315874+fumiama@users.noreply.github.com>
2024-01-14 16:42:19 +09:00
源文雨
b8bc2b6d60 drop: preprocess.py overwrite & optimize log printing 2024-01-14 16:37:55 +09:00
Allen Li
2d0307dc6a
Docs: Update README.fr.md (#1712)
* fix broken links in french README and add its link to other languages README

* improve french README
2024-01-14 15:35:05 +09:00
源文雨
e88c713895
Merge pull request #1703 from RVC-Project/main
sync main
2024-01-12 08:57:21 +08:00
dependabot[bot]
c1838623d4
chore(deps): bump gradio from 3.34.0 to 4.11.0 (#1699)
Bumps [gradio](https://github.com/gradio-app/gradio) from 3.34.0 to 4.11.0.
- [Release notes](https://github.com/gradio-app/gradio/releases)
- [Changelog](https://github.com/gradio-app/gradio/blob/main/CHANGELOG.md)
- [Commits](https://github.com/gradio-app/gradio/commits)

---
updated-dependencies:
- dependency-name: gradio
  dependency-type: direct:production
...

Signed-off-by: dependabot[bot] <support@github.com>
Co-authored-by: dependabot[bot] <49699333+dependabot[bot]@users.noreply.github.com>
2024-01-11 23:55:02 +09:00
dependabot[bot]
9d3bd6f6d7
chore(deps): bump fonttools from 4.41.1 to 4.43.0 (#1698)
Bumps [fonttools](https://github.com/fonttools/fonttools) from 4.41.1 to 4.43.0.
- [Release notes](https://github.com/fonttools/fonttools/releases)
- [Changelog](https://github.com/fonttools/fonttools/blob/main/NEWS.rst)
- [Commits](https://github.com/fonttools/fonttools/compare/4.41.1...4.43.0)

---
updated-dependencies:
- dependency-name: fonttools
  dependency-type: indirect
...

Signed-off-by: dependabot[bot] <support@github.com>
Co-authored-by: dependabot[bot] <49699333+dependabot[bot]@users.noreply.github.com>
2024-01-11 23:45:35 +09:00
github-actions[bot]
322ce9b940
chore(format): run black on dev (#1697)
Co-authored-by: github-actions[bot] <github-actions[bot]@users.noreply.github.com>
2024-01-11 22:42:26 +09:00
Zzzyt
c2ab680e18
add is_half argument to extract_feature_print.py (#1683)
* for GTX1650

* testing torch-profiler

* no more profiler & change default audio

* longer slice

* fluid container

* cache rmvpe and ui tweaks

* get my changes back after merge

* format code

* only load rmvpe when necessary

* fix rmvpe & config bug

* fix is_half again

* manual sync with upstream

* revert other changes for pull request
2024-01-11 22:40:34 +09:00
源文雨
0de6505324
sync (#1663)
* 优化README头图显示格式

* 大幅优化README

* Update README.md

* Update README.md

* 删除过时文档
2023-12-29 01:29:57 +09:00
源文雨
f3281d1e37
Merge branch 'main' into dev 2023-12-29 00:29:44 +08:00
源文雨
f2e18f1366
删除过时文档 2023-12-29 01:27:17 +09:00
源文雨
50890e4f44
Update README.md 2023-12-29 01:26:10 +09:00
源文雨
cd051e345b
Update README.md 2023-12-29 01:25:21 +09:00
源文雨
57cb626334
Update README.md 2023-12-29 01:24:08 +09:00
源文雨
b9fbce73a9
大幅优化README 2023-12-29 01:23:16 +09:00
源文雨
1ff9e8c3e6
优化README头图显示格式 (#1662) 2023-12-29 00:52:57 +09:00
源文雨
1669821386
优化README头图显示格式 2023-12-29 00:52:10 +09:00
RVC-Boss
f54ceb4dc4
Merge pull request #1661 from RVC-Project/dev
chore(sync): merge dev into main
2023-12-28 23:41:38 +08:00
RVC-Boss
4cf6ed50cb
Merge branch 'main' into dev 2023-12-28 23:41:27 +08:00
RVC-Boss
43b5be3189
Update README.md 2023-12-28 23:37:36 +08:00
RVC-Boss
4769472ba2
Merge pull request #1660 from RVC-Project/formatter-dev
chore(format): run black on dev
2023-12-28 22:48:08 +08:00
RVC-Boss
cbdab9c0c9
Update README.md 2023-12-28 22:28:33 +08:00
github-actions[bot]
8f31203b46 chore(format): run black on dev 2023-12-28 10:14:41 +00:00
RVC-Boss
d766298065
Merge pull request #1659 from yxlllc/dev
optimize stream logic
2023-12-28 18:14:22 +08:00
yxlllc
6bc929abea optimize stream logic 2023-12-28 18:02:41 +08:00
RVC-Boss
443a04bc66
Merge pull request #1653 from RVC-Project/dev
chore(sync): merge dev into main
2023-12-26 22:27:32 +08:00
RVC-Boss
c90b252e94
Merge pull request #1651 from everypizza1/patch-1
Fix: pdate README.en.md
2023-12-26 22:24:53 +08:00
RVC-Boss
e56584c6e2
Add files via upload 2023-12-26 22:24:04 +08:00
Derry Tutt
1b680a9690
Update README.en.md
Made it seem more human.
2023-12-26 07:52:02 -06:00
Sơn Phan Trung
8bd34d1881
chore: get run.sh to be POSIX Compliant (#1649)
* Create CONTRIBUTING.md

* Update CONTRIBUTING.md

* Update CONTRIBUTING.md

* fix: get run.sh posix compliant

* Update venv.sh

* Delete CONTRIBUTING.md

---------

Co-authored-by: 源文雨 <41315874+fumiama@users.noreply.github.com>
2023-12-26 22:11:16 +09:00
dependabot[bot]
1ff1a183ea
chore(deps-dev): bump aiohttp from 3.8.5 to 3.9.0 (#1636)
Bumps [aiohttp](https://github.com/aio-libs/aiohttp) from 3.8.5 to 3.9.0.
- [Release notes](https://github.com/aio-libs/aiohttp/releases)
- [Changelog](https://github.com/aio-libs/aiohttp/blob/master/CHANGES.rst)
- [Commits](https://github.com/aio-libs/aiohttp/compare/v3.8.5...v3.9.0)

---
updated-dependencies:
- dependency-name: aiohttp
  dependency-type: indirect
...

Signed-off-by: dependabot[bot] <support@github.com>
Co-authored-by: dependabot[bot] <49699333+dependabot[bot]@users.noreply.github.com>
2023-12-26 22:08:17 +09:00
github-actions[bot]
5449f84f06
chore(format): run black on dev (#1638)
Co-authored-by: github-actions[bot] <github-actions[bot]@users.noreply.github.com>
2023-12-26 22:03:02 +09:00
github-actions[bot]
997a956f4f
chore(i18n): sync locale on dev (#1650)
Co-authored-by: github-actions[bot] <github-actions[bot]@users.noreply.github.com>
2023-12-26 22:01:20 +09:00
RVC-Boss
2fb732da62
Merge pull request #1647 from yxlllc/dev
Optimize real-time functions
2023-12-26 20:57:01 +08:00
yxlllc
aed19c3c6b optimize real-time vc 2023-12-26 17:41:25 +08:00
yxlllc
21775b187a optimize real-time vc 2023-12-26 17:05:42 +08:00
源文雨
9ebe62b3e9
Update CONTRIBUTING.md 2023-12-26 17:50:42 +09:00
yxlllc
d7fb651f7c optimize real-time vc 2023-12-26 16:26:01 +08:00
源文雨
c478586872
Update CONTRIBUTING.md 2023-12-26 02:05:46 +09:00
源文雨
350a9b49b8
Create CONTRIBUTING.md 2023-12-26 02:04:13 +09:00
yxlllc
d62e80fb83 optimize real-time vc 2023-12-26 00:28:49 +08:00
yxlllc
3dec36568c optimize real-time vc 2023-12-26 00:23:36 +08:00
Blaise
78f03e7dc0
Fix return_complex warning on training (#1627)
* Fix return_complex warning on training

* remove unused prints
2023-12-22 10:35:51 +09:00
github-actions[bot]
0f8a5facd9
chore(format): run black on dev (#1619)
Co-authored-by: github-actions[bot] <github-actions[bot]@users.noreply.github.com>
2023-12-20 14:47:37 +09:00
RVC-Boss
d269d14768
Merge pull request #1618 from CNChTu/main
add fcpe for realtime
2023-12-15 00:20:04 +08:00
CN_ChiTu
e6cda00fcf
add fcpe for realtime 2023-12-14 21:09:41 +08:00
CN_ChiTu
8974660560
add fcpe for realtime 2023-12-14 21:08:36 +08:00
CN_ChiTu
e7e9d5934d
add fcpe for realtime 2023-12-14 21:01:46 +08:00
RVC-Boss
5a3ad60558
Merge pull request #1607 from Tps-F/fix_harvest_onnx
Fix F0 predictor for Harvest
2023-12-10 20:07:19 +08:00
Ftps
45133bc752 FIx F0 predictor for Harvet 2023-12-10 19:33:12 +09:00
Ftps
786005f0de
fix flow (#1605) 2023-12-10 15:32:44 +08:00
github-actions[bot]
7c753e6ac1
chore(i18n): sync locale on dev (#1585)
Co-authored-by: github-actions[bot] <github-actions[bot]@users.noreply.github.com>
2023-11-30 20:34:39 +09:00
David Edwards
45da3644f4
feat: add en_US translations and missing i18n in web client (#1576)
* chore(format): run black on main (#1448)

Co-authored-by: github-actions[bot] <github-actions[bot]@users.noreply.github.com>

* translate untranslated english

* Fix trainset_dir4 default value in infer-web.py

---------

Co-authored-by: github-actions[bot] <41898282+github-actions[bot]@users.noreply.github.com>
Co-authored-by: github-actions[bot] <github-actions[bot]@users.noreply.github.com>
Co-authored-by: RVC-Boss <129054828+RVC-Boss@users.noreply.github.com>
2023-11-30 20:32:24 +09:00
Ftps
fe0f32c6a6
swap description (#1554)
Co-authored-by: donghyeop son <42092560+sondonghup@users.noreply.github.com>
2023-11-26 21:03:10 +09:00
RVC-Boss
ff093ad88f
Merge pull request #1534 from RVC-Project/dev
chore(sync): merge dev into main
2023-11-12 17:51:55 +08:00
RVC-Boss
e2d494d1a7
Merge pull request #1533 from RVC-Project/formatter-dev
chore(format): run black on dev
2023-11-12 17:43:46 +08:00
github-actions[bot]
f1552e143b chore(format): run black on dev 2023-11-12 09:40:59 +00:00
RVC-Boss
e4ef99aa62
Merge pull request #1532 from yxlllc/dev
fix alignments of f0 and hubert
2023-11-12 17:40:42 +08:00
yxlllc
4303c5b18d fix alignments of f0 and hubert 2023-11-12 17:21:25 +08:00
github-actions[bot]
ee6c50bdbc
chore(format): run black on dev (#1484)
Co-authored-by: github-actions[bot] <github-actions[bot]@users.noreply.github.com>
2023-11-06 15:42:26 +09:00
CNajm
3f7644b56a
Fix error in index file path (#1502) 2023-11-06 15:41:25 +09:00
RVC-Boss
2b0971e917
Merge pull request #1483 from THE-SINDOL/main
French language in fr_FR.json
2023-10-29 12:37:07 +08:00
RVC-Boss
6567289a35
Merge branch 'dev' into main 2023-10-29 12:36:54 +08:00
RVC-Boss
dabbe708f7
Update README.md 2023-10-29 12:36:00 +08:00
THE-SINDOL
a51746555c
Update fr_FR.json
Changed chinese simplified language in french
2023-10-28 23:05:08 +02:00
github-actions[bot]
9c2afdbbc8
chore(format): run black on dev (#1447)
Co-authored-by: github-actions[bot] <github-actions[bot]@users.noreply.github.com>
2023-10-23 23:01:18 +09:00
github-actions[bot]
f431f8fb3f
chore(format): run black on main (#1448)
Co-authored-by: github-actions[bot] <github-actions[bot]@users.noreply.github.com>
2023-10-23 23:01:02 +09:00
RVC-Boss
318e8fd8cf
Add files via upload 2023-10-20 14:14:25 +08:00
RVC-Boss
ec1ccae300
Add files via upload 2023-10-20 14:13:57 +08:00
RVC-Boss
c8b6be0a53
Update train.py 2023-10-16 23:45:00 +08:00
RVC-Boss
3cc0964600
Update train.py 2023-10-16 23:44:41 +08:00
Ftps
0472bc5283
Update PULL_REQUEST_TEMPLATE.md (#1417) 2023-10-13 00:08:58 +09:00
RVC-Boss
cbe7934184
Merge pull request #1414 from RVC-Project/formatter-dev
chore(format): run black on dev
2023-10-11 10:23:58 +08:00
RVC-Boss
08b22f036e
Merge pull request #1413 from RVC-Project/formatter-main
chore(format): run black on main
2023-10-11 10:23:46 +08:00
github-actions[bot]
11b1cdded8 chore(format): run black on dev 2023-10-11 02:22:28 +00:00
RVC-Boss
3cc778ba6a
Add files via upload 2023-10-11 10:22:11 +08:00
github-actions[bot]
73078a3d24 chore(format): run black on main 2023-10-11 02:22:09 +00:00
RVC-Boss
45f868acad
Add files via upload 2023-10-11 10:21:51 +08:00
RVC-Boss
5e22271924
Merge pull request #1410 from RVC-Project/dev
chore(sync): merge dev into main
2023-10-10 17:23:18 +08:00
RVC-Boss
beb2f0d1d8
Merge pull request #1409 from RVC-Project/formatter-dev
chore(format): run black on dev
2023-10-10 17:22:18 +08:00
github-actions[bot]
886eeb0547 chore(format): run black on dev 2023-10-10 09:10:46 +00:00
RVC-Boss
7e4992eb22
Add files via upload 2023-10-10 17:10:18 +08:00
github-actions[bot]
c08426ac51
chore(sync): merge dev into main (#1408)
* Update mdxnet.py

* Update modules.py

* Rename preprocess.py to vr.py

* Add files via upload

* deps: add av lib (#1391)

* Add files via upload

* chore(format): run black on dev (#1398)

Co-authored-by: github-actions[bot] <github-actions[bot]@users.noreply.github.com>

* chore: sync dev to mian (#1404)

* Add files via upload

* Update rvc_for_realtime.py

* Add files via upload

* Add files via upload

* chore(format): run black on dev (#1407)

Co-authored-by: github-actions[bot] <github-actions[bot]@users.noreply.github.com>

---------

Co-authored-by: RVC-Boss <129054828+RVC-Boss@users.noreply.github.com>
Co-authored-by: Hiroto N <hironow365@gmail.com>
Co-authored-by: github-actions[bot] <41898282+github-actions[bot]@users.noreply.github.com>
Co-authored-by: github-actions[bot] <github-actions[bot]@users.noreply.github.com>
Co-authored-by: 源文雨 <41315874+fumiama@users.noreply.github.com>
2023-10-10 10:57:55 +08:00
github-actions[bot]
1e2648804c
chore(format): run black on dev (#1407)
Co-authored-by: github-actions[bot] <github-actions[bot]@users.noreply.github.com>
2023-10-10 10:57:00 +08:00
RVC-Boss
9cdc185c3a
Add files via upload 2023-10-10 10:56:07 +08:00
RVC-Boss
87f814659d
Add files via upload 2023-10-10 10:54:54 +08:00
RVC-Boss
392e5ac493
Update rvc_for_realtime.py 2023-10-09 21:21:35 +08:00
RVC-Boss
03ccd53ffe
Add files via upload 2023-10-09 15:38:59 +08:00
源文雨
d91cbec9f7
chore: sync dev to mian (#1404) 2023-10-09 15:23:11 +09:00
github-actions[bot]
1696c5356b
chore(sync): merge dev into main (#1399)
* Update mdxnet.py

* Update modules.py

* Rename preprocess.py to vr.py

* Add files via upload

* deps: add av lib (#1391)

* Add files via upload

* chore(format): run black on dev (#1398)

Co-authored-by: github-actions[bot] <github-actions[bot]@users.noreply.github.com>

---------

Co-authored-by: RVC-Boss <129054828+RVC-Boss@users.noreply.github.com>
Co-authored-by: Hiroto N <hironow365@gmail.com>
Co-authored-by: github-actions[bot] <41898282+github-actions[bot]@users.noreply.github.com>
Co-authored-by: github-actions[bot] <github-actions[bot]@users.noreply.github.com>
2023-10-08 18:54:58 +08:00
github-actions[bot]
634ba76cfa
chore(format): run black on dev (#1398)
Co-authored-by: github-actions[bot] <github-actions[bot]@users.noreply.github.com>
2023-10-08 18:54:15 +08:00
RVC-Boss
5c609190a2
Add files via upload 2023-10-08 18:40:45 +08:00
Hiroto N
891a81cd8d
deps: add av lib (#1391) 2023-10-08 18:31:39 +08:00
RVC-Boss
ec29cf8d65
Add files via upload 2023-10-08 18:31:09 +08:00
RVC-Boss
361e674054
Rename preprocess.py to vr.py 2023-10-08 18:30:54 +08:00
RVC-Boss
330ea00e5c
Update modules.py 2023-10-08 18:11:48 +08:00
RVC-Boss
04e03decc3
Update mdxnet.py 2023-10-08 18:09:59 +08:00
dependabot[bot]
1fdbb94811
chore(deps): bump urllib3 from 1.26.16 to 1.26.17 (#1374)
Bumps [urllib3](https://github.com/urllib3/urllib3) from 1.26.16 to 1.26.17.
- [Release notes](https://github.com/urllib3/urllib3/releases)
- [Changelog](https://github.com/urllib3/urllib3/blob/main/CHANGES.rst)
- [Commits](https://github.com/urllib3/urllib3/compare/1.26.16...1.26.17)

---
updated-dependencies:
- dependency-name: urllib3
  dependency-type: indirect
...

Signed-off-by: dependabot[bot] <support@github.com>
Co-authored-by: dependabot[bot] <49699333+dependabot[bot]@users.noreply.github.com>
2023-10-07 14:24:16 +09:00
github-actions[bot]
9f2f0559e6
chore(sync): merge dev into main (#1381)
* Optimize latency (#1259)

* add attribute:   configs/config.py
	Optimize latency:   tools/rvc_for_realtime.py

* new file:   assets/Synthesizer_inputs.pth

* fix:   configs/config.py
	fix:   tools/rvc_for_realtime.py

* fix bug:   infer/lib/infer_pack/models.py

* new file:   assets/hubert_inputs.pth
	new file:   assets/rmvpe_inputs.pth
	modified:   configs/config.py
	new features:   infer/lib/rmvpe.py
	new features:   tools/jit_export/__init__.py
	new features:   tools/jit_export/get_hubert.py
	new features:   tools/jit_export/get_rmvpe.py
	new features:   tools/jit_export/get_synthesizer.py
	optimize:   tools/rvc_for_realtime.py

* optimize:   tools/jit_export/get_synthesizer.py
	fix bug:   tools/jit_export/__init__.py

* Fixed a bug caused by using half on the CPU:   infer/lib/rmvpe.py
	Fixed a bug caused by using half on the CPU:   tools/jit_export/__init__.py
	Fixed CIRCULAR IMPORT:   tools/jit_export/get_rmvpe.py
	Fixed CIRCULAR IMPORT:   tools/jit_export/get_synthesizer.py
	Fixed a bug caused by using half on the CPU:   tools/rvc_for_realtime.py

* Remove useless code:   infer/lib/rmvpe.py

* Delete gui_v1 copy.py

* Delete .vscode/launch.json

* Delete jit_export_test.py

* Delete tools/rvc_for_realtime copy.py

* Delete configs/config.json

* Delete .gitignore

* Fix exceptions caused by switching inference devices:   infer/lib/rmvpe.py
	Fix exceptions caused by switching inference devices:   tools/jit_export/__init__.py
	Fix exceptions caused by switching inference devices:   tools/rvc_for_realtime.py

* restore

* replace(you can undo this commit)

* remove debug_print

---------

Co-authored-by: Ftps <ftpsflandre@gmail.com>

* Fixed some bugs when exporting ONNX model (#1254)

* fix import (#1280)

* fix import

* lint

* 🎨 同步 locale (#1242)

Co-authored-by: github-actions[bot] <github-actions[bot]@users.noreply.github.com>

* Fix jit load and import issue (#1282)

* fix jit model loading :   infer/lib/rmvpe.py

* modified:   assets/hubert/.gitignore
	move file:    assets/hubert_inputs.pth -> assets/hubert/hubert_inputs.pth
	modified:   assets/rmvpe/.gitignore
	move file:    assets/rmvpe_inputs.pth -> assets/rmvpe/rmvpe_inputs.pth
	fix import:   gui_v1.py

* feat(workflow): trigger on dev

* feat(workflow): add close-pr on non-dev branch

* Add input wav and delay time monitor for real-time gui (#1293)

* feat(workflow): trigger on dev

* feat(workflow): add close-pr on non-dev branch

* 🎨 同步 locale (#1289)

Co-authored-by: github-actions[bot] <github-actions[bot]@users.noreply.github.com>

* feat: edit PR template

* add input wav and delay time monitor

---------

Co-authored-by: 源文雨 <41315874+fumiama@users.noreply.github.com>
Co-authored-by: github-actions[bot] <41898282+github-actions[bot]@users.noreply.github.com>
Co-authored-by: github-actions[bot] <github-actions[bot]@users.noreply.github.com>
Co-authored-by: RVC-Boss <129054828+RVC-Boss@users.noreply.github.com>

* Optimize latency using scripted jit (#1291)

* feat(workflow): trigger on dev

* feat(workflow): add close-pr on non-dev branch

* 🎨 同步 locale (#1289)

Co-authored-by: github-actions[bot] <github-actions[bot]@users.noreply.github.com>

* feat: edit PR template

* Optimize-latency-using-scripted:   configs/config.py
	Optimize-latency-using-scripted:   infer/lib/infer_pack/attentions.py
	Optimize-latency-using-scripted:   infer/lib/infer_pack/commons.py
	Optimize-latency-using-scripted:   infer/lib/infer_pack/models.py
	Optimize-latency-using-scripted:   infer/lib/infer_pack/modules.py
	Optimize-latency-using-scripted:   infer/lib/jit/__init__.py
	Optimize-latency-using-scripted:   infer/lib/jit/get_hubert.py
	Optimize-latency-using-scripted:   infer/lib/jit/get_rmvpe.py
	Optimize-latency-using-scripted:   infer/lib/jit/get_synthesizer.py
	Optimize-latency-using-scripted:   infer/lib/rmvpe.py
	Optimize-latency-using-scripted:   tools/rvc_for_realtime.py

* modified:   infer/lib/infer_pack/models.py

* fix some bug:   configs/config.py
	fix some bug:   infer/lib/infer_pack/models.py
	fix some bug:   infer/lib/rmvpe.py

* Fixed abnormal reference of logger in multiprocessing:   infer/modules/train/train.py

---------

Co-authored-by: 源文雨 <41315874+fumiama@users.noreply.github.com>
Co-authored-by: github-actions[bot] <41898282+github-actions[bot]@users.noreply.github.com>
Co-authored-by: github-actions[bot] <github-actions[bot]@users.noreply.github.com>

* Format code (#1298)

Co-authored-by: github-actions[bot] <github-actions[bot]@users.noreply.github.com>

* 🎨 同步 locale (#1299)

Co-authored-by: github-actions[bot] <github-actions[bot]@users.noreply.github.com>

* feat: optimize actions

* feat(workflow): add sync dev

* feat: optimize actions

* feat: optimize actions

* feat: optimize actions

* feat: optimize actions

* feat: add jit options (#1303)

Delete useless code:   infer/lib/jit/get_synthesizer.py
	Optimized code:   tools/rvc_for_realtime.py

* Code refactor + re-design inference ui (#1304)

* Code refacor + re-design inference ui

* Fix tabname

* i18n jp

---------

Co-authored-by: Ftps <ftpsflandre@gmail.com>

* feat: optimize actions

* feat: optimize actions

* Update README & en_US locale file (#1309)

* critical: some bug fixes (#1322)

* JIT acceleration switch does not support hot update

* fix padding bug of rmvpe in torch-directml

* fix padding bug of rmvpe in torch-directml

* Fix STFT under torch_directml (#1330)

* chore(format): run black on dev (#1318)

Co-authored-by: github-actions[bot] <github-actions[bot]@users.noreply.github.com>

* chore(i18n): sync locale on dev (#1317)

Co-authored-by: github-actions[bot] <github-actions[bot]@users.noreply.github.com>

* feat: allow for tta to be passed to uvr (#1361)

* chore(format): run black on dev (#1373)

Co-authored-by: github-actions[bot] <github-actions[bot]@users.noreply.github.com>

* Added script for automatically download all needed models at install (#1366)

* Delete modules.py

* Add files via upload

* Add files via upload

* Add files via upload

* Add files via upload

* chore(i18n): sync locale on dev (#1377)

Co-authored-by: github-actions[bot] <github-actions[bot]@users.noreply.github.com>

* chore(format): run black on dev (#1376)

Co-authored-by: github-actions[bot] <github-actions[bot]@users.noreply.github.com>

* Update IPEX library (#1362)

* Update IPEX library

* Update ipex index

* chore(format): run black on dev (#1378)

Co-authored-by: github-actions[bot] <github-actions[bot]@users.noreply.github.com>

* Update Changelog_CN.md

* Update Changelog_CN.md

* Update Changelog_EN.md

* Update README.md

* Update README.en.md

* Update README.md

* Update Changelog_CN.md

---------

Co-authored-by: Chengjia Jiang <46401978+ChasonJiang@users.noreply.github.com>
Co-authored-by: Ftps <ftpsflandre@gmail.com>
Co-authored-by: shizuku_nia <102004222+ShizukuNia@users.noreply.github.com>
Co-authored-by: Ftps <63702646+Tps-F@users.noreply.github.com>
Co-authored-by: github-actions[bot] <41898282+github-actions[bot]@users.noreply.github.com>
Co-authored-by: github-actions[bot] <github-actions[bot]@users.noreply.github.com>
Co-authored-by: 源文雨 <41315874+fumiama@users.noreply.github.com>
Co-authored-by: yxlllc <33565655+yxlllc@users.noreply.github.com>
Co-authored-by: RVC-Boss <129054828+RVC-Boss@users.noreply.github.com>
Co-authored-by: Blaise <133521603+blaise-tk@users.noreply.github.com>
Co-authored-by: Rice Cake <gak141808@gmail.com>
Co-authored-by: AWAS666 <33494149+AWAS666@users.noreply.github.com>
Co-authored-by: Dmitry <nda2911@yandex.ru>
Co-authored-by: Disty0 <47277141+Disty0@users.noreply.github.com>
2023-10-06 21:35:22 +08:00
github-actions[bot]
690da84650
chore(sync): merge dev into main (#1380)
* Optimize latency (#1259)

* add attribute:   configs/config.py
	Optimize latency:   tools/rvc_for_realtime.py

* new file:   assets/Synthesizer_inputs.pth

* fix:   configs/config.py
	fix:   tools/rvc_for_realtime.py

* fix bug:   infer/lib/infer_pack/models.py

* new file:   assets/hubert_inputs.pth
	new file:   assets/rmvpe_inputs.pth
	modified:   configs/config.py
	new features:   infer/lib/rmvpe.py
	new features:   tools/jit_export/__init__.py
	new features:   tools/jit_export/get_hubert.py
	new features:   tools/jit_export/get_rmvpe.py
	new features:   tools/jit_export/get_synthesizer.py
	optimize:   tools/rvc_for_realtime.py

* optimize:   tools/jit_export/get_synthesizer.py
	fix bug:   tools/jit_export/__init__.py

* Fixed a bug caused by using half on the CPU:   infer/lib/rmvpe.py
	Fixed a bug caused by using half on the CPU:   tools/jit_export/__init__.py
	Fixed CIRCULAR IMPORT:   tools/jit_export/get_rmvpe.py
	Fixed CIRCULAR IMPORT:   tools/jit_export/get_synthesizer.py
	Fixed a bug caused by using half on the CPU:   tools/rvc_for_realtime.py

* Remove useless code:   infer/lib/rmvpe.py

* Delete gui_v1 copy.py

* Delete .vscode/launch.json

* Delete jit_export_test.py

* Delete tools/rvc_for_realtime copy.py

* Delete configs/config.json

* Delete .gitignore

* Fix exceptions caused by switching inference devices:   infer/lib/rmvpe.py
	Fix exceptions caused by switching inference devices:   tools/jit_export/__init__.py
	Fix exceptions caused by switching inference devices:   tools/rvc_for_realtime.py

* restore

* replace(you can undo this commit)

* remove debug_print

---------

Co-authored-by: Ftps <ftpsflandre@gmail.com>

* Fixed some bugs when exporting ONNX model (#1254)

* fix import (#1280)

* fix import

* lint

* 🎨 同步 locale (#1242)

Co-authored-by: github-actions[bot] <github-actions[bot]@users.noreply.github.com>

* Fix jit load and import issue (#1282)

* fix jit model loading :   infer/lib/rmvpe.py

* modified:   assets/hubert/.gitignore
	move file:    assets/hubert_inputs.pth -> assets/hubert/hubert_inputs.pth
	modified:   assets/rmvpe/.gitignore
	move file:    assets/rmvpe_inputs.pth -> assets/rmvpe/rmvpe_inputs.pth
	fix import:   gui_v1.py

* feat(workflow): trigger on dev

* feat(workflow): add close-pr on non-dev branch

* Add input wav and delay time monitor for real-time gui (#1293)

* feat(workflow): trigger on dev

* feat(workflow): add close-pr on non-dev branch

* 🎨 同步 locale (#1289)

Co-authored-by: github-actions[bot] <github-actions[bot]@users.noreply.github.com>

* feat: edit PR template

* add input wav and delay time monitor

---------

Co-authored-by: 源文雨 <41315874+fumiama@users.noreply.github.com>
Co-authored-by: github-actions[bot] <41898282+github-actions[bot]@users.noreply.github.com>
Co-authored-by: github-actions[bot] <github-actions[bot]@users.noreply.github.com>
Co-authored-by: RVC-Boss <129054828+RVC-Boss@users.noreply.github.com>

* Optimize latency using scripted jit (#1291)

* feat(workflow): trigger on dev

* feat(workflow): add close-pr on non-dev branch

* 🎨 同步 locale (#1289)

Co-authored-by: github-actions[bot] <github-actions[bot]@users.noreply.github.com>

* feat: edit PR template

* Optimize-latency-using-scripted:   configs/config.py
	Optimize-latency-using-scripted:   infer/lib/infer_pack/attentions.py
	Optimize-latency-using-scripted:   infer/lib/infer_pack/commons.py
	Optimize-latency-using-scripted:   infer/lib/infer_pack/models.py
	Optimize-latency-using-scripted:   infer/lib/infer_pack/modules.py
	Optimize-latency-using-scripted:   infer/lib/jit/__init__.py
	Optimize-latency-using-scripted:   infer/lib/jit/get_hubert.py
	Optimize-latency-using-scripted:   infer/lib/jit/get_rmvpe.py
	Optimize-latency-using-scripted:   infer/lib/jit/get_synthesizer.py
	Optimize-latency-using-scripted:   infer/lib/rmvpe.py
	Optimize-latency-using-scripted:   tools/rvc_for_realtime.py

* modified:   infer/lib/infer_pack/models.py

* fix some bug:   configs/config.py
	fix some bug:   infer/lib/infer_pack/models.py
	fix some bug:   infer/lib/rmvpe.py

* Fixed abnormal reference of logger in multiprocessing:   infer/modules/train/train.py

---------

Co-authored-by: 源文雨 <41315874+fumiama@users.noreply.github.com>
Co-authored-by: github-actions[bot] <41898282+github-actions[bot]@users.noreply.github.com>
Co-authored-by: github-actions[bot] <github-actions[bot]@users.noreply.github.com>

* Format code (#1298)

Co-authored-by: github-actions[bot] <github-actions[bot]@users.noreply.github.com>

* 🎨 同步 locale (#1299)

Co-authored-by: github-actions[bot] <github-actions[bot]@users.noreply.github.com>

* feat: optimize actions

* feat(workflow): add sync dev

* feat: optimize actions

* feat: optimize actions

* feat: optimize actions

* feat: optimize actions

* feat: add jit options (#1303)

Delete useless code:   infer/lib/jit/get_synthesizer.py
	Optimized code:   tools/rvc_for_realtime.py

* Code refactor + re-design inference ui (#1304)

* Code refacor + re-design inference ui

* Fix tabname

* i18n jp

---------

Co-authored-by: Ftps <ftpsflandre@gmail.com>

* feat: optimize actions

* feat: optimize actions

* Update README & en_US locale file (#1309)

* critical: some bug fixes (#1322)

* JIT acceleration switch does not support hot update

* fix padding bug of rmvpe in torch-directml

* fix padding bug of rmvpe in torch-directml

* Fix STFT under torch_directml (#1330)

* chore(format): run black on dev (#1318)

Co-authored-by: github-actions[bot] <github-actions[bot]@users.noreply.github.com>

* chore(i18n): sync locale on dev (#1317)

Co-authored-by: github-actions[bot] <github-actions[bot]@users.noreply.github.com>

* feat: allow for tta to be passed to uvr (#1361)

* chore(format): run black on dev (#1373)

Co-authored-by: github-actions[bot] <github-actions[bot]@users.noreply.github.com>

* Added script for automatically download all needed models at install (#1366)

* Delete modules.py

* Add files via upload

* Add files via upload

* Add files via upload

* Add files via upload

* chore(i18n): sync locale on dev (#1377)

Co-authored-by: github-actions[bot] <github-actions[bot]@users.noreply.github.com>

* chore(format): run black on dev (#1376)

Co-authored-by: github-actions[bot] <github-actions[bot]@users.noreply.github.com>

* Update IPEX library (#1362)

* Update IPEX library

* Update ipex index

* chore(format): run black on dev (#1378)

Co-authored-by: github-actions[bot] <github-actions[bot]@users.noreply.github.com>

* Update Changelog_CN.md

* Update Changelog_CN.md

* Update Changelog_EN.md

* Update README.md

* Update README.en.md

* Update README.md

---------

Co-authored-by: Chengjia Jiang <46401978+ChasonJiang@users.noreply.github.com>
Co-authored-by: Ftps <ftpsflandre@gmail.com>
Co-authored-by: shizuku_nia <102004222+ShizukuNia@users.noreply.github.com>
Co-authored-by: Ftps <63702646+Tps-F@users.noreply.github.com>
Co-authored-by: github-actions[bot] <41898282+github-actions[bot]@users.noreply.github.com>
Co-authored-by: github-actions[bot] <github-actions[bot]@users.noreply.github.com>
Co-authored-by: 源文雨 <41315874+fumiama@users.noreply.github.com>
Co-authored-by: yxlllc <33565655+yxlllc@users.noreply.github.com>
Co-authored-by: RVC-Boss <129054828+RVC-Boss@users.noreply.github.com>
Co-authored-by: Blaise <133521603+blaise-tk@users.noreply.github.com>
Co-authored-by: Rice Cake <gak141808@gmail.com>
Co-authored-by: AWAS666 <33494149+AWAS666@users.noreply.github.com>
Co-authored-by: Dmitry <nda2911@yandex.ru>
Co-authored-by: Disty0 <47277141+Disty0@users.noreply.github.com>
2023-10-06 19:11:58 +08:00
github-actions[bot]
e9dd11bddb
chore(sync): merge dev into main (#1379)
* Optimize latency (#1259)

* add attribute:   configs/config.py
	Optimize latency:   tools/rvc_for_realtime.py

* new file:   assets/Synthesizer_inputs.pth

* fix:   configs/config.py
	fix:   tools/rvc_for_realtime.py

* fix bug:   infer/lib/infer_pack/models.py

* new file:   assets/hubert_inputs.pth
	new file:   assets/rmvpe_inputs.pth
	modified:   configs/config.py
	new features:   infer/lib/rmvpe.py
	new features:   tools/jit_export/__init__.py
	new features:   tools/jit_export/get_hubert.py
	new features:   tools/jit_export/get_rmvpe.py
	new features:   tools/jit_export/get_synthesizer.py
	optimize:   tools/rvc_for_realtime.py

* optimize:   tools/jit_export/get_synthesizer.py
	fix bug:   tools/jit_export/__init__.py

* Fixed a bug caused by using half on the CPU:   infer/lib/rmvpe.py
	Fixed a bug caused by using half on the CPU:   tools/jit_export/__init__.py
	Fixed CIRCULAR IMPORT:   tools/jit_export/get_rmvpe.py
	Fixed CIRCULAR IMPORT:   tools/jit_export/get_synthesizer.py
	Fixed a bug caused by using half on the CPU:   tools/rvc_for_realtime.py

* Remove useless code:   infer/lib/rmvpe.py

* Delete gui_v1 copy.py

* Delete .vscode/launch.json

* Delete jit_export_test.py

* Delete tools/rvc_for_realtime copy.py

* Delete configs/config.json

* Delete .gitignore

* Fix exceptions caused by switching inference devices:   infer/lib/rmvpe.py
	Fix exceptions caused by switching inference devices:   tools/jit_export/__init__.py
	Fix exceptions caused by switching inference devices:   tools/rvc_for_realtime.py

* restore

* replace(you can undo this commit)

* remove debug_print

---------

Co-authored-by: Ftps <ftpsflandre@gmail.com>

* Fixed some bugs when exporting ONNX model (#1254)

* fix import (#1280)

* fix import

* lint

* 🎨 同步 locale (#1242)

Co-authored-by: github-actions[bot] <github-actions[bot]@users.noreply.github.com>

* Fix jit load and import issue (#1282)

* fix jit model loading :   infer/lib/rmvpe.py

* modified:   assets/hubert/.gitignore
	move file:    assets/hubert_inputs.pth -> assets/hubert/hubert_inputs.pth
	modified:   assets/rmvpe/.gitignore
	move file:    assets/rmvpe_inputs.pth -> assets/rmvpe/rmvpe_inputs.pth
	fix import:   gui_v1.py

* feat(workflow): trigger on dev

* feat(workflow): add close-pr on non-dev branch

* Add input wav and delay time monitor for real-time gui (#1293)

* feat(workflow): trigger on dev

* feat(workflow): add close-pr on non-dev branch

* 🎨 同步 locale (#1289)

Co-authored-by: github-actions[bot] <github-actions[bot]@users.noreply.github.com>

* feat: edit PR template

* add input wav and delay time monitor

---------

Co-authored-by: 源文雨 <41315874+fumiama@users.noreply.github.com>
Co-authored-by: github-actions[bot] <41898282+github-actions[bot]@users.noreply.github.com>
Co-authored-by: github-actions[bot] <github-actions[bot]@users.noreply.github.com>
Co-authored-by: RVC-Boss <129054828+RVC-Boss@users.noreply.github.com>

* Optimize latency using scripted jit (#1291)

* feat(workflow): trigger on dev

* feat(workflow): add close-pr on non-dev branch

* 🎨 同步 locale (#1289)

Co-authored-by: github-actions[bot] <github-actions[bot]@users.noreply.github.com>

* feat: edit PR template

* Optimize-latency-using-scripted:   configs/config.py
	Optimize-latency-using-scripted:   infer/lib/infer_pack/attentions.py
	Optimize-latency-using-scripted:   infer/lib/infer_pack/commons.py
	Optimize-latency-using-scripted:   infer/lib/infer_pack/models.py
	Optimize-latency-using-scripted:   infer/lib/infer_pack/modules.py
	Optimize-latency-using-scripted:   infer/lib/jit/__init__.py
	Optimize-latency-using-scripted:   infer/lib/jit/get_hubert.py
	Optimize-latency-using-scripted:   infer/lib/jit/get_rmvpe.py
	Optimize-latency-using-scripted:   infer/lib/jit/get_synthesizer.py
	Optimize-latency-using-scripted:   infer/lib/rmvpe.py
	Optimize-latency-using-scripted:   tools/rvc_for_realtime.py

* modified:   infer/lib/infer_pack/models.py

* fix some bug:   configs/config.py
	fix some bug:   infer/lib/infer_pack/models.py
	fix some bug:   infer/lib/rmvpe.py

* Fixed abnormal reference of logger in multiprocessing:   infer/modules/train/train.py

---------

Co-authored-by: 源文雨 <41315874+fumiama@users.noreply.github.com>
Co-authored-by: github-actions[bot] <41898282+github-actions[bot]@users.noreply.github.com>
Co-authored-by: github-actions[bot] <github-actions[bot]@users.noreply.github.com>

* Format code (#1298)

Co-authored-by: github-actions[bot] <github-actions[bot]@users.noreply.github.com>

* 🎨 同步 locale (#1299)

Co-authored-by: github-actions[bot] <github-actions[bot]@users.noreply.github.com>

* feat: optimize actions

* feat(workflow): add sync dev

* feat: optimize actions

* feat: optimize actions

* feat: optimize actions

* feat: optimize actions

* feat: add jit options (#1303)

Delete useless code:   infer/lib/jit/get_synthesizer.py
	Optimized code:   tools/rvc_for_realtime.py

* Code refactor + re-design inference ui (#1304)

* Code refacor + re-design inference ui

* Fix tabname

* i18n jp

---------

Co-authored-by: Ftps <ftpsflandre@gmail.com>

* feat: optimize actions

* feat: optimize actions

* Update README & en_US locale file (#1309)

* critical: some bug fixes (#1322)

* JIT acceleration switch does not support hot update

* fix padding bug of rmvpe in torch-directml

* fix padding bug of rmvpe in torch-directml

* Fix STFT under torch_directml (#1330)

* chore(format): run black on dev (#1318)

Co-authored-by: github-actions[bot] <github-actions[bot]@users.noreply.github.com>

* chore(i18n): sync locale on dev (#1317)

Co-authored-by: github-actions[bot] <github-actions[bot]@users.noreply.github.com>

* feat: allow for tta to be passed to uvr (#1361)

* chore(format): run black on dev (#1373)

Co-authored-by: github-actions[bot] <github-actions[bot]@users.noreply.github.com>

* Added script for automatically download all needed models at install (#1366)

* Delete modules.py

* Add files via upload

* Add files via upload

* Add files via upload

* Add files via upload

* chore(i18n): sync locale on dev (#1377)

Co-authored-by: github-actions[bot] <github-actions[bot]@users.noreply.github.com>

* chore(format): run black on dev (#1376)

Co-authored-by: github-actions[bot] <github-actions[bot]@users.noreply.github.com>

* Update IPEX library (#1362)

* Update IPEX library

* Update ipex index

* chore(format): run black on dev (#1378)

Co-authored-by: github-actions[bot] <github-actions[bot]@users.noreply.github.com>

---------

Co-authored-by: Chengjia Jiang <46401978+ChasonJiang@users.noreply.github.com>
Co-authored-by: Ftps <ftpsflandre@gmail.com>
Co-authored-by: shizuku_nia <102004222+ShizukuNia@users.noreply.github.com>
Co-authored-by: Ftps <63702646+Tps-F@users.noreply.github.com>
Co-authored-by: github-actions[bot] <41898282+github-actions[bot]@users.noreply.github.com>
Co-authored-by: github-actions[bot] <github-actions[bot]@users.noreply.github.com>
Co-authored-by: 源文雨 <41315874+fumiama@users.noreply.github.com>
Co-authored-by: yxlllc <33565655+yxlllc@users.noreply.github.com>
Co-authored-by: RVC-Boss <129054828+RVC-Boss@users.noreply.github.com>
Co-authored-by: Blaise <133521603+blaise-tk@users.noreply.github.com>
Co-authored-by: Rice Cake <gak141808@gmail.com>
Co-authored-by: AWAS666 <33494149+AWAS666@users.noreply.github.com>
Co-authored-by: Dmitry <nda2911@yandex.ru>
Co-authored-by: Disty0 <47277141+Disty0@users.noreply.github.com>
2023-10-06 17:14:33 +08:00
源文雨
fe166e7f3d feat: optimize actions 2023-09-23 14:01:58 +09:00
源文雨
83feaa7300 feat: optimize actions 2023-09-23 13:58:28 +09:00
源文雨
937d748c67 feat: optimize actions 2023-09-22 00:18:10 +09:00
源文雨
12a85111b1 feat: optimize actions 2023-09-22 00:16:49 +09:00
源文雨
6ce02c88a5 feat: optimize actions 2023-09-22 00:10:24 +09:00
源文雨
6a235eb926 feat: optimize actions 2023-09-22 00:10:16 +09:00
源文雨
9aeb950aea feat(workflow): add sync dev 2023-09-22 00:10:08 +09:00
源文雨
0f34027cca feat: optimize actions 2023-09-22 00:09:59 +09:00
github-actions[bot]
f33f18cb0a
🎨 同步 locale (#1297)
Co-authored-by: github-actions[bot] <github-actions[bot]@users.noreply.github.com>
2023-09-21 23:19:52 +09:00
github-actions[bot]
4a804fbcbb
Format code (#1296)
Co-authored-by: github-actions[bot] <github-actions[bot]@users.noreply.github.com>
2023-09-21 23:18:12 +09:00
yxlllc
ac1397f3f9
add input wav and delay time monitor (#1295) 2023-09-21 23:17:06 +09:00
源文雨
a47aad5a3c feat: edit PR template 2023-09-20 23:19:06 +09:00
github-actions[bot]
4b526ba8c0
🎨 同步 locale (#1289)
Co-authored-by: github-actions[bot] <github-actions[bot]@users.noreply.github.com>
2023-09-20 23:16:55 +09:00
源文雨
703b16a573 feat(workflow): add close-pr on non-dev branch 2023-09-20 23:15:11 +09:00
源文雨
056d00ce24 feat(workflow): trigger on dev 2023-09-20 23:15:08 +09:00
Ftps
36456e3908
replace warn (#1255) 2023-09-19 21:15:30 +09:00
Ftps
1d86fb7a87
Revert "Update README.md (#1257)" (#1274)
This reverts commit aa2ed8e646c9b2e059f8eb5c7bb31dbf9c5ee303.
2023-09-18 14:50:30 +00:00
yxlllc
cfba44f24f
Fix alignment error of rmvpe for real-time GUI (#1275)
* loudness factor control and gpu-accelerated noise reduction

* loudness factor control and gpu-accelerated noise reduction

* loudness factor control and gpu-accelerated noise reduction

* streaming noise reduction and other optimizations

* streaming noise reduction and other optimizations

* fix alignment error of rmvpe
2023-09-18 14:31:00 +00:00
Sh Raj
aa2ed8e646
Update README.md (#1257) 2023-09-18 10:50:24 +09:00
Ftps
09fc351828
fix file location (#1239) 2023-09-17 07:37:15 +09:00
Isaac Tay
644b595287
fix: typo for rmvpe location in Dockerfile (#1261) 2023-09-17 07:29:17 +09:00
WorXeN
050ffd07e8
ROCm support for AMD GPUs on Linux (#1248)
* Added requirements for AMD GPUs
* Updated README with instructions on how to use RVC with ROCm
2023-09-15 10:41:38 +09:00
github-actions[bot]
a6456f6d46
Format code (#1193)
Co-authored-by: github-actions[bot] <github-actions[bot]@users.noreply.github.com>
2023-09-14 09:34:30 +09:00
RVC-Boss
72a18e66b6
Add files via upload 2023-09-13 11:33:48 +08:00
RVC-Boss
43c4f43f44
Add files via upload 2023-09-13 11:32:35 +08:00
Abdellah derfoufi
50d0f2fa1e
Added NVIDIA GPU support to Docker (#1231)
* Added NVIDIA GPU support to Docker

* feat: Added NVIDIA GPU support to Docker

---------

Co-authored-by: Abdellah Derfoufi <mohammed-abdellah.derfoufi@capgemini.com>
2023-09-13 00:18:04 +09:00
Jin Hyung Ahn
e4e2f7f1ed
feat : add api_name for get_vc (#1224) 2023-09-13 00:17:43 +09:00
James
d009111b3f
Do not adjust vc's sample rate, just return the target resampe rate when required. Fixes #1233 (#1234) 2023-09-12 21:24:30 +09:00
Jin Hyung Ahn
4aa896d0f3
chore: update localization files for vc_multi inputs (#1210) 2023-09-09 04:06:52 +00:00
Disty0
0c94f60093
Feature: Intel ARC GPU support with IPEX (#1204)
* Initial Intel ARC support with IPEX

* Fix infer

* Fix train model

* Cleanup

* Cleanup

* Update README

* Make pylint happy

* Move dataloader fix to hijacks

* Fix torch.linalg.solve

* Fix SDP

* Add has_xpu to config.py

* Revert return_xpu fix
2023-09-09 12:00:29 +08:00
源文雨
c761bda09a
fix: remove pull_format commit-back 2023-09-09 11:59:50 +08:00
NULL
569fcd8048
Update Dockerfile (#1195)
删除Docker镜像构建时的安装缓存以及禁用Python依赖安装时的缓存。可以降低最终镜像大小
2023-09-05 16:07:36 +09:00
towzeur
05876e6fc0
add FR locale (#1191) 2023-09-05 16:04:51 +09:00
陈然
8d050b6bfc
fix: fix log warning (#1192) 2023-09-04 15:09:54 +00:00
yxlllc
a669fee786
Streaming noise reduction and other optimizations for real-time gui (#1188)
* loudness factor control and gpu-accelerated noise reduction

* loudness factor control and gpu-accelerated noise reduction

* loudness factor control and gpu-accelerated noise reduction

* streaming noise reduction and other optimizations

* streaming noise reduction and other optimizations
2023-09-04 17:01:11 +08:00
nsʇnɾ ʇǝɹɔǝs
b09b6ad05c
Added french FAQ (#1185) 2023-09-04 11:00:53 +09:00
源文雨
94277fd71e optimize(ffmpeg): replace cmdline ffmpeg to pyav
except uvr5
2023-09-03 15:19:19 +08:00
Blaise
90a4d9474a
fix spanish (#1175) 2023-09-03 14:11:42 +08:00
jhhong
0a0810199c
Update Changelog_KO.md (#1173)
2023-08-13 change log 추가
2023-09-03 14:11:01 +08:00
yxlllc
1457169e7a
Update real-time gui (#1174)
* loudness factor control and gpu-accelerated noise reduction

* loudness factor control and gpu-accelerated noise reduction

* loudness factor control and gpu-accelerated noise reduction
2023-09-03 13:57:31 +08:00
源文雨
b5050fbf0d feat: gui use dotenv 2023-09-03 02:07:49 +08:00
源文雨
bce6fd7dcd fix: unit test 2023-09-03 02:03:02 +08:00
github-actions[bot]
c7bbf0bfd0
Format code (#1169)
Co-authored-by: github-actions[bot] <github-actions[bot]@users.noreply.github.com>
2023-09-02 16:14:32 +08:00
yxlllc
0fc160c03e
optimize the streaming f0 exatrators (#1168) 2023-09-02 15:45:50 +08:00
源文雨
ad85b02ed9 optimize: no json config writeback 2023-09-02 13:53:56 +08:00
源文雨
3f78b73ec7 optimize: logger format 2023-09-02 12:18:56 +08:00
源文雨
46f42fff76 fix: models logger 2023-09-02 12:14:55 +08:00
源文雨
b3f22dcdef fix: all logger format
according to #1159
2023-09-02 12:09:19 +08:00
github-actions[bot]
dace5a6f99
Format code (#1162)
Co-authored-by: github-actions[bot] <github-actions[bot]@users.noreply.github.com>
2023-09-02 11:50:52 +08:00
陈然
a86806b01a
fix: logger wrong call (#1159)
* fix: logger wrong call

* fix: log error in rvc_for_realtime.py
2023-09-02 11:02:46 +08:00
源文雨
04a33b9709 fix: 卸载音色省显存
顺便将所有print换成了统一的logger
2023-09-01 15:18:08 +08:00
源文雨
8d5a77dbe9
Revert "Format code (#1154)" (#1156)
This reverts commit eefb7dbe1d253c13321912a7d10ea186248dcfe1.
2023-09-01 15:17:51 +08:00
github-actions[bot]
eefb7dbe1d
Format code (#1154)
Co-authored-by: github-actions[bot] <github-actions[bot]@users.noreply.github.com>
2023-09-01 14:13:25 +08:00
源文雨
8ffdcb0128 fix: index_root searching
close #1147
2023-09-01 14:11:55 +08:00
github-actions[bot]
d634c2727e
Format code (#1153)
Co-authored-by: github-actions[bot] <github-actions[bot]@users.noreply.github.com>
2023-09-01 12:03:35 +08:00
yxlllc
0c75454ddf
Parameter hot update (#1148) 2023-09-01 10:16:49 +08:00
github-actions[bot]
a05c72ec6f
Format code (#1142)
Co-authored-by: github-actions[bot] <github-actions[bot]@users.noreply.github.com>
2023-08-31 22:10:01 +08:00
Nato Boram
45289e2d3d
chore: Add back important .gitignore entries (#1125)
* 🙈 Add back temp files to gitignore

* 🙈 Add asdf to gitignore
2023-08-31 22:06:59 +08:00
RVC-Boss
259ea663d4
Update utils.py 2023-08-31 17:51:55 +08:00
RVC-Boss
ca2308fd2f
Update README.ko.md 2023-08-31 17:12:03 +08:00
RVC-Boss
2718199873
Update README.ko.han.md 2023-08-31 17:11:59 +08:00
RVC-Boss
18bc252d18
Update README.tr.md 2023-08-31 17:11:54 +08:00
RVC-Boss
ff173a32ca
Update README.ja.md 2023-08-31 17:11:44 +08:00
RVC-Boss
857821effc
Update README.en.md 2023-08-31 17:11:37 +08:00
RVC-Boss
39d09fdd11
Update faq_en.md 2023-08-31 16:58:18 +08:00
RVC-Boss
3801a75a5e
Update faq.md 2023-08-31 16:57:45 +08:00
RVC-Boss
2b3fa02d6b
Update faq_en.md 2023-08-31 16:48:21 +08:00
RVC-Boss
91c2ff5f34
Update faq.md 2023-08-31 16:47:51 +08:00
Ftps
0e39374eaf
Update LICENSE (#1137)
From: #1056
2023-08-30 20:45:15 +08:00
RVC-Boss
241e877611
Add files via upload 2023-08-30 20:31:56 +08:00
github-actions[bot]
ce8177a932
Format code (#1136)
Co-authored-by: github-actions[bot] <github-actions[bot]@users.noreply.github.com>
2023-08-30 19:03:21 +08:00
RVC-Boss
2419d5e1a9
Add files via upload 2023-08-30 19:02:41 +08:00
RVC-Boss
9a4b4d0271
Update gui_v1.py 2023-08-30 19:00:27 +08:00
RVC-Boss
47148851f8
Update config.py 2023-08-30 18:57:40 +08:00
RVC-Boss
8054281b24
Add files via upload 2023-08-30 17:46:45 +08:00
RVC-Boss
2c158bfeac
Add files via upload 2023-08-30 17:46:02 +08:00
RVC-Boss
934cdbb227
Update .env 2023-08-30 17:43:23 +08:00
RVC-Boss
10dc1350a5
Add files via upload 2023-08-30 17:43:06 +08:00
Nato Boram
97e9617efc
poetry add python-dotenv (#1126)
Co-authored-by: RVC-Boss <129054828+RVC-Boss@users.noreply.github.com>
2023-08-30 17:24:34 +08:00
Ftps
fa1be6b349
fix requirements (#1124) 2023-08-30 17:22:57 +08:00
Mert Sonmez
15a9223b06
Snmz tony native 1 (#1129) 2023-08-30 16:33:59 +09:00
github-actions[bot]
d9ada679b5
Format code (#1122)
Co-authored-by: github-actions[bot] <github-actions[bot]@users.noreply.github.com>
2023-08-30 00:31:03 +08:00
源文雨
5f5ec4749c fix: hubert 2023-08-30 00:29:57 +08:00
源文雨
8599b1e9ff fix: pretrained 2023-08-30 00:28:33 +08:00
源文雨
1890584496 fix: weights folder 2023-08-30 00:27:23 +08:00
源文雨
417c1e58a1 fix: requriements & config 2023-08-30 00:23:24 +08:00
github-actions[bot]
47a3882b3a
🎨 同步 locale (#1117)
Co-authored-by: github-actions[bot] <github-actions[bot]@users.noreply.github.com>
2023-08-30 00:02:34 +08:00
源文雨
5083f7fddc
Merge pull request #1056 from RVC-Project/clean
Cleanup RVC
2023-08-29 22:47:54 +08:00
Ftps
7f56639d5d Merge remote-tracking branch 'upstream/main' into clean 2023-08-29 20:41:34 +09:00
Ftps
d880f0d19f fix genlocale 2023-08-29 20:34:14 +09:00
RVC-Boss
2fd2f62c92
Update rvc_for_realtime.py 2023-08-29 18:53:33 +08:00
Ftps
50944921ae revert config.json 2023-08-29 19:36:51 +09:00
Ftps
ae171a1172 fix import 2023-08-29 17:15:19 +09:00
Ftps
784e8d1036 Merge branch 'clean' of https://github.com/RVC-Project/Retrieval-based-Voice-Conversion-WebUI into clean 2023-08-29 16:14:19 +09:00
Ftps
7348815c67 fix import 2023-08-29 16:14:11 +09:00
Tps-F
ccbb8e03d5 Apply Code Formatter Change 2023-08-29 07:01:02 +00:00
Ftps
89eecdceab fix gui_v1 2023-08-29 16:00:24 +09:00
Ftps
fd78036f64 fix gui_v1 2023-08-29 15:47:17 +09:00
Ftps
ea1047ec8e fix genlocale 2023-08-29 15:41:19 +09:00
Ftps
19670917c6 fix configs.json 2023-08-29 15:04:25 +09:00
Ftps
8eb87a4fd9 format 2023-08-28 23:58:50 +09:00
Ftps
cffdce2097 fix locale_diff.py 2023-08-28 23:58:20 +09:00
Ftps
73627d22bb fix import 2023-08-28 23:57:32 +09:00
Ftps
12331b41f5 add opt and more 2023-08-28 23:57:17 +09:00
Ftps
6e14c7b5f5 rewrite oneclick_train 2023-08-28 23:56:39 +09:00
Ftps
740625fd2b fix i18n 2023-08-28 21:58:36 +09:00
Ftps
a1bbcd6fd5 fix workflow 2023-08-28 16:33:44 +09:00
Ftps
87a3a4ea38 fix lib path 2023-08-28 16:27:51 +09:00
Ftps
29ae9d9d28 fix lib-path 2023-08-28 16:17:46 +09:00
Ftps
18d72f0c06 fix path 2023-08-28 16:16:31 +09:00
Ftps
58e32b6def format 2023-08-28 16:08:31 +09:00
Ftps
3c7f1f1407 replace files 2023-08-28 16:07:41 +09:00
Ftps
d70b3d6f46 docker path 2023-08-28 16:06:37 +09:00
Ftps
e1e947cf22 update readme 2023-08-28 16:00:51 +09:00
Ftps
424932c469 Delete duplicate files 2023-08-28 01:27:08 +09:00
Tps-F
72ff21a36e Apply Code Formatter Change 2023-08-27 16:15:44 +00:00
Ftps
34de3492f3 rewrite infer_cli 2023-08-28 01:14:36 +09:00
Ftps
aa37b92bd3 rewrite infer_batch_rvc.py 2023-08-28 00:36:56 +09:00
Ftps
0902f1711d sort import PEP8 2023-08-27 22:21:48 +09:00
Ftps
6e389cf915 fix docs path 2023-08-27 22:13:47 +09:00
Ftps
a93e4f1cc3 fix docs path(test) 2023-08-27 22:12:03 +09:00
Ftps
82900cdc90 fix docs path 2023-08-27 22:08:37 +09:00
Ftps
927fbeebe2 Place does by language 2023-08-27 22:04:13 +09:00
Ftps
ba2924b8d1 remove testprint 2023-08-27 20:03:27 +09:00
Ftps
9a10795908 repair app.py 2023-08-27 19:49:18 +09:00
Ftps
3f3177b5ce load audio with gradio-file 2023-08-27 19:14:01 +09:00
Ftps
5251e75ab1 fix path 2023-08-27 19:12:30 +09:00
Ftps
b831d67bbf Merge remote-tracking branch 'upstream/main' into clean 2023-08-27 13:26:10 +09:00
Ftps
180e7acd57 fix save arg 2023-08-27 13:25:42 +09:00
pcunwa
aef62e5012
Update ja_JP.json (#1101) 2023-08-27 12:49:08 +09:00
Ftps
6bf3a7f984 Merge branch 'clean' of https://github.com/RVC-Project/Retrieval-based-Voice-Conversion-WebUI into clean 2023-08-27 12:44:44 +09:00
Ftps
c25ad34a96 format 2023-08-27 12:44:35 +09:00
Tps-F
0ad6c2b720 Apply Code Formatter Change 2023-08-27 03:44:13 +00:00
Ftps
0cf6f96e17 Merge remote-tracking branch 'upstream/main' into clean 2023-08-27 12:43:37 +09:00
源文雨
3e455ece57 remove scipy version limit 2023-08-27 01:48:26 +08:00
dependabot[bot]
4d5202f1c0
Bump tornado from 6.3.2 to 6.3.3 (#1099)
Bumps [tornado](https://github.com/tornadoweb/tornado) from 6.3.2 to 6.3.3.
- [Changelog](https://github.com/tornadoweb/tornado/blob/master/docs/releases.rst)
- [Commits](https://github.com/tornadoweb/tornado/compare/v6.3.2...v6.3.3)

---
updated-dependencies:
- dependency-name: tornado
  dependency-type: direct:production
...

Signed-off-by: dependabot[bot] <support@github.com>
Co-authored-by: dependabot[bot] <49699333+dependabot[bot]@users.noreply.github.com>
2023-08-27 01:42:38 +08:00
dependabot[bot]
7f0c5524a2
Bump gradio from 3.14.0 to 3.34.0 (#1098)
Bumps [gradio](https://github.com/gradio-app/gradio) from 3.14.0 to 3.34.0.
- [Release notes](https://github.com/gradio-app/gradio/releases)
- [Changelog](https://github.com/gradio-app/gradio/blob/main/CHANGELOG.md)
- [Commits](https://github.com/gradio-app/gradio/compare/v3.14.0...v3.34.0)

---
updated-dependencies:
- dependency-name: gradio
  dependency-type: direct:production
...

Signed-off-by: dependabot[bot] <support@github.com>
Co-authored-by: dependabot[bot] <49699333+dependabot[bot]@users.noreply.github.com>
2023-08-27 01:34:06 +08:00
源文雨
ecc762b469 remove httpx version limit 2023-08-27 01:29:55 +08:00
源文雨
edcff1df04 optimize: run.sh 2023-08-27 01:21:18 +08:00
github-actions[bot]
e15b37e0ca
🎨 同步 locale (#1097)
Co-authored-by: github-actions[bot] <github-actions[bot]@users.noreply.github.com>
2023-08-27 01:05:36 +08:00
源文雨
3829cd1ff2 optimize: sort keys 2023-08-27 01:04:39 +08:00
github-actions[bot]
473c20c264
Format code (#1096)
Co-authored-by: github-actions[bot] <github-actions[bot]@users.noreply.github.com>
2023-08-27 01:02:39 +08:00
源文雨
3686c8b317 optimize: use scan_i18n -> extract_locale(#1058) 2023-08-27 01:01:43 +08:00
源文雨
edbf4b5139 optimize: move values1.json to configs/config.json 2023-08-27 00:46:03 +08:00
源文雨
e67cf66fe0 optimize: move vc_infer_pipeline to lib.train 2023-08-27 00:43:06 +08:00
源文雨
8c36dc2cc7 optimize: config 2023-08-27 00:35:39 +08:00
github-actions[bot]
80bf0cb8c8
🎨 同步 locale (#1093)
Co-authored-by: github-actions[bot] <github-actions[bot]@users.noreply.github.com>
2023-08-27 00:27:23 +08:00
源文雨
f70e662943 fix: genlocale 2023-08-27 00:26:08 +08:00
github-actions[bot]
64ac09bf66
Format code (#1076)
Co-authored-by: github-actions[bot] <github-actions[bot]@users.noreply.github.com>
2023-08-27 00:21:33 +08:00
Pranav Banuru
ef738704d0
Fix command execution by quoting config.python_cmd (#1030) (#1034)
* Step 2a fix by quoting config.python_cmd (#1030)

- Ensure `config.python_cmd` is properly quoted when constructing command strings.
- Address issue where paths with spaces (e.g., "C:\Program Files\...") caused command execution failure on Windows during training.
- This is a fix for step 2a of training.

* Step 2b rmvpe_gpu fix by quoting config.python_cmd (#1030)

- Ensure `config.python_cmd` is properly quoted when constructing command strings.
- Address issue where paths with spaces (e.g., "C:\Program Files\...") caused command execution failure on Windows during training.
- This is a fix for step 2b of training (rmvpe_gpu) mode specifically.

* Step 2b pm fix by quoting config.python_cmd (#1030)

- Quoted `config.python_cmd` to ensure proper command string construction.
- Resolved an issue where paths with spaces, like "C:\Program Files\...", caused execution failures on Windows during training.
- While this fix targets Step 2b of training (pm mode), it might also address issues in other modes (harvest, dio, rmvpe). I've only verified the fix post-change for these modes.

* Step 3 Train model fix by quoting config.python_cmd (#1030)

- Ensure `config.python_cmd` is properly quoted when constructing command strings.
- Address issue where paths with spaces (e.g., "C:\Program Files\...") caused command execution failure on Windows during training.
- This is a fix for step 3 of training: (Train model) button specifically.
    Train feature index seems to be working correctly, I have only verified this post-fix.
    I've not yet tested the "One-click training" button.

* Quote config.python_cmd for Step 3 One-click training (#1030)

- Addressed an issue where paths with spaces (e.g., "C:\Program Files\...") caused command execution failures on Windows during training.
- Specifically, ensured `config.python_cmd` is properly quoted when constructing command strings for step 3 of training (One-click training button).

Notes:
- All remaining instances of unquoted `config.python_cmd` in `infer-web.py` seem to be piped into a command shell. These might exhibit similar issues when executed.
- It might be simpler to replace `config.python_cmd` itself with its quoted version, unless there are instances where it's used differently.
- This likely resolves the issue for the `Train` tab, but further review is advised.
2023-08-27 00:16:02 +08:00
Doğa Yağcızeybek
b0675d2053
chore: add pull request template (#947) 2023-08-26 23:55:12 +08:00
Doğa Yağcızeybek
1523dc4cf2
bugfix: fix .venv file version to 3.8 (#946) 2023-08-26 23:54:44 +08:00
RVC-Boss
41f3265307
Update config.py 2023-08-24 21:41:28 +08:00
RVC-Boss
b4c10ce37d
Update config.py 2023-08-23 18:52:10 +08:00
Ftps
f6fcda7f97 fix unitest 2023-08-21 21:19:05 +09:00
Ftps
8aee703708 Merge remote-tracking branch 'upstream/main' into clean 2023-08-21 20:55:14 +09:00
Ftps
ed7b11eb49 train 1-2b 2023-08-21 20:53:11 +09:00
github-actions[bot]
2789b8e8f4
Format code (#1024)
Co-authored-by: github-actions[bot] <github-actions[bot]@users.noreply.github.com>
2023-08-21 16:29:27 +08:00
towzeur
df8c7bb50c
add scan_i18n to detect unused and missing keys (#1058) 2023-08-21 16:28:41 +08:00
Ftps
cd924f9eec fix uvr5 path 2023-08-20 13:43:39 +09:00
Ftps
b3a29d0e49 fix infer-web 2023-08-20 12:37:59 +09:00
Ftps
ca7307a950 fix path 2023-08-19 23:01:57 +09:00
Ftps
3d06f962ae Merge branch 'clean' of https://github.com/RVC-Project/Retrieval-based-Voice-Conversion-WebUI into clean 2023-08-19 22:50:31 +09:00
Ftps
b0ba38c288 add env 2023-08-19 22:50:24 +09:00
Tps-F
4c2fa81012 Apply Code Formatter Change 2023-08-19 13:47:41 +00:00
Ftps
c054138f0f remove moved func 2023-08-19 22:47:10 +09:00
Ftps
a8854a71c4 fix Model Inference
とりあえず動く
2023-08-19 22:15:46 +09:00
Ftps
e65275cbc1 fix onnx 2023-08-19 22:14:41 +09:00
Ftps
d2ea3f1930 fix config 2023-08-19 22:13:46 +09:00
Ftps
b3d7075ba4 train modules 2023-08-19 20:13:39 +09:00
Ftps
101deef210 Merge branch 'clean' of https://github.com/RVC-Project/Retrieval-based-Voice-Conversion-WebUI into clean 2023-08-19 20:03:05 +09:00
Ftps
a5e6dfb417 onnx module 2023-08-19 20:02:58 +09:00
Tps-F
de0c1399c8 Apply Code Formatter Change 2023-08-19 11:01:49 +00:00
Ftps
055864cc90 Merge branch 'clean' of https://github.com/RVC-Project/Retrieval-based-Voice-Conversion-WebUI into clean 2023-08-19 20:01:16 +09:00
Ftps
92f18e2f81 somefix vc 2023-08-19 20:01:09 +09:00
Ftps
6721b81dcf replace lib 2023-08-19 20:00:56 +09:00
Tps-F
cb42c6990b Apply Code Formatter Change 2023-08-19 10:58:39 +00:00
Ftps
c25bb6c5d5 Merge branch 'clean' of https://github.com/RVC-Project/Retrieval-based-Voice-Conversion-WebUI into clean 2023-08-19 19:57:41 +09:00
Ftps
0de947cf70 uvr5 modules 2023-08-19 19:57:30 +09:00
Tps-F
c14721d9c3 Apply Code Formatter Change 2023-08-19 10:57:09 +00:00
Ftps
2e56c5c600 vc modules 2023-08-19 19:56:43 +09:00
Ftps
6396af8249 assets 2023-08-19 19:46:08 +09:00
Ftps
d9b23e1e81 replace uvr5_pack 2023-08-19 19:43:02 +09:00
Ftps
2e2a72f0e5 replace infer_pack 2023-08-19 19:40:08 +09:00
Ftps
8d432964a8 Merge branch 'clean' of https://github.com/RVC-Project/Retrieval-based-Voice-Conversion-WebUI into clean 2023-08-19 19:37:11 +09:00
Ftps
78dae1dd09 replace configs 2023-08-19 19:36:15 +09:00
Tps-F
43d109e9c4 Apply Code Formatter Change 2023-08-19 10:17:30 +00:00
Ftps
b562b12cb9 replace i18n 2023-08-19 19:10:31 +09:00
RVC-Boss
b83939ba04
Update config.py 2023-08-19 18:04:45 +08:00
RVC-Boss
deb756bf1b
Update infer-web.py 2023-08-16 16:12:51 +08:00
Rice Cake
99e7993625
update colab notebooks (#1023) 2023-08-16 14:08:22 +08:00
github-actions[bot]
56917dbeca
Format code (#1011)
Co-authored-by: github-actions[bot] <github-actions[bot]@users.noreply.github.com>
2023-08-15 10:40:59 +08:00
lwroo
72a4494c55
chore: extend Dockerfile, add docker-compose.yml (#1009)
Co-authored-by: lwroo.local <me@lwroo.party>
2023-08-15 10:38:42 +08:00
RVC-Boss
b51af7f6d1
Update config.py 2023-08-15 10:38:17 +08:00
Victor Golovanenko
75a23d3f7b
I18n: fixed work of Russian localization and improved translation. (#1004)
* i18n: fixed name of the Russian locale file.

* i18n: improved Russian internationalization.
2023-08-15 10:37:04 +08:00
Roberts Slisans
71116f07e9
Infer_batch_rvc improvements (#1003)
* add model path for hubert

* use os.path.join

* do inference only if the script is called directly
2023-08-14 16:21:15 +08:00
github-actions[bot]
9bd0987815
Format code (#1002)
Co-authored-by: github-actions[bot] <github-actions[bot]@users.noreply.github.com>
2023-08-14 14:24:25 +08:00
RVC-Boss
4b028e6266
Update models.py 2023-08-14 11:06:17 +08:00
RVC-Boss
2bda203378
Update README.en.md 2023-08-14 02:40:36 +08:00
RVC-Boss
4cf1ad4ce9
Update Changelog_EN.md 2023-08-14 00:22:38 +08:00
RVC-Boss
31f7437503
Update Changelog_CN.md 2023-08-14 00:15:31 +08:00
RVC-Boss
af6f72be86
Update README.md 2023-08-14 00:10:26 +08:00
RVC-Boss
17c99ee556
Update README.en.md 2023-08-14 00:09:52 +08:00
RVC-Boss
7e544c453c
Update README.md 2023-08-14 00:01:47 +08:00
RVC-Boss
770e8ef2f5
Add files via upload 2023-08-13 23:52:35 +08:00
RVC-Boss
c67e9b63da
Update models.py 2023-08-13 21:35:46 +08:00
RVC-Boss
cbe54c34fc
Add files via upload 2023-08-13 11:58:16 +08:00
github-actions[bot]
5775772e47
Format code (#993)
Co-authored-by: github-actions[bot] <github-actions[bot]@users.noreply.github.com>
2023-08-13 11:56:37 +08:00
RVC-Boss
2aab92be37
Add files via upload 2023-08-13 11:53:46 +08:00
github-actions[bot]
76b67842ba
Format code (#989)
Co-authored-by: github-actions[bot] <github-actions[bot]@users.noreply.github.com>
2023-08-13 11:52:51 +08:00
Doğa Yağcızeybek
7293002f53
chore: translate documents into turkish (#944)
* chore: translate documents into turkish

* chore: add turkish option to other readmes

* chore: add turkish option to main readme
2023-08-13 11:52:24 +08:00
RVC-Boss
44dfd1bbdd
Create requirements-dml.txt 2023-08-13 11:49:54 +08:00
RVC-Boss
c96d878708
Update infer-web.py 2023-08-13 11:46:12 +08:00
Ftps
f637bb8788
Cleanup config.py (#992)
* Update config.py

* miss
2023-08-13 11:45:20 +08:00
RVC-Boss
5b9265d4a9
Update requirements.txt 2023-08-13 11:43:04 +08:00
RVC-Boss
03e7c68c11
Add files via upload 2023-08-13 01:05:58 +08:00
RVC-Boss
7f78dce483
Delete gui_v0.py 2023-08-12 23:00:03 +08:00
RVC-Boss
20fb86acfc
Add files via upload 2023-08-12 22:59:30 +08:00
RVC-Boss
0fcc293dd0
Add files via upload 2023-08-12 22:58:41 +08:00
RVC-Boss
954ce83d04
Delete models_dml.py 2023-08-12 22:57:33 +08:00
RVC-Boss
1226cc9cfc
Delete guidml.py 2023-08-12 22:57:21 +08:00
Matej Tkac
73560448a8
replace np.int with np.int32 (#948)
ref: https://numpy.org/devdocs/release/1.20.0-notes.html#deprecations
2023-08-10 10:28:30 +08:00
Mert Cobanov
2edeb7168b
Solved: ImportError: cannot import name 'FFmpeg' from 'ffmpy' in Windows (#970) 2023-08-10 10:27:32 +08:00
Rice Cake
1a563e68e6
Update README.md (#966) 2023-08-09 20:32:49 +09:00
github-actions[bot]
9a20c3b28f
Format code (#932)
Co-authored-by: github-actions[bot] <github-actions[bot]@users.noreply.github.com>
2023-08-03 10:25:05 +08:00
Matej Tkac
296905983a
Attempt to infer V2 models (#927) 2023-08-03 10:23:20 +08:00
RVC-Boss
064fecbd5d
Create calc_rvc_model_similarity.py 2023-08-02 21:20:46 +08:00
github-actions[bot]
176417e78e
Format code (#901)
Co-authored-by: github-actions[bot] <github-actions[bot]@users.noreply.github.com>
2023-07-31 11:47:33 +08:00
Flynn Duniho
144073a924
Automatically select index file when model is selected (#894)
* automatically select index file when model is selected

* Search for full directory of index file

* Add trailing separator char to index search string

* disable debug log

* remove unused re

---------

Co-authored-by: 源文雨 <41315874+fumiama@users.noreply.github.com>
2023-07-30 11:13:03 +08:00
Hiroto N
0784b4e593
add rmvpe opt on inference only app.py (#896) 2023-07-29 23:01:33 +08:00
Naozumi
d82b2cfc14
Update readme (#897) 2023-07-29 22:44:36 +08:00
源文雨
39ef364cff
Update genlocale.yml 2023-07-28 12:48:12 +08:00
github-actions[bot]
b2f816a39e
Format code (#891)
Co-authored-by: github-actions[bot] <github-actions[bot]@users.noreply.github.com>
2023-07-28 12:45:35 +08:00
forestsource
9f7fe2942a
Add REST API settings (#887) 2023-07-28 02:46:09 +00:00
GratefulTony
0b15d48f20
feat: unblock cpu training (#889)
* Update train_nsf_sim_cache_sid_load_pretrain.py

patch to unblock cpu training. CPU training took ~12 hours for me.

* Update train_nsf_sim_cache_sid_load_pretrain.py

Co-authored-by: Nato Boram <NatoBoram@users.noreply.github.com>

---------

Co-authored-by: 源文雨 <41315874+fumiama@users.noreply.github.com>
Co-authored-by: Nato Boram <NatoBoram@users.noreply.github.com>
2023-07-28 02:44:16 +00:00
源文雨
8d8eb8e3e4
chore: remove unnecessary sys.path.append 2023-07-27 18:36:05 +08:00
github-actions[bot]
58370b048c
🎨 同步 locale (#878)
Co-authored-by: github-actions[bot] <41898282+github-actions[bot]@users.noreply.github.com>
2023-07-26 19:53:31 +08:00
github-actions[bot]
f7fc51c81a
Format code (#877)
Co-authored-by: github-actions[bot] <github-actions[bot]@users.noreply.github.com>
2023-07-26 19:51:48 +08:00
RVC-Boss
b1cb31854a
Add files via upload 2023-07-26 19:50:50 +08:00
RVC-Boss
8fb03a64e0
Add files via upload 2023-07-26 19:50:13 +08:00
RVC-Boss
23642ac22a
Update train_nsf_sim_cache_sid_load_pretrain.py 2023-07-26 18:05:44 +08:00
Seth T. Allen
2a71c31b66
Create infer_cli.py (#875)
The my_inferer.py mentioned in the RBVC docs is broken. This one works. I think we should add it :^)
2023-07-26 14:43:08 +08:00
RVC-Boss
622c1f5131
Update faq_en.md 2023-07-26 14:39:50 +08:00
RVC-Boss
49d13d41cc
Update faq.md 2023-07-26 14:39:18 +08:00
github-actions[bot]
232213a522
Format code (#874)
Co-authored-by: github-actions[bot] <github-actions[bot]@users.noreply.github.com>
2023-07-26 11:56:00 +08:00
Naozumi
85d0d709e0
Move cor_nom, cor_den to mps (gui_v1.py) (#851)
* Move `cor_nom`, `cor_den` to mps

* Split logic based on system
2023-07-26 11:54:37 +08:00
Mix007
78b8bfe890
Update infer-web.py (#864)
fix ModuleNotFoundError: No module named 'config'
fix NameError: name 'sys' is not defined
2023-07-26 11:52:51 +08:00
RVC-Boss
98b2e752f2
Update config.py 2023-07-26 11:36:27 +08:00
RVC-Boss
c757674425
Add files via upload 2023-07-26 11:35:31 +08:00
github-actions[bot]
3ae444b05c
Format code (#850)
Co-authored-by: github-actions[bot] <github-actions[bot]@users.noreply.github.com>
2023-07-24 18:19:03 +08:00
源文雨
23f64d3aa8 optimize: cpt as #836 mentioned 2023-07-24 18:16:48 +08:00
源文雨
76c18b547c optimize: move i18n to lib 2023-07-24 14:19:53 +08:00
源文雨
8364750272 optimize: move slicer2, rmvpe, my_utils to lib 2023-07-24 14:16:58 +08:00
Nato Boram
451630a2a4
⬇️ Downgrade librosa (#846) 2023-07-24 03:31:02 +00:00
Nato Boram
ffc99dbd32
👷 Use black[jupyter] (#847)
* 👷 Use black[jupyter]

* 👷 Add missing matrix
2023-07-24 03:30:01 +00:00
源文雨
18067aa85d fix #835: some broken imports 2023-07-23 14:32:53 +08:00
github-actions[bot]
a002f817df
Format code (#834)
Co-authored-by: github-actions[bot] <github-actions[bot]@users.noreply.github.com>
2023-07-23 13:37:01 +08:00
源文雨
f70da25f00 fix: code lint by optimizing train lib's importing 2023-07-23 12:08:11 +08:00
源文雨
add253b476
Update genlocale.yml 2023-07-23 02:11:25 +08:00
github-actions[bot]
6f5697c146
🎨 同步 locale (#828)
Co-authored-by: github-actions[bot] <41898282+github-actions[bot]@users.noreply.github.com>
2023-07-23 01:57:31 +08:00
github-actions[bot]
4b8d47f13a
Format code (#827)
Co-authored-by: github-actions[bot] <github-actions[bot]@users.noreply.github.com>
2023-07-23 01:56:43 +08:00
源文雨
f5a1c550e5
Update push_format.yml 2023-07-23 01:51:52 +08:00
Naozumi
8c23c3c9e5
Add device reload button (#778) 2023-07-23 01:24:51 +08:00
Karl Kihlström
fe6216a026
add app title (#780) 2023-07-23 01:23:47 +08:00
RVC-Boss
468f9e3075
Update 48k_v2.json 2023-07-19 15:26:11 +08:00
mocci24
4cbdeebefc
some error building pyworld (#797)
× Building wheel for pyworld (pyproject.toml) did not run successfully.
  │ exit code: 1
  ╰─> See above for output.
  
  note: This error originates from a subprocess, and is likely not a problem with pip.
  Building wheel for pyworld (pyproject.toml) ... error
  ERROR: Failed building wheel for pyworld
  Building wheel for antlr4-python3-runtime (setup.py) ... done
  Created wheel for antlr4-python3-runtime: filename=antlr4_python3_runtime-4.8-py3-none-any.whl size=141210 sha256=e81137dc4dd676c814cbce5303bf5b687232f3bd7861df8d666cfe05ae199b3e
  Stored in directory: /root/.cache/pip/wheels/a7/20/bd/e1477d664f22d99989fd28ee1a43d6633dddb5cb9e801350d5
Successfully built fairseq antlr4-python3-runtime
Failed to build pyworld
ERROR: Could not build wheels for pyworld, which is required to install pyproject.toml-based projects
2023-07-19 15:04:00 +08:00
github-actions[bot]
f63783c348
Format code (#779)
Co-authored-by: github-actions[bot] <github-actions[bot]@users.noreply.github.com>
2023-07-17 22:56:30 +08:00
丸子
0cf474f820
Fix dependency conflict in last pull request (#775)
The conflict is caused by:
    The user requested starlette>=0.25.0
    fastapi 0.88.0 depends on starlette==0.22.0

fastapi 0.88.0 package will resolve dependency automatically, remove the starlette>=0.25.0 will fix the conflict.
2023-07-17 22:55:28 +08:00
Naozumi
2b3fe8cf1b
fix mps in gui-v1.py (#769)
* Fix mps on realtime

* Added back repeat chs
2023-07-17 22:54:15 +08:00
丸子
2e0dfeec50
Fix dependency error (#745)
ERROR: pip's dependency resolver does not currently take into account all the packages that are installed. This behaviour is the source of the following dependency conflicts.
lightning 2.0.2 requires fastapi<0.89.0,>=0.69.0, but you have fastapi 0.100.0 which is incompatible.
so-vits-svc-fork 3.14.1 requires fastapi==0.88, but you have fastapi 0.100.0 which is incompatible.
2023-07-16 23:34:35 +08:00
Naozumi
86ed98aaca
Add .sh run script for macOS & linux, fix error on macs with low vram. (#737)
* Add .sh run script

* Update extract_feature_print.py

* Remove `requirements_macOS.txt`
2023-07-13 07:05:35 +00:00
github-actions[bot]
5b9d9b045a
🎨 同步 locale (#743)
Co-authored-by: github-actions[bot] <41898282+github-actions[bot]@users.noreply.github.com>
2023-07-13 14:40:46 +08:00
源文雨
c40d522e2a
fix: gen-locale 2023-07-13 14:39:34 +08:00
github-actions[bot]
9739f3085d
Format code (#727)
Co-authored-by: github-actions[bot] <github-actions[bot]@users.noreply.github.com>
2023-07-13 14:35:24 +08:00
RVC-Boss
6c13f1fe52
Create MIT协议暨相关引用库协议 2023-07-12 11:25:18 +08:00
RVC-Boss
5691e7a237
Update LICENSE 2023-07-12 11:17:30 +08:00
RVC-Boss
cd1d76aac2
Update rvc_for_realtime.py 2023-07-11 22:09:41 +08:00
RVC-Boss
0f9d2e6cac
实时GUI支持rmvpe
实时GUI支持rmvpe
2023-07-11 16:27:18 +08:00
RVC-Boss
c69cecbc41
Add files via upload 2023-07-11 14:46:00 +08:00
RVC-Boss
1279e1dcc4
Add files via upload 2023-07-11 14:45:34 +08:00
RVC-Boss
4af6630792
Update and rename gui.py to gui_v0.py 2023-07-11 14:45:16 +08:00
RVC-Boss
27e7d2dc4a
最先进人声音高提取算法RMVPE已支持,效果默秒全!
最先进人声音高提取算法RMVPE已支持,效果默秒全!
2023-07-11 12:02:30 +08:00
RVC-Boss
9c63bcc8c6
add rmvpe support
add rmvpe support
2023-07-11 11:49:56 +08:00
github-actions[bot]
9b789025d1
Format code (#716)
Co-authored-by: github-actions[bot] <github-actions[bot]@users.noreply.github.com>
2023-07-10 17:59:25 +08:00
Miku AuahDark
a2848f40bb
Use sys.executable to determine --pycmd (#715)
* Use sys.executable to determine --pycmd

In some systems, `python` may not correctly refer to the virtual environment's `python` used for webui, or it even refers to Python 2.

Also in Windows, when the webui is run directly through `venv\Scripts\python` without activating the virtual environment, the system python will be picked instead of the one inside virtual environment.

* Remove reduntant "or".
2023-07-10 17:52:42 +08:00
Zhang, Di
211e13b80a
Add directML support to RVC for AMD & Intel GPU supported (#707) 2023-07-09 10:07:02 +00:00
Roberts Slisans
3dbba6ae74
add torchcrepe to pyproject (#696) 2023-07-08 11:49:47 +00:00
github-actions[bot]
c3d6057a22
🎨 同步 locale (#699)
Co-authored-by: github-actions[bot] <41898282+github-actions[bot]@users.noreply.github.com>
2023-07-08 19:46:30 +08:00
Valerio Montieri
fb785df015
Added italian translation json (#676) 2023-07-08 19:44:16 +08:00
Devyatyi9
c5976ff563
added ru support ru-RU.json (#661)
* added ru support ru-RU.json

Russian translation by redoverflow

* updated description for extract
2023-07-06 17:56:01 +00:00
github-actions[bot]
d97767494c
Changes by create-pull-request action (#655)
* 🎨 同步 locale

* Update tr_TR.json

---------

Co-authored-by: github-actions[bot] <41898282+github-actions[bot]@users.noreply.github.com>
Co-authored-by: 源文雨 <41315874+fumiama@users.noreply.github.com>
2023-06-30 16:20:19 +00:00
Ozan Ayrıkan
dbba35cdd0
added tr support (#653) 2023-06-30 02:34:50 +00:00
Rice Cake
7f4bdf42b0
Update README.md (#646) 2023-06-28 15:29:47 +08:00
tocky
81323dbac6
fix boolean parsing (#629) 2023-06-28 13:54:44 +08:00
github-actions[bot]
549ac02698
Format code (#644)
Co-authored-by: github-actions[bot] <github-actions[bot]@users.noreply.github.com>
2023-06-28 13:54:31 +08:00
Yurzi
5ca7736b2d
Fix realtime gui under linux (#609)
* Fix init problem about devices index outbound

* Fix file browse file type

* Fix sd stream channels problem, fix it to 2

---------

Co-authored-by: 源文雨 <41315874+fumiama@users.noreply.github.com>
2023-06-28 05:53:52 +00:00
Rice Cake
7fc6642c04
update index training script v2 (#643)
* update index training script v2

* Apply Code Formatter Change

---------

Co-authored-by: gak123 <gak123@users.noreply.github.com>
2023-06-28 13:48:06 +08:00
github-actions[bot]
fad31f24f5
Format code (#624)
Co-authored-by: github-actions[bot] <github-actions[bot]@users.noreply.github.com>
2023-06-24 18:06:17 +08:00
源文雨
04d7813486
Update README.md 2023-06-24 16:41:22 +08:00
源文雨
ccba65151e 优化代码结构 2023-06-24 16:36:15 +08:00
源文雨
46c0e9b2fe fix extract feature in MPS device 2023-06-24 16:21:31 +08:00
源文雨
359ba54321
Update LICENSE 2023-06-24 16:08:48 +08:00
sungchura
c6a7270811
Fix the index out of bounds bug in extract_feature_print.py (#560)
Check if the length of sys.argv is 6, instead of 5, to cover sys.argv[5]. Otherwise when the length is 6, it runs the else body and tries to access sys.argv[6] in line 13, which is an error.
2023-06-24 16:06:24 +08:00
源文雨
a5c238a392 add dlmodels.sh 2023-06-24 16:05:31 +08:00
源文雨
5e09a55e5f 优化代码结构 2023-06-24 15:26:14 +08:00
源文雨
4e0d399cba 优化 config.py 2023-06-24 13:56:09 +08:00
源文雨
f6051a12f0
move changelogs to docs folder 2023-06-23 22:47:56 +08:00
dependabot[bot]
fda161deba
Bump gradio from 3.14.0 to 3.34.0 (#614)
Bumps [gradio](https://github.com/gradio-app/gradio) from 3.14.0 to 3.34.0.
- [Release notes](https://github.com/gradio-app/gradio/releases)
- [Changelog](https://github.com/gradio-app/gradio/blob/main/CHANGELOG.md)
- [Commits](https://github.com/gradio-app/gradio/compare/v3.14.0...v3.34.0)

---
updated-dependencies:
- dependency-name: gradio
  dependency-type: direct:production
...

Signed-off-by: dependabot[bot] <support@github.com>
Co-authored-by: dependabot[bot] <49699333+dependabot[bot]@users.noreply.github.com>
2023-06-23 22:44:21 +08:00
github-actions[bot]
eeea7cc3ff
🎨 同步 locale (#613)
Co-authored-by: github-actions[bot] <41898282+github-actions[bot]@users.noreply.github.com>
2023-06-23 22:01:55 +08:00
github-actions[bot]
b9fdef34ba
Format code (#612)
Co-authored-by: github-actions[bot] <github-actions[bot]@users.noreply.github.com>
2023-06-23 22:00:17 +08:00
源文雨
d4e9badf17
fix extract locale 2023-06-23 21:59:37 +08:00
Ftps
66d470361a
Fix links (#596) 2023-06-22 06:37:09 +00:00
kalomaze
195a14e5c5
Add new defaults for infer-web.py & adjust english translation (#584)
* Adjust defaults of index and volume scale

* Adjust eng translation for index and volume envelope
2023-06-20 15:17:32 +08:00
Justin John
cdbb76cb6f
Fix OpenBLAS warning (#583)
Fixes the error msg: "OpenBLAS warning: precompiled NUM_THREADS exceeded, adding auxiliary array for thread metadata"
2023-06-20 15:17:18 +08:00
Ftps
413c0d285d
Correction of Japanese nuances (#577)
* Correction of Japanese nuances

* Add new line
2023-06-20 10:10:25 +08:00
RVC-Boss
3c1ff4f63b
Update README.md 2023-06-19 12:11:41 +00:00
LINKANG ZHAN
ace949b174
Complete i18n Document (#576) 2023-06-19 12:11:30 +00:00
RVC-Boss
f311d39d46
Update README.en.md 2023-06-19 12:07:09 +00:00
RVC-Boss
90ff4e8c29
fix v2 32k 48k extract bug
fix v2 32k 48k extract bug
2023-06-19 15:48:25 +08:00
Ftps
be1b0b33c9
Set the title of the PR (#568) 2023-06-19 14:12:28 +08:00
Pengoose
4c500d4d29
Update Changelog_KO.md (#569) 2023-06-19 14:12:09 +08:00
RVC-Boss
c1ace168fa
Update Changelog_EN.md 2023-06-18 14:16:08 +00:00
RVC-Boss
41c345557f
Update Changelog_CN.md 2023-06-18 14:06:25 +00:00
RVC-Boss
7fbfc60fcb
Update Changelog_CN.md 2023-06-18 14:05:24 +00:00
github-actions[bot]
e4417ce82f
Format code (#564)
Co-authored-by: github-actions[bot] <github-actions[bot]@users.noreply.github.com>
2023-06-18 13:55:51 +00:00
RVC-Boss
125a0a7b02
change default train version to v2
change default train version to v2
2023-06-18 13:52:49 +00:00
RVC-Boss
a42330f0ae
Add files via upload 2023-06-18 21:49:49 +08:00
RVC-Boss
bc5df2ff8e
Add files via upload 2023-06-18 20:05:43 +08:00
RVC-Boss
0812020c90
Add files via upload 2023-06-18 19:37:53 +08:00
RVC-Boss
66667c8f50
Add files via upload 2023-06-18 19:37:21 +08:00
github-actions[bot]
a7647e4094
Format code (#526)
Co-authored-by: github-actions[bot] <github-actions[bot]@users.noreply.github.com>
2023-06-18 10:39:56 +00:00
RVC-Boss
f92a923487
Update infer-web.py 2023-06-18 09:56:29 +00:00
RVC-Boss
0db402c312
Update infer-web.py 2023-06-18 09:56:16 +00:00
RVC-Boss
6ca9c853b0
v2-48k-32k-support
v2-48k-32k-support
2023-06-18 17:40:07 +08:00
RVC-Boss
44426b18b8
train index:auto kmeans when feature shape too large
train index:auto kmeans when feature shape too large
2023-06-18 16:19:07 +08:00
RVC-Boss
e7f204b32e
train index:auto kmeans when feature shape too large
train index:auto kmeans when feature shape too large
2023-06-18 16:16:33 +08:00
Ftps
75264d09b6
Fix format #526 (#533)
* Fix format #526

* fix return
2023-06-18 08:01:34 +00:00
RVC-Boss
cbd29350fe
extreme value filtering 2023-06-18 15:30:56 +08:00
RVC-Boss
a9a77f2556
fix-no-f0-model-protect-issue
fix-no-f0-model-protect-issue
2023-06-18 15:17:36 +08:00
RVC-Boss
ec0c39d9bc
Update infer-web.py 2023-06-18 06:56:22 +00:00
Ftps
9253948f0d
Rewrite syntax of infer-web.py (#536)
* Fix import location

* use any

* Correction of if Syntax

* Class definitions to the front

* format

* fix if Syntax
2023-06-18 06:42:40 +00:00
LINKANG ZHAN
c5758a89db
Stop extracting features when hubert_base.pt does not exist. (#535)
* support detection of pretrained model, support train without pretrained model path in web ui

* support detection of pretrained model, support train without pretrained model path in web ui

* support detection of pretrained model, support train without pretrained model path in web ui

* Stop extracting features when hubert_base.pt is not exist.

* Stop extracting features when hubert_base.pt is not exist.

* Make error more noticeable
2023-06-18 04:39:10 +00:00
lliiooll
28383fbeee
进行一些判断操作避免崩溃 (#562) 2023-06-18 04:38:35 +00:00
RVC-Boss
846be17351
Update Retrieval_based_Voice_Conversion_WebUI_v2.ipynb 2023-06-18 04:09:06 +00:00
RVC-Boss
4945fba0a3
Update Retrieval_based_Voice_Conversion_WebUI.ipynb 2023-06-18 04:08:57 +00:00
RVC-Boss
602ee19cf9
Update requirements.txt 2023-06-18 04:08:28 +00:00
Ναρουσέ·μ·γιουμεμί·Χινακάννα
0eb6bb67be
Onnx推理dml支持 (#556)
* Add files via upload

* Add files via upload
2023-06-17 14:49:16 +00:00
RVC-Boss
a071f1e089
fix v2 onnx export 2023-06-15 15:29:05 +00:00
RVC-Boss
147d3c83b7
fix v2 onnx export 2023-06-15 15:27:51 +00:00
RVC-Boss
75d7c03d41
fix v2 onnx export 2023-06-15 15:26:57 +00:00
LINKANG ZHAN
f349adc9df
Add support for train without specify pretrained model, add support for selecting v2 48k as training setting, and add support for auto remove pretrained model when the user do not have pretrained model in designate folder. (#528)
* support detection of pretrained model, support train without pretrained model path in web ui

* support detection of pretrained model, support train without pretrained model path in web ui

* support detection of pretrained model, support train without pretrained model path in web ui
2023-06-15 10:21:58 +08:00
github-actions[bot]
eb1a88cf7e
Format code (#522)
Co-authored-by: github-actions[bot] <github-actions[bot]@users.noreply.github.com>
2023-06-14 11:48:05 +00:00
红血球AE3803
4de5d0d551
更新批量推理脚本,可以不用 webui (#518)
* 增加批量推理脚本

* 更新批量推理脚本
2023-06-14 10:22:47 +08:00
RVC-Boss
c74727d487
Update Changelog_CN.md 2023-06-13 16:22:17 +08:00
RVC-Boss
78c88a4f75
add vocal2guitar online demo 2023-06-11 13:59:16 +00:00
RVC-Boss
d963c29fec
Update README.md 2023-06-11 13:56:06 +00:00
RVC-Boss
986d92b261
Update README.md 2023-06-11 13:54:38 +00:00
André Thieme
e1f084177d
Replace deprecated Numpy function np.int. (#434)
It’s an alias for just `int` and it’s being deprecated:
https://numpy.org/devdocs/release/1.20.0-notes.html

Co-authored-by: Ftps <63702646+Tps-F@users.noreply.github.com>
2023-06-10 14:55:34 +00:00
niizam
fcce61b27f
Update train_nsf_sim_cache_sid_load_pretrain.py (#497) 2023-06-10 14:54:53 +00:00
Ftps
ff2793249d
remove specify version (#492) 2023-06-09 15:05:13 +00:00
ms903x1
ec83e10b8f
Update gui.py default config (#482)
* Update envfilescheck.bat

add pretrained_v2 and uvr5 update

* Update envfilescheck.bat

fix bug

* Update envfilescheck.bat

fix bug

* Update data_utils.py

fix bug where data exceeding 4s is filtered out.

* Update gui.py

Update default config

* Update gui.py

fix json bug
2023-06-08 13:29:34 +00:00
github-actions[bot]
fada942ecd
Format code (#456)
Co-authored-by: github-actions[bot] <github-actions[bot]@users.noreply.github.com>
2023-06-08 16:55:18 +08:00
yuuukiasuna
1b307a4222
gui json update (#479)
* Fix gui.py

There seemed to be some conflicts between #338 and #340, so I corrected them.

* Update gui.py

* Update gui.py

---------

Co-authored-by: Ftps <63702646+Tps-F@users.noreply.github.com>
Co-authored-by: RVC-Boss <129054828+RVC-Boss@users.noreply.github.com>
2023-06-08 16:53:51 +08:00
mrhan1993
b28f98fed3
Update gui.py (#475)
增加选择模型时的默认路径以及文件过滤。
2023-06-08 10:42:16 +08:00
Dennis Heckmann
297809bdfd
Fixed NameError coming from a typo. (#458) 2023-06-07 10:12:06 +08:00
RVC-Boss
692c245fad
Update infer-web.py 2023-06-06 14:37:12 +00:00
github-actions[bot]
52c97ed464
Format code (#455)
Co-authored-by: github-actions[bot] <github-actions[bot]@users.noreply.github.com>
2023-06-06 14:35:35 +00:00
RVC-Boss
6f1bc7d683
Add files via upload 2023-06-06 22:32:32 +08:00
RVC-Boss
9ff976b155
Add files via upload 2023-06-06 22:32:10 +08:00
RVC-Boss
f358fe7242
Update requirements.txt 2023-06-06 13:20:45 +00:00
RVC-Boss
05b5af7c8c
Add files via upload 2023-06-06 20:34:54 +08:00
KakaruHayate
b7337d7bf1
Update Retrieval_based_Voice_Conversion_WebUI_v2.ipynb (#448) 2023-06-06 12:14:04 +00:00
github-actions[bot]
99404baf94
Format code (#409)
Co-authored-by: github-actions[bot] <github-actions[bot]@users.noreply.github.com>
2023-06-03 08:22:46 +00:00
YuriHead
a94c8e3a69
Updata Online Infer (#419) 2023-06-03 08:18:42 +00:00
RVC-Boss
bf11700125
fix m1/m2 user training 2023-06-03 07:08:35 +00:00
Rice Cake
95cd1759c5
fix python dependency problem (#418) 2023-06-03 07:00:50 +00:00
ms903x1
80929e472e
Update data_utils.py (#407)
* Update envfilescheck.bat

add pretrained_v2 and uvr5 update

* Update envfilescheck.bat

fix bug

* Update envfilescheck.bat

fix bug

* Update data_utils.py

fix bug where data exceeding 4s is filtered out.
2023-06-02 10:27:20 +08:00
Ma5onic
a02019e428
English Translation Fixes (#402)
* Fix English Translations

* Minor translation correction
2023-06-01 10:11:38 +08:00
RVC-Boss
4c28652ed9
Update requirements.txt 2023-06-01 10:01:00 +08:00
RVC-Boss
c2f402d7d1
Update requirements.txt 2023-05-30 16:50:05 +00:00
RVC-Boss
a68037be3c
Update gui.py 2023-05-30 13:17:10 +00:00
dependabot[bot]
fa97c3f8bd
Bump starlette from 0.26.1 to 0.27.0 (#390) 2023-05-30 08:09:34 +00:00
github-actions[bot]
89afd017ba
Format code (#384)
Co-authored-by: github-actions[bot] <github-actions[bot]@users.noreply.github.com>
2023-05-30 15:22:53 +08:00
Pengoose
5284e38c3d
Update Changelog_KO.md (#381) 2023-05-30 08:35:12 +09:00
Ναρουσέ·μ·γιουμεμί·Χινακάννα
24f2ad44ea
Add files via upload (#379) 2023-05-29 15:52:23 +00:00
HalfMAI
69071119a9
Update infer-web.py (#374)
修复 刷新按钮没有更新 批处理区的 索引路径的问题
2023-05-29 18:26:59 +08:00
github-actions[bot]
86b086e393
🎨 同步 locale (#367)
Co-authored-by: github-actions[bot] <41898282+github-actions[bot]@users.noreply.github.com>
2023-05-29 12:09:26 +08:00
RVC-Boss
95a14b734d
Add files via upload 2023-05-29 00:23:09 +08:00
ms903x1
f0a798c53f
undate envfilescheck.bat (#368)
* Update envfilescheck.bat

add pretrained_v2 and uvr5 update

* Update envfilescheck.bat

fix bug

* Update envfilescheck.bat

fix bug
2023-05-28 16:21:50 +00:00
github-actions[bot]
e435b3bb8a
Format code (#366)
Co-authored-by: github-actions[bot] <github-actions[bot]@users.noreply.github.com>
2023-05-28 16:06:11 +00:00
RVC-Boss
e569477457
Update Changelog_EN.md 2023-05-28 15:58:23 +00:00
RVC-Boss
d0249262b3
Add files via upload 2023-05-28 23:51:03 +08:00
RVC-Boss
0841d1341b
Update Changelog_CN.md 2023-05-28 15:50:59 +00:00
RVC-Boss
7bd25c4623
Add files via upload 2023-05-28 23:40:54 +08:00
RVC-Boss
e8d92c3e91
Update Changelog_CN.md 2023-05-28 15:11:30 +00:00
RVC-Boss
619e9060aa
Update requirements.txt 2023-05-28 15:06:43 +00:00
RVC-Boss
35aa864daa
Update requirements.txt 2023-05-28 15:04:10 +00:00
RVC-Boss
e53118c60f
Add files via upload 2023-05-28 23:00:51 +08:00
RVC-Boss
c93940a25d
Add files via upload 2023-05-28 23:00:29 +08:00
RVC-Boss
f1730d42d4
Add files via upload 2023-05-28 22:58:33 +08:00
Ftps
7789c46ded
Fix gui.py (#365)
There seemed to be some conflicts between #338 and #340, so I corrected them.
2023-05-28 12:52:05 +00:00
Rice Cake
4b0c86fbeb
add project name to index file's name (#357)
* Add files via upload

* Apply Code Formatter Change

---------

Co-authored-by: gak123 <gak123@users.noreply.github.com>
Co-authored-by: Ftps <63702646+Tps-F@users.noreply.github.com>
2023-05-28 12:25:36 +08:00
dependabot[bot]
2280f3e392
Bump tornado from 6.2 to 6.3.2 (#358)
* Bump tornado from 6.2 to 6.3.2

Bumps [tornado](https://github.com/tornadoweb/tornado) from 6.2 to 6.3.2.
- [Changelog](https://github.com/tornadoweb/tornado/blob/master/docs/releases.rst)
- [Commits](https://github.com/tornadoweb/tornado/compare/v6.2.0...v6.3.2)

---
updated-dependencies:
- dependency-name: tornado
  dependency-type: direct:production
...

Signed-off-by: dependabot[bot] <support@github.com>

* Apply Code Formatter Change

---------

Signed-off-by: dependabot[bot] <support@github.com>
Co-authored-by: dependabot[bot] <49699333+dependabot[bot]@users.noreply.github.com>
Co-authored-by: dependabot[bot] <dependabot[bot]@users.noreply.github.com>
Co-authored-by: Ftps <63702646+Tps-F@users.noreply.github.com>
2023-05-28 00:36:12 +09:00
Pengoose
7816761bee
Add Korean CHANGELOG (#359) 2023-05-28 00:04:31 +09:00
Ftps
a2ef4cca76
fix Config, GUIConfig and self (#340)
Co-authored-by: RVC-Boss <129054828+RVC-Boss@users.noreply.github.com>
2023-05-26 19:32:19 +08:00
fluo10
0729c9d6f2
Exclude python3.11 from dependencies (#352) 2023-05-26 19:28:32 +08:00
JackEllie
039e7afb85
Update gui.py (#338) 2023-05-25 09:27:40 +09:00
RVC-Boss
e0813eb282
Update train_nsf_sim_cache_sid_load_pretrain.py 2023-05-24 12:27:15 +00:00
Rice Cake
8efb101401
upload RVC v2 index training script (#343)
* Add files via upload

* Apply Code Formatter Change

---------

Co-authored-by: gak123 <gak123@users.noreply.github.com>
2023-05-24 12:26:35 +00:00
dependabot[bot]
a4c86a3aa1
Bump requests from 2.28.2 to 2.31.0 (#339)
Bumps [requests](https://github.com/psf/requests) from 2.28.2 to 2.31.0.
- [Release notes](https://github.com/psf/requests/releases)
- [Changelog](https://github.com/psf/requests/blob/main/HISTORY.md)
- [Commits](https://github.com/psf/requests/compare/v2.28.2...v2.31.0)

---
updated-dependencies:
- dependency-name: requests
  dependency-type: indirect
...

Signed-off-by: dependabot[bot] <support@github.com>
Co-authored-by: dependabot[bot] <49699333+dependabot[bot]@users.noreply.github.com>
2023-05-23 22:51:51 +08:00
Yugo Ogura
9cee20f402
feat: ipynb for v2 (#332) 2023-05-23 12:58:05 +08:00
github-actions[bot]
cfd9848128
Format code (#330)
Co-authored-by: github-actions[bot] <github-actions[bot]@users.noreply.github.com>
2023-05-21 19:19:53 +08:00
Ναρουσέ·μ·γιουμεμί·Χινακάννα
067731db9b
768VecOnnxExport (#328)
* Delete export_onnx.py

* Delete export_onnx_old.py

* Delete models_onnx_moess.py

* Support 768 Vec

* Add files via upload

* Support 768 Vec

Support 768 Vec

* Support 768 Vec Onnx Export

Support 768 Vec Onnx Export
2023-05-21 19:11:29 +08:00
pcunwa
c3de24f2e0
Corrected Japanese translation. (#319)
* Update ja_JP.json

Incorrect or incomplete translations have been corrected.

* Update ja_JP.json

---------

Co-authored-by: 源文雨 <41315874+fumiama@users.noreply.github.com>
2023-05-21 11:06:11 +00:00
RVC-Boss
f6e55485d9
Update gui.py 2023-05-21 07:01:34 +00:00
RVC-Boss
615c30c17b
Update gui.py 2023-05-21 06:57:16 +00:00
RVC-Boss
79a79c3b99
Update config.py 2023-05-21 03:30:27 +00:00
RVC-Boss
28948f8961
Update infer-web.py 2023-05-21 03:10:20 +00:00
RVC-Boss
19cc9062b0
Update i18n.py 2023-05-21 03:10:07 +00:00
tzshao
50a121fc74
Update of en_US.json and faq_en.md. Proposal for i18n standard. (#318)
* Update en_US.json

1. Severe mistake fixed: certain translation is previously incomplete.

* Update faq_en.md

1. Modified 1 entry for context consistency with lately merged en_US translation

* Update en_US.json

1. Attached colons to all Input Prompts as proposed.
2. Minor changes to translation expressions.

* Update en_US.json

1. Removed trailing periods on button texts
2023-05-20 20:14:23 +08:00
Rilm2525
3f17356c11
Japanese translation added and corrected. (#317)
* Update infer-web.py

* Update ja_JP.json
2023-05-20 10:46:39 +00:00
tzshao
563bf7af6d
Update of en_US.json, Proposal for i18n standard. (#314)
* Update en_US.json

### Description:
A rough modification of en-US i18n file.

### Changes:
+ Many translation phrases have been replaced with rather native expressions.
+ Majority of translation phrases have been re-formatted for more efficient reading.

### Problems:
+ There's no standard for i18n. E.g, and my proposal:
	+ All Input Prompts ends with colon(":").
	+ All progress indication(e.g. "step1:processing data","step2a: ...") stays lowercase, may add CSI SGR escape sequences for highlighting.
	+ List of Selections and their descriptions be written in key-value pairs.
+ No more plain-translations.

* Update en_US.json

1.Strings that refer to specific paths/locations have been quoted with '' pairs.
2.1 Typo fixed.

* Update en_US.json

1.Minor re-format.
2023-05-20 10:46:18 +00:00
github-actions[bot]
41d2d72f39
Format code (#310)
Co-authored-by: github-actions[bot] <github-actions[bot]@users.noreply.github.com>
2023-05-19 20:48:17 +08:00
N. Hiroto
080b7cdc31
bugfix: leaked semaphore error (#309)
* use config for n_cpu

* rm import

* fix process loop

* unuse mp.spawn

ref. https://discuss.pytorch.org/t/how-to-fix-a-sigsegv-in-pytorch-when-using-distributed-training-e-g-ddp/113518/10

* fix commentout
2023-05-19 17:56:06 +08:00
kalomaze
563c64ded9
Small english translation tweaks (#308)
* Update en_US.json

* Update en_US.json
2023-05-19 11:32:50 +08:00
github-actions[bot]
0fbfa1d62b
Format code (#307)
Co-authored-by: github-actions[bot] <github-actions[bot]@users.noreply.github.com>
2023-05-18 18:54:41 +08:00
Cole Mangio
c2039b6eca
Fixed index version not being written to the index file on train_index() in infer-web.py (#305) 2023-05-18 10:02:12 +00:00
github-actions[bot]
aadf7443c3
Format code (#304)
Co-authored-by: github-actions[bot] <github-actions[bot]@users.noreply.github.com>
2023-05-18 13:18:02 +08:00
RVC-Boss
6fb1f8c1b1
Update process_ckpt.py 2023-05-17 15:39:24 +00:00
源文雨
e5374b2041
Revert "fix: merge f0 option value (#298)" (#303)
This reverts commit da0b599fa74d9094fdd0dd6c965a3df363b47ce8.
2023-05-17 23:17:01 +08:00
dependabot[bot]
30c7e417e8
Bump pillow from 9.1.1 to 9.3.0 (#300)
Bumps [pillow](https://github.com/python-pillow/Pillow) from 9.1.1 to 9.3.0.
- [Release notes](https://github.com/python-pillow/Pillow/releases)
- [Changelog](https://github.com/python-pillow/Pillow/blob/main/CHANGES.rst)
- [Commits](https://github.com/python-pillow/Pillow/compare/9.1.1...9.3.0)

---
updated-dependencies:
- dependency-name: pillow
  dependency-type: direct:production
...

Signed-off-by: dependabot[bot] <support@github.com>
Co-authored-by: dependabot[bot] <49699333+dependabot[bot]@users.noreply.github.com>
2023-05-17 14:12:22 +08:00
Yugo Ogura
da0b599fa7
fix: merge f0 option value (#298)
Co-authored-by: 源文雨 <41315874+fumiama@users.noreply.github.com>
2023-05-17 05:38:21 +00:00
源文雨
2ec95ab288
fix unitest 2023-05-17 13:32:25 +08:00
github-actions[bot]
5bf26dadca
Format code (#296)
Co-authored-by: github-actions[bot] <github-actions[bot]@users.noreply.github.com>
2023-05-17 00:02:26 +08:00
Xerxes-2
0b0bd911d9
Add timestamp and elapsed time for epoch (#273)
* add timestamp and epoch elapsed time

* don't need a class

* Revert "add timestamp and epoch elapsed time"

This reverts commit 93b8d4a7afd9d525069d9065bab5aebc97063a1d.

* adjust class def

* delete duplicate import

---------

Co-authored-by: Ftps <63702646+Tps-F@users.noreply.github.com>
Co-authored-by: 源文雨 <41315874+fumiama@users.noreply.github.com>
2023-05-16 23:54:35 +08:00
R0w9h
8a9909bdd1
Update ja_JP.json (#293) 2023-05-16 10:24:45 +08:00
RVC-Boss
9d949118c0
Update en_US.json 2023-05-15 15:21:58 +00:00
RVC-Boss
1c01099dbc
Update requirements.txt 2023-05-15 14:42:15 +00:00
源文雨
b07dedd744
fix workflow (#284)
* Update extract_feature_print.py

* Update unitest.yml
2023-05-15 13:11:01 +08:00
github-actions[bot]
137447bdc9
🎨 同步 locale (#283)
Co-authored-by: github-actions[bot] <41898282+github-actions[bot]@users.noreply.github.com>
2023-05-14 08:30:20 +00:00
RVC-Boss
f4c2a63a5e
Add files via upload 2023-05-14 16:26:33 +08:00
RVC-Boss
2d845e5222
Add files via upload 2023-05-14 16:08:37 +08:00
github-actions[bot]
e06994f473
🎨 同步 locale (#281)
Co-authored-by: github-actions[bot] <41898282+github-actions[bot]@users.noreply.github.com>
2023-05-14 08:00:48 +00:00
github-actions[bot]
6a3eaef090
Format code (#275)
Co-authored-by: github-actions[bot] <github-actions[bot]@users.noreply.github.com>
2023-05-14 07:52:36 +00:00
RVC-Boss
32437314b8
Update Changelog_EN.md 2023-05-14 07:50:54 +00:00
RVC-Boss
ac807575ad
Update Changelog_CN.md 2023-05-14 07:44:03 +00:00
RVC-Boss
b42f4bf6df
Update README.en.md 2023-05-14 07:21:30 +00:00
RVC-Boss
1f63abe3e2
Update README.md 2023-05-14 07:19:35 +00:00
RVC-Boss
bbc3bcba3b
Create .gitignore 2023-05-14 07:16:47 +00:00
RVC-Boss
60919b9b02
Update Changelog_CN.md 2023-05-14 07:16:06 +00:00
RVC-Boss
77ff5b08b6
Add files via upload 2023-05-14 15:07:12 +08:00
RVC-Boss
404ce9338f
Add files via upload 2023-05-14 15:06:50 +08:00
RVC-Boss
3b5a2298d7
Add files via upload 2023-05-14 15:05:42 +08:00
RVC-Boss
3909ce4a7b
Add files via upload 2023-05-13 03:49:38 +08:00
RVC-Boss
0d2212c8ea
Add files via upload 2023-05-13 03:47:56 +08:00
github-actions[bot]
af41184320
Format code (#274)
Co-authored-by: github-actions[bot] <github-actions[bot]@users.noreply.github.com>
2023-05-12 19:43:05 +00:00
RVC-Boss
568378761b
Update Changelog_CN.md 2023-05-12 19:41:06 +00:00
RVC-Boss
44449efc2e
Add files via upload 2023-05-13 03:29:30 +08:00
github-actions[bot]
0bc1ea782e
Format code (#270)
Co-authored-by: github-actions[bot] <github-actions[bot]@users.noreply.github.com>
2023-05-12 19:27:59 +00:00
Ftps
3d8d0957e4
remove Unnecessary elif (#259) 2023-05-12 19:27:44 +00:00
RVC-Boss
ef016ae6a0
Update gui.py 2023-05-11 14:29:56 +00:00
RVC-Boss
c84371844a
default sr->40k is the best; unload weight debug []->""
default sr->40k is the best; unload weight debug []->""
2023-05-11 03:07:02 +08:00
源文雨
339a116074
Update README.md 2023-05-10 23:39:04 +08:00
github-actions[bot]
2f8179fa32
🎨 同步 locale (#266)
Co-authored-by: github-actions[bot] <41898282+github-actions[bot]@users.noreply.github.com>
2023-05-10 23:36:36 +08:00
Sebastian Gabriel Savu
2086a7dab4
[maintenance] change f0 choice to boolean instead of string yes/no + default sample rate for training to 48k (#265) 2023-05-10 23:30:19 +08:00
源文雨
9bab76741e
Update README.md 2023-05-10 23:27:33 +08:00
Ftps
769cf352a0
update faiss (#261) 2023-05-10 23:24:03 +08:00
RVC-Boss
c7f6a181a0
Update config.py 2023-05-10 13:19:09 +00:00
Ftps
6cc2279fb9
Support mps generate (#263) 2023-05-10 13:17:13 +00:00
RVC-Boss
5b0ff12163
Update README.md 2023-05-09 11:49:05 +08:00
RVC-Boss
1782a6332e
Update requirements.txt 2023-05-08 15:40:06 +00:00
RVC-Boss
28dd13420c
Update requirements.txt 2023-05-08 15:34:45 +00:00
github-actions[bot]
75d31f1022
Format code (#254)
Co-authored-by: github-actions[bot] <github-actions[bot]@users.noreply.github.com>
2023-05-08 15:16:19 +00:00
liu biao
eba9b05b28
增加在macos下安装swig说明 (#253) 2023-05-08 15:16:09 +00:00
RVC-Boss
2c4ec6db93
Update trainset_preprocess_pipeline_print.py 2023-05-08 15:04:21 +00:00
RVC-Boss
4a2c9c062f
Update gui.py 2023-05-07 17:42:30 +00:00
RVC-Boss
5928d5358c
Update gui.py 2023-05-07 17:40:09 +00:00
Scott
f695fe60f6
Add English CHANGELOG (#243) 2023-05-07 16:24:13 +00:00
源文雨
5d7b649175
Update README.md 2023-05-07 13:46:23 +08:00
源文雨
73992be783
增加发行时自动构建docker镜像 2023-05-07 13:43:27 +08:00
Sebastian Gabriel Savu
d43c1d3cdd
add ability to containerize with Docker (add Dockerfile) (#240)
Co-authored-by: Sebastian Savu <sebastian.savu@bidfx.com>
2023-05-07 13:32:16 +08:00
github-actions[bot]
b5b9af0255
🎨 同步 locale (#239)
Co-authored-by: github-actions[bot] <41898282+github-actions[bot]@users.noreply.github.com>
2023-05-07 13:30:57 +08:00
RVC-Boss
aabbcb70c1
Update README.en.md 2023-05-06 18:42:08 +08:00
RVC-Boss
ddec7b713f
Update README.md 2023-05-06 18:40:42 +08:00
R0w9h
e76654e634
Update ja_JP.json (#238) 2023-05-06 10:45:39 +09:00
github-actions[bot]
eb7caaa064
Format code (#228)
Co-authored-by: github-actions[bot] <github-actions[bot]@users.noreply.github.com>
2023-05-06 00:14:11 +08:00
Ftps
e3cb0485ce
staticmethod (#232) 2023-05-06 00:13:27 +08:00
Sebastian Gabriel Savu
4abd0bd680
[maintenance] cleanup one click training and related (#219)
- remove unused imports
- remove unused gpus6 param from train1key fn
- improve readability and reusability for various pathing strings
 main
2023-05-05 23:48:39 +08:00
github-actions[bot]
4027928a8e
Format code (#227)
Co-authored-by: github-actions[bot] <github-actions[bot]@users.noreply.github.com>
2023-05-05 14:18:51 +08:00
RVC-Boss
15519de5e5
Update i18n.py 2023-05-05 14:14:31 +08:00
github-actions[bot]
6726af00cf
Format code (#221)
Co-authored-by: github-actions[bot] <github-actions[bot]@users.noreply.github.com>
2023-05-05 13:13:41 +08:00
RVC-Boss
ccf6e6bbd2
batch_add_faiss_index
batch_add_faiss_index
2023-05-05 00:26:52 +08:00
RVC-Boss
da34d75ec9
Add files via upload 2023-05-04 22:22:46 +08:00
nadare
b18f921a50
big_npy should be shuffled (#218) 2023-05-04 14:03:52 +00:00
RVC-Boss
c4a18107dc
Update config.py 2023-05-02 12:31:05 +00:00
github-actions[bot]
951989117b
Format code (#214)
Co-authored-by: github-actions[bot] <github-actions[bot]@users.noreply.github.com>
2023-05-02 20:22:08 +08:00
RVC-Boss
71427575c4
Update infer-web.py 2023-05-02 12:17:09 +00:00
RVC-Boss
8370356d95
Update config.py 2023-05-02 12:07:03 +00:00
nadare
69ea94609b
update training tips and faiss tips (#208) 2023-04-30 22:26:25 +08:00
Ftps
6d0ec4b00c
Escaping when device does not match (#203) 2023-04-29 04:18:06 +00:00
Ftps
b12e33891c
fix open (#200) 2023-04-29 12:11:13 +08:00
github-actions[bot]
4cb010bac6
🎨 同步 locale (#196)
Co-authored-by: github-actions[bot] <41898282+github-actions[bot]@users.noreply.github.com>
2023-04-28 20:46:39 +08:00
github-actions[bot]
e9301d7a08
Format code (#195)
Co-authored-by: github-actions[bot] <github-actions[bot]@users.noreply.github.com>
2023-04-28 20:45:21 +08:00
bycloud
bbe333552f
added some more zh to en_US translation (#194)
* Add files via upload

* updated i18n() translation for en_US

expanded the dict for other languages

* added more i18n()

---------

Co-authored-by: 源文雨 <41315874+fumiama@users.noreply.github.com>
2023-04-28 20:44:46 +08:00
Ftps
f391ac1763
Config class (#192)
* update config.py

* class

* class

* fix
2023-04-28 20:43:02 +08:00
源文雨
b1134d9f64 add 韓國語 2023-04-28 15:54:12 +08:00
RVC-Boss
211a842e88
Update infer-web.py 2023-04-28 11:31:13 +08:00
github-actions[bot]
9068d5283e
Format code (#188)
Co-authored-by: github-actions[bot] <github-actions[bot]@users.noreply.github.com>
2023-04-28 11:25:20 +08:00
RVC-Boss
9976df7045
Update Changelog_CN.md 2023-04-27 16:30:45 +00:00
231 changed files with 26719 additions and 12235 deletions

9
.env Normal file
View File

@ -0,0 +1,9 @@
OPENBLAS_NUM_THREADS = 1
no_proxy = localhost, 127.0.0.1, ::1
# You can change the location of the model, etc. by changing here
weight_root = assets/weights
weight_uvr5_root = assets/uvr5_weights
index_root = logs
outside_index_root = assets/indices
rmvpe_root = assets/rmvpe

26
.github/PULL_REQUEST_TEMPLATE.md vendored Normal file
View File

@ -0,0 +1,26 @@
# Pull request checklist
- [ ] The PR has a proper title. Use [Semantic Commit Messages](https://seesparkbox.com/foundry/semantic_commit_messages). (No more branch-name title please)
- [ ] Make sure this is ready to be merged into the relevant branch. Please don't create a PR and let it hang for a few days.
- [ ] Ensure you can run the codes you submitted succesfully. These submissions will be prioritized for review:
Introduce improvements in program execution speed;
Introduce improvements in synthesis quality;
Fix existing bugs reported by user feedback (or you met);
Introduce more convenient user operations.
# PR type
- Bug fix / new feature / synthesis quality improvement / program execution speed improvement
# Description
- Describe what this pull request is for.
- What will it affect.
# Screenshot
- Please include a screenshot if applicable

70
.github/workflows/docker.yml vendored Normal file
View File

@ -0,0 +1,70 @@
name: Build and Push Docker Image
on:
workflow_dispatch:
push:
# Sequence of patterns matched against refs/tags
tags:
- 'v*' # Push events to matching v*, i.e. v1.0, v20.15.10
jobs:
build:
runs-on: ubuntu-latest
permissions:
packages: write
contents: read
steps:
- uses: actions/checkout@v3
- name: Set time zone
uses: szenius/set-timezone@v1.0
with:
timezoneLinux: "Asia/Shanghai"
timezoneMacos: "Asia/Shanghai"
timezoneWindows: "China Standard Time"
# # 如果有 dockerhub 账户可以在github的secrets中配置下面两个然后取消下面注释的这几行并在meta步骤的images增加一行 ${{ github.repository }}
# - name: Login to DockerHub
# uses: docker/login-action@v1
# with:
# username: ${{ secrets.DOCKERHUB_USERNAME }}
# password: ${{ secrets.DOCKERHUB_TOKEN }}
- name: Login to GHCR
uses: docker/login-action@v2
with:
registry: ghcr.io
username: ${{ github.repository_owner }}
password: ${{ secrets.GITHUB_TOKEN }}
- name: Extract metadata (tags, labels) for Docker
id: meta
uses: docker/metadata-action@v4
with:
images: |
ghcr.io/${{ github.repository }}
# generate Docker tags based on the following events/attributes
# nightly, master, pr-2, 1.2.3, 1.2, 1
tags: |
type=schedule,pattern=nightly
type=edge
type=ref,event=branch
type=ref,event=pr
type=semver,pattern={{version}}
type=semver,pattern={{major}}.{{minor}}
type=semver,pattern={{major}}
- name: Set up QEMU
uses: docker/setup-qemu-action@v2
- name: Set up Docker Buildx
uses: docker/setup-buildx-action@v2
- name: Build and push
id: docker_build
uses: docker/build-push-action@v4
with:
context: .
platforms: linux/amd64,linux/arm64
push: true
tags: ${{ steps.meta.outputs.tags }}
labels: ${{ steps.meta.outputs.labels }}

View File

@ -1,32 +1,38 @@
name: genlocale
name: Generate and Sync Locale
on:
push:
branches:
- main
- dev
jobs:
golangci:
name: genlocale
genlocale:
runs-on: ubuntu-latest
steps:
- name: Check out
uses: actions/checkout@master
- uses: actions/checkout@master
- name: Run locale generation
run: |
python3 extract_locale.py
cd i18n && python3 locale_diff.py
python3 i18n/scan_i18n.py
cd i18n
python3 locale_diff.py
- name: Commit back
if: ${{ !github.head_ref }}
id: commitback
continue-on-error: true
run: |
git config --local user.name 'github-actions[bot]'
git config --local user.email '41898282+github-actions[bot]@users.noreply.github.com'
git config --local user.email 'github-actions[bot]@users.noreply.github.com'
git add --all
git commit -m "🎨 同步 locale"
git commit -m "chore(i18n): sync locale on ${{github.ref_name}}"
- name: Create Pull Request
if: ${{ !github.head_ref }}
if: steps.commitback.outcome == 'success'
continue-on-error: true
uses: peter-evans/create-pull-request@v4
uses: peter-evans/create-pull-request@v5
with:
delete-branch: true
body: "Automatically sync i18n translation jsons"
title: "chore(i18n): sync locale on ${{github.ref_name}}"
commit-message: "chore(i18n): sync locale on ${{github.ref_name}}"
branch: genlocale-${{github.ref_name}}

View File

@ -1,35 +1,48 @@
name: pull format
name: Check Pull Format
on: [pull_request]
on:
pull_request_target:
types: [opened, reopened]
permissions:
contents: write
jobs:
# This workflow closes invalid PR
close_pr:
# The type of runner that the job will run on
runs-on: ubuntu-latest
permissions: write-all
# Steps represent a sequence of tasks that will be executed as part of the job
steps:
- name: Close PR if it is not pointed to dev branch
if: github.event.pull_request.base.ref != 'dev'
uses: superbrothers/close-pull-request@v3
with:
# Optional. Post a issue comment just before closing a pull request.
comment: "Invalid PR to `non-dev` branch `${{ github.event.pull_request.base.ref }}`."
pull_format:
runs-on: ubuntu-latest
permissions:
contents: write
continue-on-error: true
steps:
- name: checkout
- name: Checkout
continue-on-error: true
uses: actions/checkout@v3
with:
ref: ${{ github.head_ref }}
fetch-depth: 0
- name: Set up Python ${{ matrix.python-version }}
uses: actions/setup-python@v4
with:
python-version: ${{ matrix.python-version }}
- name: Install Black
run: pip install black
run: pip install "black[jupyter]"
- name: Run Black
# run: black $(git ls-files '*.py')
run: black .
- name: Commit Back
uses: stefanzweifel/git-auto-commit-action@v4
with:
commit_message: Apply Code Formatter Change

View File

@ -1,16 +1,19 @@
name: push format
name: Standardize Code Format
on:
push:
branches:
- main
- dev
permissions:
contents: write
pull-requests: write
jobs:
push_format:
runs-on: ubuntu-latest
permissions:
contents: write
pull-requests: write
steps:
- uses: actions/checkout@v3
with:
@ -22,7 +25,7 @@ jobs:
python-version: ${{ matrix.python-version }}
- name: Install Black
run: pip install black
run: pip install "black[jupyter]"
- name: Run Black
# run: black $(git ls-files '*.py')
@ -35,12 +38,15 @@ jobs:
git config --local user.email "github-actions[bot]@users.noreply.github.com"
git config --local user.name "github-actions[bot]"
git add --all
git commit -m "Format code"
git commit -m "chore(format): run black on ${{github.ref_name}}"
- name: Create Pull Request
if: steps.commitback.outcome == 'success'
continue-on-error: true
uses: peter-evans/create-pull-request@v4
uses: peter-evans/create-pull-request@v5
with:
body: Apply Code Formatter Change
commit-message: Automatic code format
delete-branch: true
body: "Automatically apply code formatter change"
title: "chore(format): run black on ${{github.ref_name}}"
commit-message: "chore(format): run black on ${{github.ref_name}}"
branch: formatter-${{github.ref_name}}

23
.github/workflows/sync_dev.yml vendored Normal file
View File

@ -0,0 +1,23 @@
name: Merge dev into main
on:
workflow_dispatch:
jobs:
sync_dev:
runs-on: ubuntu-latest
permissions:
contents: write
pull-requests: write
steps:
- uses: actions/checkout@v3
with:
ref: main
- name: Create Pull Request
run: |
gh pr create --title "chore(sync): merge dev into main" --body "Merge dev to main" --base main --head dev
env:
GH_TOKEN: ${{ github.token }}

View File

@ -1,4 +1,4 @@
name: unitest
name: Unit Test
on: [ push, pull_request ]
jobs:
build:
@ -7,7 +7,7 @@ jobs:
matrix:
python-version: ["3.8", "3.9", "3.10"]
os: [ubuntu-latest]
fail-fast: false
fail-fast: true
steps:
- uses: actions/checkout@master
@ -30,7 +30,7 @@ jobs:
run: |
mkdir -p logs/mi-test
touch logs/mi-test/preprocess.log
python trainset_preprocess_pipeline_print.py logs/mute/0_gt_wavs 48000 8 logs/mi-test True
python infer/modules/train/preprocess.py logs/mute/0_gt_wavs 48000 8 logs/mi-test True 3.7
touch logs/mi-test/extract_f0_feature.log
python extract_f0_print.py logs/mi-test $(nproc) pm
python extract_feature_print.py cpu 1 0 0 logs/mi-test
python infer/modules/train/extract/extract_f0_print.py logs/mi-test $(nproc) pm
python infer/modules/train/extract_feature_print.py cpu 1 0 0 logs/mi-test v1 True

22
.gitignore vendored
View File

@ -2,5 +2,27 @@
__pycache__
/TEMP
*.pyd
.venv
/opt
tools/aria2c/
tools/flag.txt
# Imported from huggingface.co/lj1995/VoiceConversionWebUI
/pretrained
/pretrained_v2
/uvr5_weights
hubert_base.pt
rmvpe.onnx
rmvpe.pt
# Generated by RVC
/logs
/weights
# To set a Python version for the project
.tool-versions
/runtime
/assets/weights/*
ffmpeg.*
ffprobe.*

11
CONTRIBUTING.md Normal file
View File

@ -0,0 +1,11 @@
# 贡献规则
1. 一般来说,作者`@RVC-Boss`将拒绝所有的算法更改,除非它是为了修复某个代码层面的错误或警告
2. 您可以贡献本仓库的其他位置如翻译和WebUI但请尽量作最小更改
3. 所有更改都需要由`@RVC-Boss`批准因此您的PR可能会被搁置
4. 由此带来的不便请您谅解
# Contributing Rules
1. Generally, the author `@RVC-Boss` will reject all algorithm changes unless what is to fix a code-level error or warning.
2. You can contribute to other parts of this repo like translations and WebUI, but please minimize your changes as much as possible.
3. All changes need to be approved by `@RVC-Boss`, so your PR may be put on hold.
4. Please accept our apologies for any inconvenience caused.

View File

@ -1,34 +0,0 @@
### 20230409
- 修正训练参数提升显卡平均利用率A100最高从25%提升至90%左右V100:50%->90%左右2060S:60%->85%左右P40:25%->95%左右,训练速度显著提升
- 修正参数总batch_size改为每张卡的batch_size
- 修正total_epoch最大限制100解锁至1000默认10提升至默认20
- 修复ckpt提取识别是否带音高错误导致推理异常的问题
- 修复分布式训练每个rank都保存一次ckpt的问题
- 特征提取进行nan特征过滤
- 修复静音输入输出随机辅音or噪声的问题老版模型需要重做训练集重训
### 20230416更新
- 新增本地实时变声迷你GUI双击go-realtime-gui.bat启动
- 训练推理均对<50Hz的频段进行滤波过滤
- 训练推理音高提取pyworld最低音高从默认80下降至50,50-80hz间的男声低音不会哑
- WebUI支持根据系统区域变更语言现支持en_USja_JPzh_CNzh_HKzh_SGzh_TW不支持的默认en_US
- 修正部分显卡识别例如V100-16G识别失败P4识别失败
### 20230428更新
- 升级faiss索引设置速度更快质量更高
- 取消total_npy依赖后续分享模型不再需要填写total_npy
- 解锁16系限制。4G显存GPU给到4G的推理设置。
- 修复部分音频格式下UVR5人声伴奏分离的bug
- 实时变声迷你gui增加对非40k与不懈怠音高模型的支持
### 后续计划:
功能:
- 增加选项:每次epoch保存的小模型均进行提取
- 增加选项:推理额外导出mp3至填写的路径
底模:
- 收集呼吸wav加入训练集修正呼吸变声电音的问题
- 我们正在训练增加了歌声训练集的底模,未来会公开
- 升级鉴别器
- 升级自监督特征结构

48
Dockerfile Normal file
View File

@ -0,0 +1,48 @@
# syntax=docker/dockerfile:1
FROM nvidia/cuda:11.6.2-cudnn8-runtime-ubuntu20.04
EXPOSE 7865
WORKDIR /app
COPY . .
# Install dependenceis to add PPAs
RUN apt-get update && \
apt-get install -y -qq ffmpeg aria2 && apt clean && \
apt-get install -y software-properties-common && \
apt-get clean && \
rm -rf /var/lib/apt/lists/*
# Add the deadsnakes PPA to get Python 3.9
RUN add-apt-repository ppa:deadsnakes/ppa
# Install Python 3.9 and pip
RUN apt-get update && \
apt-get install -y build-essential python-dev python3-dev python3.9-distutils python3.9-dev python3.9 curl && \
apt-get clean && \
update-alternatives --install /usr/bin/python3 python3 /usr/bin/python3.9 1 && \
curl https://bootstrap.pypa.io/get-pip.py | python3.9
# Set Python 3.9 as the default
RUN update-alternatives --install /usr/bin/python python /usr/bin/python3.9 1
RUN python3 -m pip install --upgrade pip==24.0
RUN python3 -m pip install --no-cache-dir -r requirements.txt
RUN aria2c --console-log-level=error -c -x 16 -s 16 -k 1M https://huggingface.co/lj1995/VoiceConversionWebUI/resolve/main/pretrained_v2/D40k.pth -d assets/pretrained_v2/ -o D40k.pth
RUN aria2c --console-log-level=error -c -x 16 -s 16 -k 1M https://huggingface.co/lj1995/VoiceConversionWebUI/resolve/main/pretrained_v2/G40k.pth -d assets/pretrained_v2/ -o G40k.pth
RUN aria2c --console-log-level=error -c -x 16 -s 16 -k 1M https://huggingface.co/lj1995/VoiceConversionWebUI/resolve/main/pretrained_v2/f0D40k.pth -d assets/pretrained_v2/ -o f0D40k.pth
RUN aria2c --console-log-level=error -c -x 16 -s 16 -k 1M https://huggingface.co/lj1995/VoiceConversionWebUI/resolve/main/pretrained_v2/f0G40k.pth -d assets/pretrained_v2/ -o f0G40k.pth
RUN aria2c --console-log-level=error -c -x 16 -s 16 -k 1M https://huggingface.co/lj1995/VoiceConversionWebUI/resolve/main/uvr5_weights/HP2-人声vocals+非人声instrumentals.pth -d assets/uvr5_weights/ -o HP2-人声vocals+非人声instrumentals.pth
RUN aria2c --console-log-level=error -c -x 16 -s 16 -k 1M https://huggingface.co/lj1995/VoiceConversionWebUI/resolve/main/uvr5_weights/HP5-主旋律人声vocals+其他instrumentals.pth -d assets/uvr5_weights/ -o HP5-主旋律人声vocals+其他instrumentals.pth
RUN aria2c --console-log-level=error -c -x 16 -s 16 -k 1M https://huggingface.co/lj1995/VoiceConversionWebUI/resolve/main/hubert_base.pt -d assets/hubert -o hubert_base.pt
RUN aria2c --console-log-level=error -c -x 16 -s 16 -k 1M https://huggingface.co/lj1995/VoiceConversionWebUI/resolve/main/rmvpe.pt -d assets/rmvpe -o rmvpe.pt
VOLUME [ "/app/weights", "/app/opt" ]
CMD ["python3", "infer-web.py"]

44
LICENSE
View File

@ -1,21 +1,23 @@
MIT License
Copyright (c) 2023 liujing04
Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the "Software"), to deal
in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:
The above copyright notice and this permission notice shall be included in all
copies or substantial portions of the Software.
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
SOFTWARE.
MIT License
Copyright (c) 2023 liujing04
Copyright (c) 2023 源文雨
Copyright (c) 2023 Ftps
Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the "Software"), to deal
in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:
The above copyright notice and this permission notice shall be included in all
copies or substantial portions of the Software.
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
SOFTWARE.

View File

@ -1,50 +1,45 @@
MIT License
Copyright (c) 2023 liujing04
Copyright (c) 2023 源文雨
本软件及其相关代码以MIT协议开源作者不对软件具备任何控制力使用软件者、传播软件导出的声音者自负全责。
如不认可该条款,则不能使用或引用软件包内任何代码和文件。
Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions:
The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software.
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
特此授予任何获得本软件和相关文档文件(以下简称“软件”)副本的人免费使用、复制、修改、合并、出版、分发、再授权和/或销售本软件的权利,以及授予本软件所提供的人使用本软件的权利,但须符合以下条件:
上述版权声明和本许可声明应包含在软件的所有副本或实质部分中。
软件是“按原样”提供的,没有任何明示或暗示的保证,包括但不限于适销性、适用于特定目的和不侵权的保证。在任何情况下,作者或版权持有人均不承担因软件或软件的使用或其他交易而产生、产生或与之相关的任何索赔、损害赔偿或其他责任,无论是在合同诉讼、侵权诉讼还是其他诉讼中。
相关引用库协议如下:
#################
ContentVec
https://github.com/auspicious3000/contentvec/blob/main/LICENSE
MIT License
#################
VITS
https://github.com/jaywalnut310/vits/blob/main/LICENSE
MIT License
#################
HIFIGAN
https://github.com/jik876/hifi-gan/blob/master/LICENSE
MIT License
#################
gradio
https://github.com/gradio-app/gradio/blob/main/LICENSE
Apache License 2.0
#################
ffmpeg
https://github.com/FFmpeg/FFmpeg/blob/master/COPYING.LGPLv3
https://github.com/BtbN/FFmpeg-Builds/releases/download/autobuild-2021-02-28-12-32/ffmpeg-n4.3.2-160-gfbb9368226-win64-lgpl-4.3.zip
LPGLv3 License
MIT License
#################
ultimatevocalremovergui
https://github.com/Anjok07/ultimatevocalremovergui/blob/master/LICENSE
https://github.com/yang123qwe/vocal_separation_by_uvr5
MIT License
#################
audio-slicer
https://github.com/openvpi/audio-slicer/blob/main/LICENSE
MIT License
本软件及其相关代码以MIT协议开源作者不对软件具备任何控制力使用软件者、传播软件导出的声音者自负全责。
如不认可该条款,则不能使用或引用软件包内任何代码和文件。
特此授予任何获得本软件和相关文档文件(以下简称“软件”)副本的人免费使用、复制、修改、合并、出版、分发、再授权和/或销售本软件的权利,以及授予本软件所提供的人使用本软件的权利,但须符合以下条件:
上述版权声明和本许可声明应包含在软件的所有副本或实质部分中。
软件是“按原样”提供的,没有任何明示或暗示的保证,包括但不限于适销性、适用于特定目的和不侵权的保证。在任何情况下,作者或版权持有人均不承担因软件或软件的使用或其他交易而产生、产生或与之相关的任何索赔、损害赔偿或其他责任,无论是在合同诉讼、侵权诉讼还是其他诉讼中。
The LICENCEs for related libraries are as follows.
相关引用库协议如下:
ContentVec
https://github.com/auspicious3000/contentvec/blob/main/LICENSE
MIT License
VITS
https://github.com/jaywalnut310/vits/blob/main/LICENSE
MIT License
HIFIGAN
https://github.com/jik876/hifi-gan/blob/master/LICENSE
MIT License
gradio
https://github.com/gradio-app/gradio/blob/main/LICENSE
Apache License 2.0
ffmpeg
https://github.com/FFmpeg/FFmpeg/blob/master/COPYING.LGPLv3
https://github.com/BtbN/FFmpeg-Builds/releases/download/autobuild-2021-02-28-12-32/ffmpeg-n4.3.2-160-gfbb9368226-win64-lgpl-4.3.zip
LPGLv3 License
MIT License
ultimatevocalremovergui
https://github.com/Anjok07/ultimatevocalremovergui/blob/master/LICENSE
https://github.com/yang123qwe/vocal_separation_by_uvr5
MIT License
audio-slicer
https://github.com/openvpi/audio-slicer/blob/main/LICENSE
MIT License
PySimpleGUI
https://github.com/PySimpleGUI/PySimpleGUI/blob/master/license.txt
LPGLv3 License

207
README.md
View File

@ -1,34 +1,47 @@
<div align="center">
<h1>Retrieval-based-Voice-Conversion-WebUI</h1>
一个基于VITS的简单易用的语音转换(变声器)框架<br><br>
一个基于VITS的简单易用的变声框架<br><br>
[![madewithlove](https://forthebadge.com/images/badges/built-with-love.svg)](https://github.com/liujing04/Retrieval-based-Voice-Conversion-WebUI)
[![madewithlove](https://img.shields.io/badge/made_with-%E2%9D%A4-red?style=for-the-badge&labelColor=orange
)](https://github.com/RVC-Project/Retrieval-based-Voice-Conversion-WebUI)
<img src="https://counter.seku.su/cmoe?name=rvc&theme=r34" /><br>
[![Open In Colab](https://img.shields.io/badge/Colab-F9AB00?style=for-the-badge&logo=googlecolab&color=525252)](https://colab.research.google.com/github/liujing04/Retrieval-based-Voice-Conversion-WebUI/blob/main/Retrieval_based_Voice_Conversion_WebUI.ipynb)
[![Licence](https://img.shields.io/github/license/liujing04/Retrieval-based-Voice-Conversion-WebUI?style=for-the-badge)](https://github.com/liujing04/Retrieval-based-Voice-Conversion-WebUI/blob/main/%E4%BD%BF%E7%94%A8%E9%9C%80%E9%81%B5%E5%AE%88%E7%9A%84%E5%8D%8F%E8%AE%AE-LICENSE.txt)
[![Open In Colab](https://img.shields.io/badge/Colab-F9AB00?style=for-the-badge&logo=googlecolab&color=525252)](https://colab.research.google.com/github/RVC-Project/Retrieval-based-Voice-Conversion-WebUI/blob/main/Retrieval_based_Voice_Conversion_WebUI.ipynb)
[![Licence](https://img.shields.io/badge/LICENSE-MIT-green.svg?style=for-the-badge)](https://github.com/RVC-Project/Retrieval-based-Voice-Conversion-WebUI/blob/main/LICENSE)
[![Huggingface](https://img.shields.io/badge/🤗%20-Spaces-yellow.svg?style=for-the-badge)](https://huggingface.co/lj1995/VoiceConversionWebUI/tree/main/)
[![Discord](https://img.shields.io/badge/RVC%20Developers-Discord-7289DA?style=for-the-badge&logo=discord&logoColor=white)](https://discord.gg/HcsmBBGyVk)
[**更新日志**](https://github.com/RVC-Project/Retrieval-based-Voice-Conversion-WebUI/blob/main/docs/Changelog_CN.md) | [**常见问题解答**](https://github.com/RVC-Project/Retrieval-based-Voice-Conversion-WebUI/wiki/%E5%B8%B8%E8%A7%81%E9%97%AE%E9%A2%98%E8%A7%A3%E7%AD%94) | [**AutoDL·5毛钱训练AI歌手**](https://github.com/RVC-Project/Retrieval-based-Voice-Conversion-WebUI/wiki/Autodl%E8%AE%AD%E7%BB%83RVC%C2%B7AI%E6%AD%8C%E6%89%8B%E6%95%99%E7%A8%8B) | [**对照实验记录**](https://github.com/RVC-Project/Retrieval-based-Voice-Conversion-WebUI/wiki/Autodl%E8%AE%AD%E7%BB%83RVC%C2%B7AI%E6%AD%8C%E6%89%8B%E6%95%99%E7%A8%8B](https://github.com/RVC-Project/Retrieval-based-Voice-Conversion-WebUI/wiki/%E5%AF%B9%E7%85%A7%E5%AE%9E%E9%AA%8C%C2%B7%E5%AE%9E%E9%AA%8C%E8%AE%B0%E5%BD%95)) | [**在线演示**](https://modelscope.cn/studios/FlowerCry/RVCv2demo)
[**English**](./docs/en/README.en.md) | [**中文简体**](./README.md) | [**日本語**](./docs/jp/README.ja.md) | [**한국어**](./docs/kr/README.ko.md) ([**韓國語**](./docs/kr/README.ko.han.md)) | [**Français**](./docs/fr/README.fr.md) | [**Türkçe**](./docs/tr/README.tr.md) | [**Português**](./docs/pt/README.pt.md)
</div>
------
[**更新日志**](https://github.com/liujing04/Retrieval-based-Voice-Conversion-WebUI/blob/main/Changelog_CN.md)
[**English**](./docs/README.en.md) | [**中文简体**](./README.md) | [**日本語**](./docs/README.ja.md) | [**한국어**](./docs/README.ko.md)
> 点此查看我们的[演示视频](https://www.bilibili.com/video/BV1pm4y1z7Gm/) !
> 使用了RVC的实时语音转换: [w-okada/voice-changer](https://github.com/w-okada/voice-changer)
> 底模使用接近50小时的开源高质量VCTK训练集训练无版权方面的顾虑请大家放心使用
> 后续会陆续加入高质量有授权歌声训练集训练底模
> 请期待RVCv3的底模参数更大数据更大效果更好基本持平的推理速度需要训练数据量更少。
<table>
<tr>
<td align="center">训练推理界面</td>
<td align="center">实时变声界面</td>
</tr>
<tr>
<td align="center"><img src="https://github.com/RVC-Project/Retrieval-based-Voice-Conversion-WebUI/assets/129054828/092e5c12-0d49-4168-a590-0b0ef6a4f630"></td>
<td align="center"><img src="https://github.com/RVC-Project/Retrieval-based-Voice-Conversion-WebUI/assets/129054828/730b4114-8805-44a1-ab1a-04668f3c30a6"></td>
</tr>
<tr>
<td align="center">go-web.bat</td>
<td align="center">go-realtime-gui.bat</td>
</tr>
<tr>
<td align="center">可以自由选择想要执行的操作。</td>
<td align="center">我们已经实现端到端170ms延迟。如使用ASIO输入输出设备已能实现端到端90ms延迟但非常依赖硬件驱动支持。</td>
</tr>
</table>
## 简介
本仓库具有以下特点
@ -38,60 +51,150 @@
+ 可以通过模型融合来改变音色(借助ckpt处理选项卡中的ckpt-merge)
+ 简单易用的网页界面
+ 可调用UVR5模型来快速分离人声和伴奏
+ 使用最先进的[人声音高提取算法InterSpeech2023-RMVPE](#参考项目)根绝哑音问题。效果最好显著地但比crepe_full更快、资源占用更小
+ A卡I卡加速支持
点此查看我们的[演示视频](https://www.bilibili.com/video/BV1pm4y1z7Gm/) !
## 环境配置
推荐使用poetry配置环境。
以下指令需在 Python 版本大于3.8的环境中执行。
以下指令需在Python版本大于3.8的环境中执行:
### Windows/Linux/MacOS等平台通用方法
下列方法任选其一。
#### 1. 通过 pip 安装依赖
1. 安装Pytorch及其核心依赖若已安装则跳过。参考自: https://pytorch.org/get-started/locally/
```bash
# 安装Pytorch及其核心依赖若已安装则跳过
# 参考自: https://pytorch.org/get-started/locally/
pip install torch torchvision torchaudio
#如果是win系统+Nvidia Ampere架构(RTX30xx),根据 #21 的经验需要指定pytorch对应的cuda版本
#pip install torch torchvision torchaudio --index-url https://download.pytorch.org/whl/cu117
# 安装 Poetry 依赖管理工具, 若已安装则跳过
# 参考自: https://python-poetry.org/docs/#installation
curl -sSL https://install.python-poetry.org | python3 -
# 通过poetry安装依赖
poetry install
```
你也可以通过pip来安装依赖
**注意**: `MacOS``faiss 1.7.2`版本会导致抛出段错误,在手动安装时请使用命令`pip install faiss-cpu==1.7.0`指定使用`1.7.0`版本
2. 如果是 win 系统 + Nvidia Ampere 架构(RTX30xx),根据 #21 的经验,需要指定 pytorch 对应的 cuda 版本
```bash
pip install torch torchvision torchaudio --index-url https://download.pytorch.org/whl/cu117
```
3. 根据自己的显卡安装对应依赖
- N卡
```bash
pip install -r requirements.txt
```
- A卡/I卡
```bash
pip install -r requirements-dml.txt
```
- A卡ROCM(Linux)
```bash
pip install -r requirements-amd.txt
```
- I卡IPEX(Linux)
```bash
pip install -r requirements-ipex.txt
```
#### 2. 通过 poetry 来安装依赖
安装 Poetry 依赖管理工具,若已安装则跳过。参考自: https://python-poetry.org/docs/#installation
```bash
curl -sSL https://install.python-poetry.org | python3 -
```
通过 Poetry 安装依赖时python 建议使用 3.7-3.10 版本,其余版本在安装 llvmlite==0.39.0 时会出现冲突
```bash
poetry init -n
poetry env use "path to your python.exe"
poetry run pip install -r requirments.txt
```
### MacOS
可以通过 `run.sh` 来安装依赖
```bash
sh ./run.sh
```
## 其他预模型准备
RVC需要其他一些预模型来推理和训练。
你可以从我们的[Hugging Face space](https://huggingface.co/lj1995/VoiceConversionWebUI/tree/main/)下载到这些模型。
以下是一份清单包括了所有RVC所需的预模型和其他文件的名称:
### 1. 下载 assets
以下是一份清单包括了所有RVC所需的预模型和其他文件的名称。你可以在`tools`文件夹找到下载它们的脚本。
- ./assets/hubert/hubert_base.pt
- ./assets/pretrained
- ./assets/uvr5_weights
想使用v2版本模型的话需要额外下载
- ./assets/pretrained_v2
### 2. 安装 ffmpeg
若ffmpeg和ffprobe已安装则跳过。
#### Ubuntu/Debian 用户
```bash
hubert_base.pt
./pretrained
./uvr5_weights
#如果你正在使用Windows则你可能需要这个文件若ffmpeg和ffprobe已安装则跳过; ubuntu/debian 用户可以通过apt install ffmpeg来安装这2个库
./ffmpeg
./ffprobe
sudo apt install ffmpeg
```
之后使用以下指令来启动WebUI:
#### MacOS 用户
```bash
brew install ffmpeg
```
#### Windows 用户
下载后放置在根目录。
- 下载[ffmpeg.exe](https://huggingface.co/lj1995/VoiceConversionWebUI/blob/main/ffmpeg.exe)
- 下载[ffprobe.exe](https://huggingface.co/lj1995/VoiceConversionWebUI/blob/main/ffprobe.exe)
### 3. 下载 rmvpe 人声音高提取算法所需文件
如果你想使用最新的RMVPE人声音高提取算法则你需要下载音高提取模型参数并放置于RVC根目录。
- 下载[rmvpe.pt](https://huggingface.co/lj1995/VoiceConversionWebUI/blob/main/rmvpe.pt)
#### 下载 rmvpe 的 dml 环境(可选, A卡/I卡用户)
- 下载[rmvpe.onnx](https://huggingface.co/lj1995/VoiceConversionWebUI/blob/main/rmvpe.onnx)
### 4. AMD显卡Rocm(可选, 仅Linux)
如果你想基于AMD的Rocm技术在Linux系统上运行RVC请先在[这里](https://rocm.docs.amd.com/en/latest/deploy/linux/os-native/install.html)安装所需的驱动。
若你使用的是Arch Linux可以使用pacman来安装所需驱动
````
pacman -S rocm-hip-sdk rocm-opencl-sdk
````
对于某些型号的显卡你可能需要额外配置如下的环境变量RX6700XT
````
export ROCM_PATH=/opt/rocm
export HSA_OVERRIDE_GFX_VERSION=10.3.0
````
同时确保你的当前用户处于`render``video`用户组内:
````
sudo usermod -aG render $USERNAME
sudo usermod -aG video $USERNAME
````
## 开始使用
### 直接启动
使用以下指令来启动 WebUI
```bash
python infer-web.py
```
如果你正在使用Windows你可以直接下载并解压`RVC-beta.7z`,运行`go-web.bat`以启动WebUI。
仓库内还有一份`小白简易教程.doc`以供参考。
若先前使用 Poetry 安装依赖则可以通过以下方式启动WebUI
```bash
poetry run python infer-web.py
```
### 使用整合包
下载并解压`RVC-beta.7z`
#### Windows 用户
双击`go-web.bat`
#### MacOS 用户
```bash
sh ./run.sh
```
### 对于需要使用IPEX技术的I卡用户(仅Linux)
```bash
source /opt/intel/oneapi/setvars.sh
```
## 参考项目
+ [ContentVec](https://github.com/auspicious3000/contentvec/)
@ -101,8 +204,10 @@ python infer-web.py
+ [FFmpeg](https://github.com/FFmpeg/FFmpeg)
+ [Ultimate Vocal Remover](https://github.com/Anjok07/ultimatevocalremovergui)
+ [audio-slicer](https://github.com/openvpi/audio-slicer)
+ [Vocal pitch extraction:RMVPE](https://github.com/Dream-High/RMVPE)
+ The pretrained model is trained and tested by [yxlllc](https://github.com/yxlllc/RMVPE) and [RVC-Boss](https://github.com/RVC-Boss).
## 感谢所有贡献者作出的努力
<a href="https://github.com/liujing04/Retrieval-based-Voice-Conversion-WebUI/graphs/contributors" target="_blank">
<img src="https://contrib.rocks/image?repo=liujing04/Retrieval-based-Voice-Conversion-WebUI" />
<a href="https://github.com/RVC-Project/Retrieval-based-Voice-Conversion-WebUI/graphs/contributors" target="_blank">
<img src="https://contrib.rocks/image?repo=RVC-Project/Retrieval-based-Voice-Conversion-WebUI" />
</a>

View File

@ -1,381 +1,403 @@
{
"nbformat": 4,
"nbformat_minor": 0,
"metadata": {
"colab": {
"private_outputs": true,
"provenance": []
},
"kernelspec": {
"name": "python3",
"display_name": "Python 3"
},
"language_info": {
"name": "python"
},
"accelerator": "GPU",
"gpuClass": "standard"
"cells": [
{
"attachments": {},
"cell_type": "markdown",
"metadata": {},
"source": [
"# [Retrieval-based-Voice-Conversion-WebUI](https://github.com/RVC-Project/Retrieval-based-Voice-Conversion-WebUI) Training notebook"
]
},
"cells": [
{
"cell_type": "markdown",
"source": [
"[![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/liujing04/Retrieval-based-Voice-Conversion-WebUI/blob/main/Retrieval_based_Voice_Conversion_WebUI.ipynb)"
],
"metadata": {
"id": "ZFFCx5J80SGa"
}
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"id": "GmFP6bN9dvOq"
},
"outputs": [],
"source": [
"#@title 查看显卡\n",
"!nvidia-smi"
]
},
{
"cell_type": "code",
"source": [
"#@title 安装依赖\n",
"!apt-get -y install build-essential python3-dev ffmpeg\n",
"!pip3 install --upgrade setuptools wheel\n",
"!pip3 install --upgrade pip\n",
"!pip3 install faiss-gpu fairseq gradio ffmpeg ffmpeg-python praat-parselmouth pyworld numpy==1.23.5 numba==0.56.4 librosa==0.9.2"
],
"metadata": {
"id": "wjddIFr1oS3W"
},
"execution_count": null,
"outputs": []
},
{
"cell_type": "code",
"source": [
"#@title 克隆仓库\n",
"\n",
"!git clone --depth=1 -b stable https://github.com/fumiama/Retrieval-based-Voice-Conversion-WebUI\n",
"%cd /content/Retrieval-based-Voice-Conversion-WebUI\n",
"!mkdir -p pretrained uvr5_weights"
],
"metadata": {
"id": "ge_97mfpgqTm"
},
"execution_count": null,
"outputs": []
},
{
"cell_type": "code",
"source": [
"#@title 更新仓库(一般无需执行)\n",
"!git pull"
],
"metadata": {
"id": "BLDEZADkvlw1"
},
"execution_count": null,
"outputs": []
},
{
"cell_type": "code",
"source": [
"#@title 安装aria2\n",
"!apt -y install -qq aria2"
],
"metadata": {
"id": "pqE0PrnuRqI2"
},
"execution_count": null,
"outputs": []
},
{
"cell_type": "code",
"source": [
"#@title 下载底模\n",
"!aria2c --console-log-level=error -c -x 16 -s 16 -k 1M https://huggingface.co/lj1995/VoiceConversionWebUI/resolve/main/pretrained/D32k.pth -d /content/Retrieval-based-Voice-Conversion-WebUI/pretrained -o D32k.pth\n",
"!aria2c --console-log-level=error -c -x 16 -s 16 -k 1M https://huggingface.co/lj1995/VoiceConversionWebUI/resolve/main/pretrained/D40k.pth -d /content/Retrieval-based-Voice-Conversion-WebUI/pretrained -o D40k.pth\n",
"!aria2c --console-log-level=error -c -x 16 -s 16 -k 1M https://huggingface.co/lj1995/VoiceConversionWebUI/resolve/main/pretrained/D48k.pth -d /content/Retrieval-based-Voice-Conversion-WebUI/pretrained -o D48k.pth\n",
"!aria2c --console-log-level=error -c -x 16 -s 16 -k 1M https://huggingface.co/lj1995/VoiceConversionWebUI/resolve/main/pretrained/G32k.pth -d /content/Retrieval-based-Voice-Conversion-WebUI/pretrained -o G32k.pth\n",
"!aria2c --console-log-level=error -c -x 16 -s 16 -k 1M https://huggingface.co/lj1995/VoiceConversionWebUI/resolve/main/pretrained/G40k.pth -d /content/Retrieval-based-Voice-Conversion-WebUI/pretrained -o G40k.pth\n",
"!aria2c --console-log-level=error -c -x 16 -s 16 -k 1M https://huggingface.co/lj1995/VoiceConversionWebUI/resolve/main/pretrained/G48k.pth -d /content/Retrieval-based-Voice-Conversion-WebUI/pretrained -o G48k.pth\n",
"!aria2c --console-log-level=error -c -x 16 -s 16 -k 1M https://huggingface.co/lj1995/VoiceConversionWebUI/resolve/main/pretrained/f0D32k.pth -d /content/Retrieval-based-Voice-Conversion-WebUI/pretrained -o f0D32k.pth\n",
"!aria2c --console-log-level=error -c -x 16 -s 16 -k 1M https://huggingface.co/lj1995/VoiceConversionWebUI/resolve/main/pretrained/f0D40k.pth -d /content/Retrieval-based-Voice-Conversion-WebUI/pretrained -o f0D40k.pth\n",
"!aria2c --console-log-level=error -c -x 16 -s 16 -k 1M https://huggingface.co/lj1995/VoiceConversionWebUI/resolve/main/pretrained/f0D48k.pth -d /content/Retrieval-based-Voice-Conversion-WebUI/pretrained -o f0D48k.pth\n",
"!aria2c --console-log-level=error -c -x 16 -s 16 -k 1M https://huggingface.co/lj1995/VoiceConversionWebUI/resolve/main/pretrained/f0G32k.pth -d /content/Retrieval-based-Voice-Conversion-WebUI/pretrained -o f0G32k.pth\n",
"!aria2c --console-log-level=error -c -x 16 -s 16 -k 1M https://huggingface.co/lj1995/VoiceConversionWebUI/resolve/main/pretrained/f0G40k.pth -d /content/Retrieval-based-Voice-Conversion-WebUI/pretrained -o f0G40k.pth\n",
"!aria2c --console-log-level=error -c -x 16 -s 16 -k 1M https://huggingface.co/lj1995/VoiceConversionWebUI/resolve/main/pretrained/f0G48k.pth -d /content/Retrieval-based-Voice-Conversion-WebUI/pretrained -o f0G48k.pth"
],
"metadata": {
"id": "UG3XpUwEomUz"
},
"execution_count": null,
"outputs": []
},
{
"cell_type": "code",
"source": [
"#@title 下载人声分离模型\n",
"!aria2c --console-log-level=error -c -x 16 -s 16 -k 1M https://huggingface.co/lj1995/VoiceConversionWebUI/resolve/main/uvr5_weights/HP2-人声vocals+非人声instrumentals.pth -d /content/Retrieval-based-Voice-Conversion-WebUI/uvr5_weights -o HP2-人声vocals+非人声instrumentals.pth\n",
"!aria2c --console-log-level=error -c -x 16 -s 16 -k 1M https://huggingface.co/lj1995/VoiceConversionWebUI/resolve/main/uvr5_weights/HP5-主旋律人声vocals+其他instrumentals.pth -d /content/Retrieval-based-Voice-Conversion-WebUI/uvr5_weights -o HP5-主旋律人声vocals+其他instrumentals.pth"
],
"metadata": {
"id": "HugjmZqZRuiF"
},
"execution_count": null,
"outputs": []
},
{
"cell_type": "code",
"source": [
"#@title 下载hubert_base\n",
"!aria2c --console-log-level=error -c -x 16 -s 16 -k 1M https://huggingface.co/lj1995/VoiceConversionWebUI/resolve/main/hubert_base.pt -d /content/Retrieval-based-Voice-Conversion-WebUI -o hubert_base.pt"
],
"metadata": {
"id": "2RCaT9FTR0ej"
},
"execution_count": null,
"outputs": []
},
{
"cell_type": "code",
"source": [
"#@title 挂载谷歌云盘\n",
"\n",
"from google.colab import drive\n",
"drive.mount('/content/drive')"
],
"metadata": {
"id": "jwu07JgqoFON"
},
"execution_count": null,
"outputs": []
},
{
"cell_type": "code",
"source": [
"#@title 从谷歌云盘加载打包好的数据集到/content/dataset\n",
"\n",
"#@markdown 数据集位置\n",
"DATASET = \"/content/drive/MyDrive/dataset/lulu20230327_32k.zip\" #@param {type:\"string\"}\n",
"\n",
"!mkdir -p /content/dataset\n",
"!unzip -d /content/dataset -B {DATASET}"
],
"metadata": {
"id": "Mwk7Q0Loqzjx"
},
"execution_count": null,
"outputs": []
},
{
"cell_type": "code",
"source": [
"#@title 重命名数据集中的重名文件\n",
"!ls -a /content/dataset/\n",
"!rename 's/(\\w+)\\.(\\w+)~(\\d*)/$1_$3.$2/' /content/dataset/*.*~*"
],
"metadata": {
"id": "PDlFxWHWEynD"
},
"execution_count": null,
"outputs": []
},
{
"cell_type": "code",
"source": [
"#@title 启动web\n",
"%cd /content/Retrieval-based-Voice-Conversion-WebUI\n",
"# %load_ext tensorboard\n",
"# %tensorboard --logdir /content/Retrieval-based-Voice-Conversion-WebUI/logs\n",
"!python3 infer-web.py --colab --pycmd python3"
],
"metadata": {
"id": "7vh6vphDwO0b"
},
"execution_count": null,
"outputs": []
},
{
"cell_type": "code",
"source": [
"#@title 手动将训练后的模型文件备份到谷歌云盘\n",
"#@markdown 需要自己查看logs文件夹下模型的文件名手动修改下方命令末尾的文件名\n",
"\n",
"#@markdown 模型名\n",
"MODELNAME = \"lulu\" #@param {type:\"string\"}\n",
"#@markdown 模型epoch\n",
"MODELEPOCH = 9600 #@param {type:\"integer\"}\n",
"\n",
"!cp /content/Retrieval-based-Voice-Conversion-WebUI/logs/{MODELNAME}/G_{MODELEPOCH}.pth /content/drive/MyDrive/{MODELNAME}_D_{MODELEPOCH}.pth\n",
"!cp /content/Retrieval-based-Voice-Conversion-WebUI/logs/{MODELNAME}/D_{MODELEPOCH}.pth /content/drive/MyDrive/{MODELNAME}_G_{MODELEPOCH}.pth\n",
"!cp /content/Retrieval-based-Voice-Conversion-WebUI/logs/{MODELNAME}/added_*.index /content/drive/MyDrive/\n",
"!cp /content/Retrieval-based-Voice-Conversion-WebUI/logs/{MODELNAME}/total_*.npy /content/drive/MyDrive/\n",
"\n",
"!cp /content/Retrieval-based-Voice-Conversion-WebUI/weights/{MODELNAME}.pth /content/drive/MyDrive/{MODELNAME}{MODELEPOCH}.pth"
],
"metadata": {
"id": "FgJuNeAwx5Y_"
},
"execution_count": null,
"outputs": []
},
{
"cell_type": "code",
"source": [
"#@title 从谷歌云盘恢复pth\n",
"#@markdown 需要自己查看logs文件夹下模型的文件名手动修改下方命令末尾的文件名\n",
"\n",
"#@markdown 模型名\n",
"MODELNAME = \"lulu\" #@param {type:\"string\"}\n",
"#@markdown 模型epoch\n",
"MODELEPOCH = 7500 #@param {type:\"integer\"}\n",
"\n",
"!mkdir -p /content/Retrieval-based-Voice-Conversion-WebUI/logs/{MODELNAME}\n",
"\n",
"!cp /content/drive/MyDrive/{MODELNAME}_D_{MODELEPOCH}.pth /content/Retrieval-based-Voice-Conversion-WebUI/logs/{MODELNAME}/G_{MODELEPOCH}.pth\n",
"!cp /content/drive/MyDrive/{MODELNAME}_G_{MODELEPOCH}.pth /content/Retrieval-based-Voice-Conversion-WebUI/logs/{MODELNAME}/D_{MODELEPOCH}.pth\n",
"!cp /content/drive/MyDrive/*.index /content/\n",
"!cp /content/drive/MyDrive/*.npy /content/\n",
"!cp /content/drive/MyDrive/{MODELNAME}{MODELEPOCH}.pth /content/Retrieval-based-Voice-Conversion-WebUI/weights/{MODELNAME}.pth"
],
"metadata": {
"id": "OVQoLQJXS7WX"
},
"execution_count": null,
"outputs": []
},
{
"cell_type": "code",
"source": [
"#@title 手动预处理(不推荐)\n",
"#@markdown 模型名\n",
"MODELNAME = \"lulu\" #@param {type:\"string\"}\n",
"#@markdown 采样率\n",
"BITRATE = 48000 #@param {type:\"integer\"}\n",
"#@markdown 使用的进程数\n",
"THREADCOUNT = 8 #@param {type:\"integer\"}\n",
"\n",
"!python3 trainset_preprocess_pipeline_print.py /content/dataset {BITRATE} {THREADCOUNT} logs/{MODELNAME} True\n"
],
"metadata": {
"id": "ZKAyuKb9J6dz"
},
"execution_count": null,
"outputs": []
},
{
"cell_type": "code",
"source": [
"#@title 手动提取特征(不推荐)\n",
"#@markdown 模型名\n",
"MODELNAME = \"lulu\" #@param {type:\"string\"}\n",
"#@markdown 使用的进程数\n",
"THREADCOUNT = 8 #@param {type:\"integer\"}\n",
"#@markdown 音高提取算法\n",
"ALGO = \"harvest\" #@param {type:\"string\"}\n",
"\n",
"!python3 extract_f0_print.py logs/{MODELNAME} {THREADCOUNT} {ALGO}\n",
"\n",
"!python3 extract_feature_print.py cpu 1 0 0 logs/{MODELNAME}\n"
],
"metadata": {
"id": "CrxJqzAUKmPJ"
},
"execution_count": null,
"outputs": []
},
{
"cell_type": "code",
"source": [
"#@title 手动训练(不推荐)\n",
"#@markdown 模型名\n",
"MODELNAME = \"lulu\" #@param {type:\"string\"}\n",
"#@markdown 使用的GPU\n",
"USEGPU = \"0\" #@param {type:\"string\"}\n",
"#@markdown 批大小\n",
"BATCHSIZE = 32 #@param {type:\"integer\"}\n",
"#@markdown 停止的epoch\n",
"MODELEPOCH = 3200 #@param {type:\"integer\"}\n",
"#@markdown 保存epoch间隔\n",
"EPOCHSAVE = 100 #@param {type:\"integer\"}\n",
"#@markdown 采样率\n",
"MODELSAMPLE = \"48k\" #@param {type:\"string\"}\n",
"#@markdown 是否缓存训练集\n",
"CACHEDATA = 1 #@param {type:\"integer\"}\n",
"#@markdown 是否仅保存最新的ckpt文件\n",
"ONLYLATEST = 0 #@param {type:\"integer\"}\n",
"\n",
"!python3 train_nsf_sim_cache_sid_load_pretrain.py -e lulu -sr {MODELSAMPLE} -f0 1 -bs {BATCHSIZE} -g {USEGPU} -te {MODELEPOCH} -se {EPOCHSAVE} -pg pretrained/f0G{MODELSAMPLE}.pth -pd pretrained/f0D{MODELSAMPLE}.pth -l {ONLYLATEST} -c {CACHEDATA}\n"
],
"metadata": {
"id": "IMLPLKOaKj58"
},
"execution_count": null,
"outputs": []
},
{
"cell_type": "code",
"source": [
"#@title 删除其它pth只留选中的慎点仔细看代码\n",
"#@markdown 模型名\n",
"MODELNAME = \"lulu\" #@param {type:\"string\"}\n",
"#@markdown 选中模型epoch\n",
"MODELEPOCH = 9600 #@param {type:\"integer\"}\n",
"\n",
"!echo \"备份选中的模型。。。\"\n",
"!cp /content/Retrieval-based-Voice-Conversion-WebUI/logs/{MODELNAME}/G_{MODELEPOCH}.pth /content/{MODELNAME}_D_{MODELEPOCH}.pth\n",
"!cp /content/Retrieval-based-Voice-Conversion-WebUI/logs/{MODELNAME}/D_{MODELEPOCH}.pth /content/{MODELNAME}_G_{MODELEPOCH}.pth\n",
"\n",
"!echo \"正在删除。。。\"\n",
"!ls /content/Retrieval-based-Voice-Conversion-WebUI/logs/{MODELNAME}\n",
"!rm /content/Retrieval-based-Voice-Conversion-WebUI/logs/{MODELNAME}/*.pth\n",
"\n",
"!echo \"恢复选中的模型。。。\"\n",
"!mv /content/{MODELNAME}_D_{MODELEPOCH}.pth /content/Retrieval-based-Voice-Conversion-WebUI/logs/{MODELNAME}/G_{MODELEPOCH}.pth \n",
"!mv /content/{MODELNAME}_G_{MODELEPOCH}.pth /content/Retrieval-based-Voice-Conversion-WebUI/logs/{MODELNAME}/D_{MODELEPOCH}.pth\n",
"\n",
"!echo \"删除完成\"\n",
"!ls /content/Retrieval-based-Voice-Conversion-WebUI/logs/{MODELNAME}"
],
"metadata": {
"id": "haYA81hySuDl"
},
"execution_count": null,
"outputs": []
},
{
"cell_type": "code",
"source": [
"#@title 清除项目下所有文件,只留选中的模型(慎点,仔细看代码)\n",
"#@markdown 模型名\n",
"MODELNAME = \"lulu\" #@param {type:\"string\"}\n",
"#@markdown 选中模型epoch\n",
"MODELEPOCH = 9600 #@param {type:\"integer\"}\n",
"\n",
"!echo \"备份选中的模型。。。\"\n",
"!cp /content/Retrieval-based-Voice-Conversion-WebUI/logs/{MODELNAME}/G_{MODELEPOCH}.pth /content/{MODELNAME}_D_{MODELEPOCH}.pth\n",
"!cp /content/Retrieval-based-Voice-Conversion-WebUI/logs/{MODELNAME}/D_{MODELEPOCH}.pth /content/{MODELNAME}_G_{MODELEPOCH}.pth\n",
"\n",
"!echo \"正在删除。。。\"\n",
"!ls /content/Retrieval-based-Voice-Conversion-WebUI/logs/{MODELNAME}\n",
"!rm -rf /content/Retrieval-based-Voice-Conversion-WebUI/logs/{MODELNAME}/*\n",
"\n",
"!echo \"恢复选中的模型。。。\"\n",
"!mv /content/{MODELNAME}_D_{MODELEPOCH}.pth /content/Retrieval-based-Voice-Conversion-WebUI/logs/{MODELNAME}/G_{MODELEPOCH}.pth \n",
"!mv /content/{MODELNAME}_G_{MODELEPOCH}.pth /content/Retrieval-based-Voice-Conversion-WebUI/logs/{MODELNAME}/D_{MODELEPOCH}.pth\n",
"\n",
"!echo \"删除完成\"\n",
"!ls /content/Retrieval-based-Voice-Conversion-WebUI/logs/{MODELNAME}"
],
"metadata": {
"id": "QhSiPTVPoIRh"
},
"execution_count": null,
"outputs": []
}
]
}
{
"attachments": {},
"cell_type": "markdown",
"metadata": {
"id": "ZFFCx5J80SGa"
},
"source": [
"[![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/RVC-Project/Retrieval-based-Voice-Conversion-WebUI/blob/main/Retrieval_based_Voice_Conversion_WebUI.ipynb)"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"id": "GmFP6bN9dvOq"
},
"outputs": [],
"source": [
"# @title 查看显卡\n",
"!nvidia-smi"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"id": "jwu07JgqoFON"
},
"outputs": [],
"source": [
"# @title 挂载谷歌云盘\n",
"\n",
"from google.colab import drive\n",
"\n",
"drive.mount(\"/content/drive\")"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"id": "wjddIFr1oS3W"
},
"outputs": [],
"source": [
"# @title 安装依赖\n",
"!apt-get -y install build-essential python3-dev ffmpeg\n",
"!pip3 install --upgrade setuptools wheel\n",
"!pip3 install --upgrade pip\n",
"!pip3 install faiss-cpu==1.7.2 fairseq gradio==3.14.0 ffmpeg ffmpeg-python praat-parselmouth pyworld numpy==1.23.5 numba==0.56.4 librosa==0.9.2"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"id": "ge_97mfpgqTm"
},
"outputs": [],
"source": [
"# @title 克隆仓库\n",
"\n",
"!git clone --depth=1 -b stable https://github.com/fumiama/Retrieval-based-Voice-Conversion-WebUI\n",
"%cd /content/Retrieval-based-Voice-Conversion-WebUI\n",
"!mkdir -p pretrained uvr5_weights"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"id": "BLDEZADkvlw1"
},
"outputs": [],
"source": [
"# @title 更新仓库(一般无需执行)\n",
"!git pull"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"id": "pqE0PrnuRqI2"
},
"outputs": [],
"source": [
"# @title 安装aria2\n",
"!apt -y install -qq aria2"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"id": "UG3XpUwEomUz"
},
"outputs": [],
"source": [
"# @title 下载底模\n",
"!aria2c --console-log-level=error -c -x 16 -s 16 -k 1M https://huggingface.co/lj1995/VoiceConversionWebUI/resolve/main/pretrained/D32k.pth -d /content/Retrieval-based-Voice-Conversion-WebUI/pretrained -o D32k.pth\n",
"!aria2c --console-log-level=error -c -x 16 -s 16 -k 1M https://huggingface.co/lj1995/VoiceConversionWebUI/resolve/main/pretrained/D40k.pth -d /content/Retrieval-based-Voice-Conversion-WebUI/pretrained -o D40k.pth\n",
"!aria2c --console-log-level=error -c -x 16 -s 16 -k 1M https://huggingface.co/lj1995/VoiceConversionWebUI/resolve/main/pretrained/D48k.pth -d /content/Retrieval-based-Voice-Conversion-WebUI/pretrained -o D48k.pth\n",
"!aria2c --console-log-level=error -c -x 16 -s 16 -k 1M https://huggingface.co/lj1995/VoiceConversionWebUI/resolve/main/pretrained/G32k.pth -d /content/Retrieval-based-Voice-Conversion-WebUI/pretrained -o G32k.pth\n",
"!aria2c --console-log-level=error -c -x 16 -s 16 -k 1M https://huggingface.co/lj1995/VoiceConversionWebUI/resolve/main/pretrained/G40k.pth -d /content/Retrieval-based-Voice-Conversion-WebUI/pretrained -o G40k.pth\n",
"!aria2c --console-log-level=error -c -x 16 -s 16 -k 1M https://huggingface.co/lj1995/VoiceConversionWebUI/resolve/main/pretrained/G48k.pth -d /content/Retrieval-based-Voice-Conversion-WebUI/pretrained -o G48k.pth\n",
"!aria2c --console-log-level=error -c -x 16 -s 16 -k 1M https://huggingface.co/lj1995/VoiceConversionWebUI/resolve/main/pretrained/f0D32k.pth -d /content/Retrieval-based-Voice-Conversion-WebUI/pretrained -o f0D32k.pth\n",
"!aria2c --console-log-level=error -c -x 16 -s 16 -k 1M https://huggingface.co/lj1995/VoiceConversionWebUI/resolve/main/pretrained/f0D40k.pth -d /content/Retrieval-based-Voice-Conversion-WebUI/pretrained -o f0D40k.pth\n",
"!aria2c --console-log-level=error -c -x 16 -s 16 -k 1M https://huggingface.co/lj1995/VoiceConversionWebUI/resolve/main/pretrained/f0D48k.pth -d /content/Retrieval-based-Voice-Conversion-WebUI/pretrained -o f0D48k.pth\n",
"!aria2c --console-log-level=error -c -x 16 -s 16 -k 1M https://huggingface.co/lj1995/VoiceConversionWebUI/resolve/main/pretrained/f0G32k.pth -d /content/Retrieval-based-Voice-Conversion-WebUI/pretrained -o f0G32k.pth\n",
"!aria2c --console-log-level=error -c -x 16 -s 16 -k 1M https://huggingface.co/lj1995/VoiceConversionWebUI/resolve/main/pretrained/f0G40k.pth -d /content/Retrieval-based-Voice-Conversion-WebUI/pretrained -o f0G40k.pth\n",
"!aria2c --console-log-level=error -c -x 16 -s 16 -k 1M https://huggingface.co/lj1995/VoiceConversionWebUI/resolve/main/pretrained/f0G48k.pth -d /content/Retrieval-based-Voice-Conversion-WebUI/pretrained -o f0G48k.pth"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"id": "HugjmZqZRuiF"
},
"outputs": [],
"source": [
"# @title 下载人声分离模型\n",
"!aria2c --console-log-level=error -c -x 16 -s 16 -k 1M https://huggingface.co/lj1995/VoiceConversionWebUI/resolve/main/uvr5_weights/HP2-人声vocals+非人声instrumentals.pth -d /content/Retrieval-based-Voice-Conversion-WebUI/uvr5_weights -o HP2-人声vocals+非人声instrumentals.pth\n",
"!aria2c --console-log-level=error -c -x 16 -s 16 -k 1M https://huggingface.co/lj1995/VoiceConversionWebUI/resolve/main/uvr5_weights/HP5-主旋律人声vocals+其他instrumentals.pth -d /content/Retrieval-based-Voice-Conversion-WebUI/uvr5_weights -o HP5-主旋律人声vocals+其他instrumentals.pth"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"id": "2RCaT9FTR0ej"
},
"outputs": [],
"source": [
"# @title 下载hubert_base\n",
"!aria2c --console-log-level=error -c -x 16 -s 16 -k 1M https://huggingface.co/lj1995/VoiceConversionWebUI/resolve/main/hubert_base.pt -d /content/Retrieval-based-Voice-Conversion-WebUI -o hubert_base.pt"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"# @title #下载rmvpe模型\n",
"!aria2c --console-log-level=error -c -x 16 -s 16 -k 1M https://huggingface.co/lj1995/VoiceConversionWebUI/resolve/main/rmvpe.pt -d /content/Retrieval-based-Voice-Conversion-WebUI -o rmvpe.pt"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"id": "Mwk7Q0Loqzjx"
},
"outputs": [],
"source": [
"# @title 从谷歌云盘加载打包好的数据集到/content/dataset\n",
"\n",
"# @markdown 数据集位置\n",
"DATASET = (\n",
" \"/content/drive/MyDrive/dataset/lulu20230327_32k.zip\" # @param {type:\"string\"}\n",
")\n",
"\n",
"!mkdir -p /content/dataset\n",
"!unzip -d /content/dataset -B {DATASET}"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"id": "PDlFxWHWEynD"
},
"outputs": [],
"source": [
"# @title 重命名数据集中的重名文件\n",
"!ls -a /content/dataset/\n",
"!rename 's/(\\w+)\\.(\\w+)~(\\d*)/$1_$3.$2/' /content/dataset/*.*~*"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"id": "7vh6vphDwO0b"
},
"outputs": [],
"source": [
"# @title 启动web\n",
"%cd /content/Retrieval-based-Voice-Conversion-WebUI\n",
"# %load_ext tensorboard\n",
"# %tensorboard --logdir /content/Retrieval-based-Voice-Conversion-WebUI/logs\n",
"!python3 infer-web.py --colab --pycmd python3"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"id": "FgJuNeAwx5Y_"
},
"outputs": [],
"source": [
"# @title 手动将训练后的模型文件备份到谷歌云盘\n",
"# @markdown 需要自己查看logs文件夹下模型的文件名手动修改下方命令末尾的文件名\n",
"\n",
"# @markdown 模型名\n",
"MODELNAME = \"lulu\" # @param {type:\"string\"}\n",
"# @markdown 模型epoch\n",
"MODELEPOCH = 9600 # @param {type:\"integer\"}\n",
"\n",
"!cp /content/Retrieval-based-Voice-Conversion-WebUI/logs/{MODELNAME}/G_{MODELEPOCH}.pth /content/drive/MyDrive/{MODELNAME}_D_{MODELEPOCH}.pth\n",
"!cp /content/Retrieval-based-Voice-Conversion-WebUI/logs/{MODELNAME}/D_{MODELEPOCH}.pth /content/drive/MyDrive/{MODELNAME}_G_{MODELEPOCH}.pth\n",
"!cp /content/Retrieval-based-Voice-Conversion-WebUI/logs/{MODELNAME}/added_*.index /content/drive/MyDrive/\n",
"!cp /content/Retrieval-based-Voice-Conversion-WebUI/logs/{MODELNAME}/total_*.npy /content/drive/MyDrive/\n",
"\n",
"!cp /content/Retrieval-based-Voice-Conversion-WebUI/weights/{MODELNAME}.pth /content/drive/MyDrive/{MODELNAME}{MODELEPOCH}.pth"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"id": "OVQoLQJXS7WX"
},
"outputs": [],
"source": [
"# @title 从谷歌云盘恢复pth\n",
"# @markdown 需要自己查看logs文件夹下模型的文件名手动修改下方命令末尾的文件名\n",
"\n",
"# @markdown 模型名\n",
"MODELNAME = \"lulu\" # @param {type:\"string\"}\n",
"# @markdown 模型epoch\n",
"MODELEPOCH = 7500 # @param {type:\"integer\"}\n",
"\n",
"!mkdir -p /content/Retrieval-based-Voice-Conversion-WebUI/logs/{MODELNAME}\n",
"\n",
"!cp /content/drive/MyDrive/{MODELNAME}_D_{MODELEPOCH}.pth /content/Retrieval-based-Voice-Conversion-WebUI/logs/{MODELNAME}/G_{MODELEPOCH}.pth\n",
"!cp /content/drive/MyDrive/{MODELNAME}_G_{MODELEPOCH}.pth /content/Retrieval-based-Voice-Conversion-WebUI/logs/{MODELNAME}/D_{MODELEPOCH}.pth\n",
"!cp /content/drive/MyDrive/*.index /content/\n",
"!cp /content/drive/MyDrive/*.npy /content/\n",
"!cp /content/drive/MyDrive/{MODELNAME}{MODELEPOCH}.pth /content/Retrieval-based-Voice-Conversion-WebUI/weights/{MODELNAME}.pth"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"id": "ZKAyuKb9J6dz"
},
"outputs": [],
"source": [
"# @title 手动预处理(不推荐)\n",
"# @markdown 模型名\n",
"MODELNAME = \"lulu\" # @param {type:\"string\"}\n",
"# @markdown 采样率\n",
"BITRATE = 48000 # @param {type:\"integer\"}\n",
"# @markdown 使用的进程数\n",
"THREADCOUNT = 8 # @param {type:\"integer\"}\n",
"\n",
"!python3 trainset_preprocess_pipeline_print.py /content/dataset {BITRATE} {THREADCOUNT} logs/{MODELNAME} True"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"id": "CrxJqzAUKmPJ"
},
"outputs": [],
"source": [
"# @title 手动提取特征(不推荐)\n",
"# @markdown 模型名\n",
"MODELNAME = \"lulu\" # @param {type:\"string\"}\n",
"# @markdown 使用的进程数\n",
"THREADCOUNT = 8 # @param {type:\"integer\"}\n",
"# @markdown 音高提取算法\n",
"ALGO = \"harvest\" # @param {type:\"string\"}\n",
"\n",
"!python3 extract_f0_print.py logs/{MODELNAME} {THREADCOUNT} {ALGO}\n",
"\n",
"!python3 extract_feature_print.py cpu 1 0 0 logs/{MODELNAME} True"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"id": "IMLPLKOaKj58"
},
"outputs": [],
"source": [
"# @title 手动训练(不推荐)\n",
"# @markdown 模型名\n",
"MODELNAME = \"lulu\" # @param {type:\"string\"}\n",
"# @markdown 使用的GPU\n",
"USEGPU = \"0\" # @param {type:\"string\"}\n",
"# @markdown 批大小\n",
"BATCHSIZE = 32 # @param {type:\"integer\"}\n",
"# @markdown 停止的epoch\n",
"MODELEPOCH = 3200 # @param {type:\"integer\"}\n",
"# @markdown 保存epoch间隔\n",
"EPOCHSAVE = 100 # @param {type:\"integer\"}\n",
"# @markdown 采样率\n",
"MODELSAMPLE = \"48k\" # @param {type:\"string\"}\n",
"# @markdown 是否缓存训练集\n",
"CACHEDATA = 1 # @param {type:\"integer\"}\n",
"# @markdown 是否仅保存最新的ckpt文件\n",
"ONLYLATEST = 0 # @param {type:\"integer\"}\n",
"\n",
"!python3 train_nsf_sim_cache_sid_load_pretrain.py -e lulu -sr {MODELSAMPLE} -f0 1 -bs {BATCHSIZE} -g {USEGPU} -te {MODELEPOCH} -se {EPOCHSAVE} -pg pretrained/f0G{MODELSAMPLE}.pth -pd pretrained/f0D{MODELSAMPLE}.pth -l {ONLYLATEST} -c {CACHEDATA}"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"id": "haYA81hySuDl"
},
"outputs": [],
"source": [
"# @title 删除其它pth只留选中的慎点仔细看代码\n",
"# @markdown 模型名\n",
"MODELNAME = \"lulu\" # @param {type:\"string\"}\n",
"# @markdown 选中模型epoch\n",
"MODELEPOCH = 9600 # @param {type:\"integer\"}\n",
"\n",
"!echo \"备份选中的模型。。。\"\n",
"!cp /content/Retrieval-based-Voice-Conversion-WebUI/logs/{MODELNAME}/G_{MODELEPOCH}.pth /content/{MODELNAME}_D_{MODELEPOCH}.pth\n",
"!cp /content/Retrieval-based-Voice-Conversion-WebUI/logs/{MODELNAME}/D_{MODELEPOCH}.pth /content/{MODELNAME}_G_{MODELEPOCH}.pth\n",
"\n",
"!echo \"正在删除。。。\"\n",
"!ls /content/Retrieval-based-Voice-Conversion-WebUI/logs/{MODELNAME}\n",
"!rm /content/Retrieval-based-Voice-Conversion-WebUI/logs/{MODELNAME}/*.pth\n",
"\n",
"!echo \"恢复选中的模型。。。\"\n",
"!mv /content/{MODELNAME}_D_{MODELEPOCH}.pth /content/Retrieval-based-Voice-Conversion-WebUI/logs/{MODELNAME}/G_{MODELEPOCH}.pth\n",
"!mv /content/{MODELNAME}_G_{MODELEPOCH}.pth /content/Retrieval-based-Voice-Conversion-WebUI/logs/{MODELNAME}/D_{MODELEPOCH}.pth\n",
"\n",
"!echo \"删除完成\"\n",
"!ls /content/Retrieval-based-Voice-Conversion-WebUI/logs/{MODELNAME}"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"id": "QhSiPTVPoIRh"
},
"outputs": [],
"source": [
"# @title 清除项目下所有文件,只留选中的模型(慎点,仔细看代码)\n",
"# @markdown 模型名\n",
"MODELNAME = \"lulu\" # @param {type:\"string\"}\n",
"# @markdown 选中模型epoch\n",
"MODELEPOCH = 9600 # @param {type:\"integer\"}\n",
"\n",
"!echo \"备份选中的模型。。。\"\n",
"!cp /content/Retrieval-based-Voice-Conversion-WebUI/logs/{MODELNAME}/G_{MODELEPOCH}.pth /content/{MODELNAME}_D_{MODELEPOCH}.pth\n",
"!cp /content/Retrieval-based-Voice-Conversion-WebUI/logs/{MODELNAME}/D_{MODELEPOCH}.pth /content/{MODELNAME}_G_{MODELEPOCH}.pth\n",
"\n",
"!echo \"正在删除。。。\"\n",
"!ls /content/Retrieval-based-Voice-Conversion-WebUI/logs/{MODELNAME}\n",
"!rm -rf /content/Retrieval-based-Voice-Conversion-WebUI/logs/{MODELNAME}/*\n",
"\n",
"!echo \"恢复选中的模型。。。\"\n",
"!mv /content/{MODELNAME}_D_{MODELEPOCH}.pth /content/Retrieval-based-Voice-Conversion-WebUI/logs/{MODELNAME}/G_{MODELEPOCH}.pth\n",
"!mv /content/{MODELNAME}_G_{MODELEPOCH}.pth /content/Retrieval-based-Voice-Conversion-WebUI/logs/{MODELNAME}/D_{MODELEPOCH}.pth\n",
"\n",
"!echo \"删除完成\"\n",
"!ls /content/Retrieval-based-Voice-Conversion-WebUI/logs/{MODELNAME}"
]
}
],
"metadata": {
"accelerator": "GPU",
"colab": {
"private_outputs": true,
"provenance": []
},
"gpuClass": "standard",
"kernelspec": {
"display_name": "Python 3",
"name": "python3"
},
"language_info": {
"name": "python"
}
},
"nbformat": 4,
"nbformat_minor": 0
}

View File

@ -0,0 +1,422 @@
{
"cells": [
{
"attachments": {},
"cell_type": "markdown",
"metadata": {},
"source": [
"# [Retrieval-based-Voice-Conversion-WebUI](https://github.com/RVC-Project/Retrieval-based-Voice-Conversion-WebUI) Training notebook"
]
},
{
"attachments": {},
"cell_type": "markdown",
"metadata": {
"id": "ZFFCx5J80SGa"
},
"source": [
"[![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/RVC-Project/Retrieval-based-Voice-Conversion-WebUI/blob/main/Retrieval_based_Voice_Conversion_WebUI_v2.ipynb)"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"id": "GmFP6bN9dvOq"
},
"outputs": [],
"source": [
"# @title #查看显卡\n",
"!nvidia-smi"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"id": "jwu07JgqoFON"
},
"outputs": [],
"source": [
"# @title 挂载谷歌云盘\n",
"\n",
"from google.colab import drive\n",
"\n",
"drive.mount(\"/content/drive\")"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"id": "wjddIFr1oS3W"
},
"outputs": [],
"source": [
"# @title #安装依赖\n",
"!apt-get -y install build-essential python3-dev ffmpeg\n",
"!pip3 install --upgrade setuptools wheel\n",
"!pip3 install --upgrade pip\n",
"!pip3 install faiss-cpu==1.7.2 fairseq gradio==3.14.0 ffmpeg ffmpeg-python praat-parselmouth pyworld numpy==1.23.5 numba==0.56.4 librosa==0.9.2"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"id": "ge_97mfpgqTm"
},
"outputs": [],
"source": [
"# @title #克隆仓库\n",
"\n",
"!mkdir Retrieval-based-Voice-Conversion-WebUI\n",
"%cd /content/Retrieval-based-Voice-Conversion-WebUI\n",
"!git init\n",
"!git remote add origin https://github.com/RVC-Project/Retrieval-based-Voice-Conversion-WebUI.git\n",
"!git fetch origin cfd984812804ddc9247d65b14c82cd32e56c1133 --depth=1\n",
"!git reset --hard FETCH_HEAD"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"id": "BLDEZADkvlw1"
},
"outputs": [],
"source": [
"# @title #更新仓库(一般无需执行)\n",
"!git pull"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"id": "pqE0PrnuRqI2"
},
"outputs": [],
"source": [
"# @title #安装aria2\n",
"!apt -y install -qq aria2"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"id": "UG3XpUwEomUz"
},
"outputs": [],
"source": [
"# @title 下载底模\n",
"\n",
"# v1\n",
"!aria2c --console-log-level=error -c -x 16 -s 16 -k 1M https://huggingface.co/lj1995/VoiceConversionWebUI/resolve/main/pretrained/D32k.pth -d /content/Retrieval-based-Voice-Conversion-WebUI/pretrained -o D32k.pth\n",
"!aria2c --console-log-level=error -c -x 16 -s 16 -k 1M https://huggingface.co/lj1995/VoiceConversionWebUI/resolve/main/pretrained/D40k.pth -d /content/Retrieval-based-Voice-Conversion-WebUI/pretrained -o D40k.pth\n",
"!aria2c --console-log-level=error -c -x 16 -s 16 -k 1M https://huggingface.co/lj1995/VoiceConversionWebUI/resolve/main/pretrained/D48k.pth -d /content/Retrieval-based-Voice-Conversion-WebUI/pretrained -o D48k.pth\n",
"!aria2c --console-log-level=error -c -x 16 -s 16 -k 1M https://huggingface.co/lj1995/VoiceConversionWebUI/resolve/main/pretrained/G32k.pth -d /content/Retrieval-based-Voice-Conversion-WebUI/pretrained -o G32k.pth\n",
"!aria2c --console-log-level=error -c -x 16 -s 16 -k 1M https://huggingface.co/lj1995/VoiceConversionWebUI/resolve/main/pretrained/G40k.pth -d /content/Retrieval-based-Voice-Conversion-WebUI/pretrained -o G40k.pth\n",
"!aria2c --console-log-level=error -c -x 16 -s 16 -k 1M https://huggingface.co/lj1995/VoiceConversionWebUI/resolve/main/pretrained/G48k.pth -d /content/Retrieval-based-Voice-Conversion-WebUI/pretrained -o G48k.pth\n",
"!aria2c --console-log-level=error -c -x 16 -s 16 -k 1M https://huggingface.co/lj1995/VoiceConversionWebUI/resolve/main/pretrained/f0D32k.pth -d /content/Retrieval-based-Voice-Conversion-WebUI/pretrained -o f0D32k.pth\n",
"!aria2c --console-log-level=error -c -x 16 -s 16 -k 1M https://huggingface.co/lj1995/VoiceConversionWebUI/resolve/main/pretrained/f0D40k.pth -d /content/Retrieval-based-Voice-Conversion-WebUI/pretrained -o f0D40k.pth\n",
"!aria2c --console-log-level=error -c -x 16 -s 16 -k 1M https://huggingface.co/lj1995/VoiceConversionWebUI/resolve/main/pretrained/f0D48k.pth -d /content/Retrieval-based-Voice-Conversion-WebUI/pretrained -o f0D48k.pth\n",
"!aria2c --console-log-level=error -c -x 16 -s 16 -k 1M https://huggingface.co/lj1995/VoiceConversionWebUI/resolve/main/pretrained/f0G32k.pth -d /content/Retrieval-based-Voice-Conversion-WebUI/pretrained -o f0G32k.pth\n",
"!aria2c --console-log-level=error -c -x 16 -s 16 -k 1M https://huggingface.co/lj1995/VoiceConversionWebUI/resolve/main/pretrained/f0G40k.pth -d /content/Retrieval-based-Voice-Conversion-WebUI/pretrained -o f0G40k.pth\n",
"!aria2c --console-log-level=error -c -x 16 -s 16 -k 1M https://huggingface.co/lj1995/VoiceConversionWebUI/resolve/main/pretrained/f0G48k.pth -d /content/Retrieval-based-Voice-Conversion-WebUI/pretrained -o f0G48k.pth\n",
"\n",
"# v2\n",
"# !aria2c --console-log-level=error -c -x 16 -s 16 -k 1M https://huggingface.co/lj1995/VoiceConversionWebUI/resolve/main/pretrained_v2/D32k.pth -d /content/Retrieval-based-Voice-Conversion-WebUI/pretrained_v2 -o D32k.pth\n",
"!aria2c --console-log-level=error -c -x 16 -s 16 -k 1M https://huggingface.co/lj1995/VoiceConversionWebUI/resolve/main/pretrained_v2/D40k.pth -d /content/Retrieval-based-Voice-Conversion-WebUI/pretrained_v2 -o D40k.pth\n",
"# !aria2c --console-log-level=error -c -x 16 -s 16 -k 1M https://huggingface.co/lj1995/VoiceConversionWebUI/resolve/main/pretrained_v2/D48k.pth -d /content/Retrieval-based-Voice-Conversion-WebUI/pretrained_v2 -o D48k.pth\n",
"# !aria2c --console-log-level=error -c -x 16 -s 16 -k 1M https://huggingface.co/lj1995/VoiceConversionWebUI/resolve/main/pretrained_v2/G32k.pth -d /content/Retrieval-based-Voice-Conversion-WebUI/pretrained_v2 -o G32k.pth\n",
"!aria2c --console-log-level=error -c -x 16 -s 16 -k 1M https://huggingface.co/lj1995/VoiceConversionWebUI/resolve/main/pretrained_v2/G40k.pth -d /content/Retrieval-based-Voice-Conversion-WebUI/pretrained_v2 -o G40k.pth\n",
"# !aria2c --console-log-level=error -c -x 16 -s 16 -k 1M https://huggingface.co/lj1995/VoiceConversionWebUI/resolve/main/pretrained_v2/G48k.pth -d /content/Retrieval-based-Voice-Conversion-WebUI/pretrained_v2 -o G48k.pth\n",
"# !aria2c --console-log-level=error -c -x 16 -s 16 -k 1M https://huggingface.co/lj1995/VoiceConversionWebUI/resolve/main/pretrained_v2/f0D32k.pth -d /content/Retrieval-based-Voice-Conversion-WebUI/pretrained_v2 -o f0D32k.pth\n",
"!aria2c --console-log-level=error -c -x 16 -s 16 -k 1M https://huggingface.co/lj1995/VoiceConversionWebUI/resolve/main/pretrained_v2/f0D40k.pth -d /content/Retrieval-based-Voice-Conversion-WebUI/pretrained_v2 -o f0D40k.pth\n",
"# !aria2c --console-log-level=error -c -x 16 -s 16 -k 1M https://huggingface.co/lj1995/VoiceConversionWebUI/resolve/main/pretrained_v2/f0D48k.pth -d /content/Retrieval-based-Voice-Conversion-WebUI/pretrained_v2 -o f0D48k.pth\n",
"# !aria2c --console-log-level=error -c -x 16 -s 16 -k 1M https://huggingface.co/lj1995/VoiceConversionWebUI/resolve/main/pretrained_v2/f0G32k.pth -d /content/Retrieval-based-Voice-Conversion-WebUI/pretrained_v2 -o f0G32k.pth\n",
"!aria2c --console-log-level=error -c -x 16 -s 16 -k 1M https://huggingface.co/lj1995/VoiceConversionWebUI/resolve/main/pretrained_v2/f0G40k.pth -d /content/Retrieval-based-Voice-Conversion-WebUI/pretrained_v2 -o f0G40k.pth\n",
"# !aria2c --console-log-level=error -c -x 16 -s 16 -k 1M https://huggingface.co/lj1995/VoiceConversionWebUI/resolve/main/pretrained_v2/f0G48k.pth -d /content/Retrieval-based-Voice-Conversion-WebUI/pretrained_v2 -o f0G48k.pth"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"id": "HugjmZqZRuiF"
},
"outputs": [],
"source": [
"# @title #下载人声分离模型\n",
"!aria2c --console-log-level=error -c -x 16 -s 16 -k 1M https://huggingface.co/lj1995/VoiceConversionWebUI/resolve/main/uvr5_weights/HP2-人声vocals+非人声instrumentals.pth -d /content/Retrieval-based-Voice-Conversion-WebUI/uvr5_weights -o HP2-人声vocals+非人声instrumentals.pth\n",
"!aria2c --console-log-level=error -c -x 16 -s 16 -k 1M https://huggingface.co/lj1995/VoiceConversionWebUI/resolve/main/uvr5_weights/HP5-主旋律人声vocals+其他instrumentals.pth -d /content/Retrieval-based-Voice-Conversion-WebUI/uvr5_weights -o HP5-主旋律人声vocals+其他instrumentals.pth"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"id": "2RCaT9FTR0ej"
},
"outputs": [],
"source": [
"# @title #下载hubert_base\n",
"!aria2c --console-log-level=error -c -x 16 -s 16 -k 1M https://huggingface.co/lj1995/VoiceConversionWebUI/resolve/main/hubert_base.pt -d /content/Retrieval-based-Voice-Conversion-WebUI -o hubert_base.pt"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"# @title #下载rmvpe模型\n",
"!aria2c --console-log-level=error -c -x 16 -s 16 -k 1M https://huggingface.co/lj1995/VoiceConversionWebUI/resolve/main/rmvpe.pt -d /content/Retrieval-based-Voice-Conversion-WebUI -o rmvpe.pt"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"id": "Mwk7Q0Loqzjx"
},
"outputs": [],
"source": [
"# @title #从谷歌云盘加载打包好的数据集到/content/dataset\n",
"\n",
"# @markdown 数据集位置\n",
"DATASET = (\n",
" \"/content/drive/MyDrive/dataset/lulu20230327_32k.zip\" # @param {type:\"string\"}\n",
")\n",
"\n",
"!mkdir -p /content/dataset\n",
"!unzip -d /content/dataset -B {DATASET}"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"id": "PDlFxWHWEynD"
},
"outputs": [],
"source": [
"# @title #重命名数据集中的重名文件\n",
"!ls -a /content/dataset/\n",
"!rename 's/(\\w+)\\.(\\w+)~(\\d*)/$1_$3.$2/' /content/dataset/*.*~*"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"id": "7vh6vphDwO0b"
},
"outputs": [],
"source": [
"# @title #启动webui\n",
"%cd /content/Retrieval-based-Voice-Conversion-WebUI\n",
"# %load_ext tensorboard\n",
"# %tensorboard --logdir /content/Retrieval-based-Voice-Conversion-WebUI/logs\n",
"!python3 infer-web.py --colab --pycmd python3"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"id": "FgJuNeAwx5Y_"
},
"outputs": [],
"source": [
"# @title #手动将训练后的模型文件备份到谷歌云盘\n",
"# @markdown #需要自己查看logs文件夹下模型的文件名手动修改下方命令末尾的文件名\n",
"\n",
"# @markdown #模型名\n",
"MODELNAME = \"lulu\" # @param {type:\"string\"}\n",
"# @markdown #模型epoch\n",
"MODELEPOCH = 9600 # @param {type:\"integer\"}\n",
"\n",
"!cp /content/Retrieval-based-Voice-Conversion-WebUI/logs/{MODELNAME}/G_{MODELEPOCH}.pth /content/drive/MyDrive/{MODELNAME}_D_{MODELEPOCH}.pth\n",
"!cp /content/Retrieval-based-Voice-Conversion-WebUI/logs/{MODELNAME}/D_{MODELEPOCH}.pth /content/drive/MyDrive/{MODELNAME}_G_{MODELEPOCH}.pth\n",
"!cp /content/Retrieval-based-Voice-Conversion-WebUI/logs/{MODELNAME}/added_*.index /content/drive/MyDrive/\n",
"!cp /content/Retrieval-based-Voice-Conversion-WebUI/logs/{MODELNAME}/total_*.npy /content/drive/MyDrive/\n",
"\n",
"!cp /content/Retrieval-based-Voice-Conversion-WebUI/weights/{MODELNAME}.pth /content/drive/MyDrive/{MODELNAME}{MODELEPOCH}.pth"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"id": "OVQoLQJXS7WX"
},
"outputs": [],
"source": [
"# @title 从谷歌云盘恢复pth\n",
"# @markdown 需要自己查看logs文件夹下模型的文件名手动修改下方命令末尾的文件名\n",
"\n",
"# @markdown 模型名\n",
"MODELNAME = \"lulu\" # @param {type:\"string\"}\n",
"# @markdown 模型epoch\n",
"MODELEPOCH = 7500 # @param {type:\"integer\"}\n",
"\n",
"!mkdir -p /content/Retrieval-based-Voice-Conversion-WebUI/logs/{MODELNAME}\n",
"\n",
"!cp /content/drive/MyDrive/{MODELNAME}_D_{MODELEPOCH}.pth /content/Retrieval-based-Voice-Conversion-WebUI/logs/{MODELNAME}/G_{MODELEPOCH}.pth\n",
"!cp /content/drive/MyDrive/{MODELNAME}_G_{MODELEPOCH}.pth /content/Retrieval-based-Voice-Conversion-WebUI/logs/{MODELNAME}/D_{MODELEPOCH}.pth\n",
"!cp /content/drive/MyDrive/*.index /content/\n",
"!cp /content/drive/MyDrive/*.npy /content/\n",
"!cp /content/drive/MyDrive/{MODELNAME}{MODELEPOCH}.pth /content/Retrieval-based-Voice-Conversion-WebUI/weights/{MODELNAME}.pth"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"id": "ZKAyuKb9J6dz"
},
"outputs": [],
"source": [
"# @title 手动预处理(不推荐)\n",
"# @markdown 模型名\n",
"MODELNAME = \"lulu\" # @param {type:\"string\"}\n",
"# @markdown 采样率\n",
"BITRATE = 48000 # @param {type:\"integer\"}\n",
"# @markdown 使用的进程数\n",
"THREADCOUNT = 8 # @param {type:\"integer\"}\n",
"\n",
"!python3 trainset_preprocess_pipeline_print.py /content/dataset {BITRATE} {THREADCOUNT} logs/{MODELNAME} True"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"id": "CrxJqzAUKmPJ"
},
"outputs": [],
"source": [
"# @title 手动提取特征(不推荐)\n",
"# @markdown 模型名\n",
"MODELNAME = \"lulu\" # @param {type:\"string\"}\n",
"# @markdown 使用的进程数\n",
"THREADCOUNT = 8 # @param {type:\"integer\"}\n",
"# @markdown 音高提取算法\n",
"ALGO = \"harvest\" # @param {type:\"string\"}\n",
"\n",
"!python3 extract_f0_print.py logs/{MODELNAME} {THREADCOUNT} {ALGO}\n",
"\n",
"!python3 extract_feature_print.py cpu 1 0 0 logs/{MODELNAME} True"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"id": "IMLPLKOaKj58"
},
"outputs": [],
"source": [
"# @title 手动训练(不推荐)\n",
"# @markdown 模型名\n",
"MODELNAME = \"lulu\" # @param {type:\"string\"}\n",
"# @markdown 使用的GPU\n",
"USEGPU = \"0\" # @param {type:\"string\"}\n",
"# @markdown 批大小\n",
"BATCHSIZE = 32 # @param {type:\"integer\"}\n",
"# @markdown 停止的epoch\n",
"MODELEPOCH = 3200 # @param {type:\"integer\"}\n",
"# @markdown 保存epoch间隔\n",
"EPOCHSAVE = 100 # @param {type:\"integer\"}\n",
"# @markdown 采样率\n",
"MODELSAMPLE = \"48k\" # @param {type:\"string\"}\n",
"# @markdown 是否缓存训练集\n",
"CACHEDATA = 1 # @param {type:\"integer\"}\n",
"# @markdown 是否仅保存最新的ckpt文件\n",
"ONLYLATEST = 0 # @param {type:\"integer\"}\n",
"\n",
"!python3 train_nsf_sim_cache_sid_load_pretrain.py -e lulu -sr {MODELSAMPLE} -f0 1 -bs {BATCHSIZE} -g {USEGPU} -te {MODELEPOCH} -se {EPOCHSAVE} -pg pretrained/f0G{MODELSAMPLE}.pth -pd pretrained/f0D{MODELSAMPLE}.pth -l {ONLYLATEST} -c {CACHEDATA}"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"id": "haYA81hySuDl"
},
"outputs": [],
"source": [
"# @title 删除其它pth只留选中的慎点仔细看代码\n",
"# @markdown 模型名\n",
"MODELNAME = \"lulu\" # @param {type:\"string\"}\n",
"# @markdown 选中模型epoch\n",
"MODELEPOCH = 9600 # @param {type:\"integer\"}\n",
"\n",
"!echo \"备份选中的模型。。。\"\n",
"!cp /content/Retrieval-based-Voice-Conversion-WebUI/logs/{MODELNAME}/G_{MODELEPOCH}.pth /content/{MODELNAME}_D_{MODELEPOCH}.pth\n",
"!cp /content/Retrieval-based-Voice-Conversion-WebUI/logs/{MODELNAME}/D_{MODELEPOCH}.pth /content/{MODELNAME}_G_{MODELEPOCH}.pth\n",
"\n",
"!echo \"正在删除。。。\"\n",
"!ls /content/Retrieval-based-Voice-Conversion-WebUI/logs/{MODELNAME}\n",
"!rm /content/Retrieval-based-Voice-Conversion-WebUI/logs/{MODELNAME}/*.pth\n",
"\n",
"!echo \"恢复选中的模型。。。\"\n",
"!mv /content/{MODELNAME}_D_{MODELEPOCH}.pth /content/Retrieval-based-Voice-Conversion-WebUI/logs/{MODELNAME}/G_{MODELEPOCH}.pth\n",
"!mv /content/{MODELNAME}_G_{MODELEPOCH}.pth /content/Retrieval-based-Voice-Conversion-WebUI/logs/{MODELNAME}/D_{MODELEPOCH}.pth\n",
"\n",
"!echo \"删除完成\"\n",
"!ls /content/Retrieval-based-Voice-Conversion-WebUI/logs/{MODELNAME}"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"id": "QhSiPTVPoIRh"
},
"outputs": [],
"source": [
"# @title 清除项目下所有文件,只留选中的模型(慎点,仔细看代码)\n",
"# @markdown 模型名\n",
"MODELNAME = \"lulu\" # @param {type:\"string\"}\n",
"# @markdown 选中模型epoch\n",
"MODELEPOCH = 9600 # @param {type:\"integer\"}\n",
"\n",
"!echo \"备份选中的模型。。。\"\n",
"!cp /content/Retrieval-based-Voice-Conversion-WebUI/logs/{MODELNAME}/G_{MODELEPOCH}.pth /content/{MODELNAME}_D_{MODELEPOCH}.pth\n",
"!cp /content/Retrieval-based-Voice-Conversion-WebUI/logs/{MODELNAME}/D_{MODELEPOCH}.pth /content/{MODELNAME}_G_{MODELEPOCH}.pth\n",
"\n",
"!echo \"正在删除。。。\"\n",
"!ls /content/Retrieval-based-Voice-Conversion-WebUI/logs/{MODELNAME}\n",
"!rm -rf /content/Retrieval-based-Voice-Conversion-WebUI/logs/{MODELNAME}/*\n",
"\n",
"!echo \"恢复选中的模型。。。\"\n",
"!mv /content/{MODELNAME}_D_{MODELEPOCH}.pth /content/Retrieval-based-Voice-Conversion-WebUI/logs/{MODELNAME}/G_{MODELEPOCH}.pth\n",
"!mv /content/{MODELNAME}_G_{MODELEPOCH}.pth /content/Retrieval-based-Voice-Conversion-WebUI/logs/{MODELNAME}/D_{MODELEPOCH}.pth\n",
"\n",
"!echo \"删除完成\"\n",
"!ls /content/Retrieval-based-Voice-Conversion-WebUI/logs/{MODELNAME}"
]
}
],
"metadata": {
"accelerator": "GPU",
"colab": {
"private_outputs": true,
"provenance": []
},
"gpuClass": "standard",
"kernelspec": {
"display_name": "Python 3",
"name": "python3"
},
"language_info": {
"name": "python"
}
},
"nbformat": 4,
"nbformat_minor": 0
}

440
api_231006.py Normal file
View File

@ -0,0 +1,440 @@
#api for 231006 release version by Xiaokai
import os
import sys
import json
import re
import time
import librosa
import torch
import numpy as np
import torch.nn.functional as F
import torchaudio.transforms as tat
import sounddevice as sd
from dotenv import load_dotenv
from fastapi import FastAPI, HTTPException
from pydantic import BaseModel
import threading
import uvicorn
import logging
# Initialize the logger
logging.basicConfig(level=logging.INFO)
logger = logging.getLogger(__name__)
# Define FastAPI app
app = FastAPI()
class GUIConfig:
def __init__(self) -> None:
self.pth_path: str = ""
self.index_path: str = ""
self.pitch: int = 0
self.samplerate: int = 40000
self.block_time: float = 1.0 # s
self.buffer_num: int = 1
self.threhold: int = -60
self.crossfade_time: float = 0.05
self.extra_time: float = 2.5
self.I_noise_reduce = False
self.O_noise_reduce = False
self.rms_mix_rate = 0.0
self.index_rate = 0.3
self.f0method = "rmvpe"
self.sg_input_device = ""
self.sg_output_device = ""
class ConfigData(BaseModel):
pth_path: str
index_path: str
sg_input_device: str
sg_output_device: str
threhold: int = -60
pitch: int = 0
index_rate: float = 0.3
rms_mix_rate: float = 0.0
block_time: float = 0.25
crossfade_length: float = 0.05
extra_time: float = 2.5
n_cpu: int = 4
I_noise_reduce: bool = False
O_noise_reduce: bool = False
class AudioAPI:
def __init__(self) -> None:
self.gui_config = GUIConfig()
self.config = None # Initialize Config object as None
self.flag_vc = False
self.function = "vc"
self.delay_time = 0
self.rvc = None # Initialize RVC object as None
def load(self):
input_devices, output_devices, _, _ = self.get_devices()
try:
with open("configs/config.json", "r", encoding='utf-8') as j:
data = json.load(j)
data["rmvpe"] = True # Ensure rmvpe is the only f0method
if data["sg_input_device"] not in input_devices:
data["sg_input_device"] = input_devices[sd.default.device[0]]
if data["sg_output_device"] not in output_devices:
data["sg_output_device"] = output_devices[sd.default.device[1]]
except Exception as e:
logger.error(f"Failed to load configuration: {e}")
with open("configs/config.json", "w", encoding='utf-8') as j:
data = {
"pth_path": " ",
"index_path": " ",
"sg_input_device": input_devices[sd.default.device[0]],
"sg_output_device": output_devices[sd.default.device[1]],
"threhold": "-60",
"pitch": "0",
"index_rate": "0",
"rms_mix_rate": "0",
"block_time": "0.25",
"crossfade_length": "0.05",
"extra_time": "2.5",
"f0method": "rmvpe",
"use_jit": False,
}
data["rmvpe"] = True # Ensure rmvpe is the only f0method
json.dump(data, j, ensure_ascii=False)
return data
def set_values(self, values):
logger.info(f"Setting values: {values}")
if not values.pth_path.strip():
raise HTTPException(status_code=400, detail="Please select a .pth file")
if not values.index_path.strip():
raise HTTPException(status_code=400, detail="Please select an index file")
self.set_devices(values.sg_input_device, values.sg_output_device)
self.config.use_jit = False
self.gui_config.pth_path = values.pth_path
self.gui_config.index_path = values.index_path
self.gui_config.threhold = values.threhold
self.gui_config.pitch = values.pitch
self.gui_config.block_time = values.block_time
self.gui_config.crossfade_time = values.crossfade_length
self.gui_config.extra_time = values.extra_time
self.gui_config.I_noise_reduce = values.I_noise_reduce
self.gui_config.O_noise_reduce = values.O_noise_reduce
self.gui_config.rms_mix_rate = values.rms_mix_rate
self.gui_config.index_rate = values.index_rate
self.gui_config.n_cpu = values.n_cpu
self.gui_config.f0method = "rmvpe"
return True
def start_vc(self):
torch.cuda.empty_cache()
self.flag_vc = True
self.rvc = rvc_for_realtime.RVC(
self.gui_config.pitch,
self.gui_config.pth_path,
self.gui_config.index_path,
self.gui_config.index_rate,
0,
0,
0,
self.config,
self.rvc if self.rvc else None,
)
self.gui_config.samplerate = self.rvc.tgt_sr
self.zc = self.rvc.tgt_sr // 100
self.block_frame = (
int(
np.round(
self.gui_config.block_time
* self.gui_config.samplerate
/ self.zc
)
)
* self.zc
)
self.block_frame_16k = 160 * self.block_frame // self.zc
self.crossfade_frame = (
int(
np.round(
self.gui_config.crossfade_time
* self.gui_config.samplerate
/ self.zc
)
)
* self.zc
)
self.sola_search_frame = self.zc
self.extra_frame = (
int(
np.round(
self.gui_config.extra_time
* self.gui_config.samplerate
/ self.zc
)
)
* self.zc
)
self.input_wav = torch.zeros(
self.extra_frame + self.crossfade_frame + self.sola_search_frame + self.block_frame,
device=self.config.device,
dtype=torch.float32,
)
self.input_wav_res = torch.zeros(
160 * self.input_wav.shape[0] // self.zc,
device=self.config.device,
dtype=torch.float32,
)
self.pitch = np.zeros(self.input_wav.shape[0] // self.zc, dtype="int32")
self.pitchf = np.zeros(self.input_wav.shape[0] // self.zc, dtype="float64")
self.sola_buffer = torch.zeros(self.crossfade_frame, device=self.config.device, dtype=torch.float32)
self.nr_buffer = self.sola_buffer.clone()
self.output_buffer = self.input_wav.clone()
self.res_buffer = torch.zeros(2 * self.zc, device=self.config.device, dtype=torch.float32)
self.valid_rate = 1 - (self.extra_frame - 1) / self.input_wav.shape[0]
self.fade_in_window = (
torch.sin(0.5 * np.pi * torch.linspace(0.0, 1.0, steps=self.crossfade_frame, device=self.config.device, dtype=torch.float32)) ** 2
)
self.fade_out_window = 1 - self.fade_in_window
self.resampler = tat.Resample(
orig_freq=self.gui_config.samplerate,
new_freq=16000,
dtype=torch.float32,
).to(self.config.device)
self.tg = TorchGate(
sr=self.gui_config.samplerate, n_fft=4 * self.zc, prop_decrease=0.9
).to(self.config.device)
thread_vc = threading.Thread(target=self.soundinput)
thread_vc.start()
def soundinput(self):
channels = 1 if sys.platform == "darwin" else 2
with sd.Stream(
channels=channels,
callback=self.audio_callback,
blocksize=self.block_frame,
samplerate=self.gui_config.samplerate,
dtype="float32",
) as stream:
global stream_latency
stream_latency = stream.latency[-1]
while self.flag_vc:
time.sleep(self.gui_config.block_time)
logger.info("Audio block passed.")
logger.info("Ending VC")
def audio_callback(self, indata: np.ndarray, outdata: np.ndarray, frames, times, status):
start_time = time.perf_counter()
indata = librosa.to_mono(indata.T)
if self.gui_config.threhold > -60:
rms = librosa.feature.rms(y=indata, frame_length=4 * self.zc, hop_length=self.zc)
db_threhold = (librosa.amplitude_to_db(rms, ref=1.0)[0] < self.gui_config.threhold)
for i in range(db_threhold.shape[0]):
if db_threhold[i]:
indata[i * self.zc : (i + 1) * self.zc] = 0
self.input_wav[: -self.block_frame] = self.input_wav[self.block_frame :].clone()
self.input_wav[-self.block_frame :] = torch.from_numpy(indata).to(self.config.device)
self.input_wav_res[: -self.block_frame_16k] = self.input_wav_res[self.block_frame_16k :].clone()
if self.gui_config.I_noise_reduce and self.function == "vc":
input_wav = self.input_wav[-self.crossfade_frame - self.block_frame - 2 * self.zc :]
input_wav = self.tg(input_wav.unsqueeze(0), self.input_wav.unsqueeze(0))[0, 2 * self.zc :]
input_wav[: self.crossfade_frame] *= self.fade_in_window
input_wav[: self.crossfade_frame] += self.nr_buffer * self.fade_out_window
self.nr_buffer[:] = input_wav[-self.crossfade_frame :]
input_wav = torch.cat((self.res_buffer[:], input_wav[: self.block_frame]))
self.res_buffer[:] = input_wav[-2 * self.zc :]
self.input_wav_res[-self.block_frame_16k - 160 :] = self.resampler(input_wav)[160:]
else:
self.input_wav_res[-self.block_frame_16k - 160 :] = self.resampler(self.input_wav[-self.block_frame - 2 * self.zc :])[160:]
if self.function == "vc":
f0_extractor_frame = self.block_frame_16k + 800
if self.gui_config.f0method == "rmvpe":
f0_extractor_frame = (5120 * ((f0_extractor_frame - 1) // 5120 + 1) - 160)
infer_wav = self.rvc.infer(
self.input_wav_res,
self.input_wav_res[-f0_extractor_frame:].cpu().numpy(),
self.block_frame_16k,
self.valid_rate,
self.pitch,
self.pitchf,
self.gui_config.f0method,
)
infer_wav = infer_wav[-self.crossfade_frame - self.sola_search_frame - self.block_frame :]
else:
infer_wav = self.input_wav[-self.crossfade_frame - self.sola_search_frame - self.block_frame :].clone()
if (self.gui_config.O_noise_reduce and self.function == "vc") or (self.gui_config.I_noise_reduce and self.function == "im"):
self.output_buffer[: -self.block_frame] = self.output_buffer[self.block_frame :].clone()
self.output_buffer[-self.block_frame :] = infer_wav[-self.block_frame :]
infer_wav = self.tg(infer_wav.unsqueeze(0), self.output_buffer.unsqueeze(0)).squeeze(0)
if self.gui_config.rms_mix_rate < 1 and self.function == "vc":
rms1 = librosa.feature.rms(y=self.input_wav_res[-160 * infer_wav.shape[0] // self.zc :].cpu().numpy(), frame_length=640, hop_length=160)
rms1 = torch.from_numpy(rms1).to(self.config.device)
rms1 = F.interpolate(rms1.unsqueeze(0), size=infer_wav.shape[0] + 1, mode="linear", align_corners=True)[0, 0, :-1]
rms2 = librosa.feature.rms(y=infer_wav[:].cpu().numpy(), frame_length=4 * self.zc, hop_length=self.zc)
rms2 = torch.from_numpy(rms2).to(self.config.device)
rms2 = F.interpolate(rms2.unsqueeze(0), size=infer_wav.shape[0] + 1, mode="linear", align_corners=True)[0, 0, :-1]
rms2 = torch.max(rms2, torch.zeros_like(rms2) + 1e-3)
infer_wav *= torch.pow(rms1 / rms2, torch.tensor(1 - self.gui_config.rms_mix_rate))
conv_input = infer_wav[None, None, : self.crossfade_frame + self.sola_search_frame]
cor_nom = F.conv1d(conv_input, self.sola_buffer[None, None, :])
cor_den = torch.sqrt(F.conv1d(conv_input**2, torch.ones(1, 1, self.crossfade_frame, device=self.config.device)) + 1e-8)
if sys.platform == "darwin":
_, sola_offset = torch.max(cor_nom[0, 0] / cor_den[0, 0])
sola_offset = sola_offset.item()
else:
sola_offset = torch.argmax(cor_nom[0, 0] / cor_den[0, 0])
logger.info(f"sola_offset = {sola_offset}")
infer_wav = infer_wav[sola_offset : sola_offset + self.block_frame + self.crossfade_frame]
infer_wav[: self.crossfade_frame] *= self.fade_in_window
infer_wav[: self.crossfade_frame] += self.sola_buffer * self.fade_out_window
self.sola_buffer[:] = infer_wav[-self.crossfade_frame :]
if sys.platform == "darwin":
outdata[:] = infer_wav[: -self.crossfade_frame].cpu().numpy()[:, np.newaxis]
else:
outdata[:] = infer_wav[: -self.crossfade_frame].repeat(2, 1).t().cpu().numpy()
total_time = time.perf_counter() - start_time
logger.info(f"Infer time: {total_time:.2f}")
def get_devices(self, update: bool = True):
if update:
sd._terminate()
sd._initialize()
devices = sd.query_devices()
hostapis = sd.query_hostapis()
for hostapi in hostapis:
for device_idx in hostapi["devices"]:
devices[device_idx]["hostapi_name"] = hostapi["name"]
input_devices = [
f"{d['name']} ({d['hostapi_name']})"
for d in devices
if d["max_input_channels"] > 0
]
output_devices = [
f"{d['name']} ({d['hostapi_name']})"
for d in devices
if d["max_output_channels"] > 0
]
input_devices_indices = [
d["index"] if "index" in d else d["name"]
for d in devices
if d["max_input_channels"] > 0
]
output_devices_indices = [
d["index"] if "index" in d else d["name"]
for d in devices
if d["max_output_channels"] > 0
]
return (
input_devices,
output_devices,
input_devices_indices,
output_devices_indices,
)
def set_devices(self, input_device, output_device):
(
input_devices,
output_devices,
input_device_indices,
output_device_indices,
) = self.get_devices()
logger.debug(f"Available input devices: {input_devices}")
logger.debug(f"Available output devices: {output_devices}")
logger.debug(f"Selected input device: {input_device}")
logger.debug(f"Selected output device: {output_device}")
if input_device not in input_devices:
logger.error(f"Input device '{input_device}' is not in the list of available devices")
raise HTTPException(status_code=400, detail=f"Input device '{input_device}' is not available")
if output_device not in output_devices:
logger.error(f"Output device '{output_device}' is not in the list of available devices")
raise HTTPException(status_code=400, detail=f"Output device '{output_device}' is not available")
sd.default.device[0] = input_device_indices[input_devices.index(input_device)]
sd.default.device[1] = output_device_indices[output_devices.index(output_device)]
logger.info(f"Input device set to {sd.default.device[0]}: {input_device}")
logger.info(f"Output device set to {sd.default.device[1]}: {output_device}")
audio_api = AudioAPI()
@app.get("/inputDevices", response_model=list)
def get_input_devices():
try:
input_devices, _, _, _ = audio_api.get_devices()
return input_devices
except Exception as e:
logger.error(f"Failed to get input devices: {e}")
raise HTTPException(status_code=500, detail="Failed to get input devices")
@app.get("/outputDevices", response_model=list)
def get_output_devices():
try:
_, output_devices, _, _ = audio_api.get_devices()
return output_devices
except Exception as e:
logger.error(f"Failed to get output devices: {e}")
raise HTTPException(status_code=500, detail="Failed to get output devices")
@app.post("/config")
def configure_audio(config_data: ConfigData):
try:
logger.info(f"Configuring audio with data: {config_data}")
if audio_api.set_values(config_data):
settings = config_data.dict()
settings["use_jit"] = False
settings["f0method"] = "rmvpe"
with open("configs/config.json", "w", encoding='utf-8') as j:
json.dump(settings, j, ensure_ascii=False)
logger.info("Configuration set successfully")
return {"message": "Configuration set successfully"}
except HTTPException as e:
logger.error(f"Configuration error: {e.detail}")
raise
except Exception as e:
logger.error(f"Configuration failed: {e}")
raise HTTPException(status_code=400, detail=f"Configuration failed: {e}")
@app.post("/start")
def start_conversion():
try:
if not audio_api.flag_vc:
audio_api.start_vc()
return {"message": "Audio conversion started"}
else:
logger.warning("Audio conversion already running")
raise HTTPException(status_code=400, detail="Audio conversion already running")
except HTTPException as e:
logger.error(f"Start conversion error: {e.detail}")
raise
except Exception as e:
logger.error(f"Failed to start conversion: {e}")
raise HTTPException(status_code=500, detail=f"Failed to start conversion: {e}")
@app.post("/stop")
def stop_conversion():
try:
if audio_api.flag_vc:
audio_api.flag_vc = False
global stream_latency
stream_latency = -1
return {"message": "Audio conversion stopped"}
else:
logger.warning("Audio conversion not running")
raise HTTPException(status_code=400, detail="Audio conversion not running")
except HTTPException as e:
logger.error(f"Stop conversion error: {e.detail}")
raise
except Exception as e:
logger.error(f"Failed to stop conversion: {e}")
raise HTTPException(status_code=500, detail=f"Failed to stop conversion: {e}")
if __name__ == "__main__":
if sys.platform == "win32":
from multiprocessing import freeze_support
freeze_support()
load_dotenv()
os.environ["OMP_NUM_THREADS"] = "4"
if sys.platform == "darwin":
os.environ["PYTORCH_ENABLE_MPS_FALLBACK"] = "1"
from tools.torchgate import TorchGate
import tools.rvc_for_realtime as rvc_for_realtime
from configs.config import Config
audio_api.config = Config()
uvicorn.run(app, host="0.0.0.0", port=6242)

565
api_240604.py Normal file
View File

@ -0,0 +1,565 @@
#api for 240604 release version by Xiaokai
import os
import sys
import json
import re
import time
import librosa
import torch
import numpy as np
import torch.nn.functional as F
import torchaudio.transforms as tat
import sounddevice as sd
from dotenv import load_dotenv
from fastapi import FastAPI, HTTPException
from pydantic import BaseModel
import threading
import uvicorn
import logging
from multiprocessing import Queue, Process, cpu_count, freeze_support
# Initialize the logger
logging.basicConfig(level=logging.INFO)
logger = logging.getLogger(__name__)
# Define FastAPI app
app = FastAPI()
class GUIConfig:
def __init__(self) -> None:
self.pth_path: str = ""
self.index_path: str = ""
self.pitch: int = 0
self.formant: float = 0.0
self.sr_type: str = "sr_model"
self.block_time: float = 0.25 # s
self.threhold: int = -60
self.crossfade_time: float = 0.05
self.extra_time: float = 2.5
self.I_noise_reduce: bool = False
self.O_noise_reduce: bool = False
self.use_pv: bool = False
self.rms_mix_rate: float = 0.0
self.index_rate: float = 0.0
self.n_cpu: int = 4
self.f0method: str = "fcpe"
self.sg_input_device: str = ""
self.sg_output_device: str = ""
class ConfigData(BaseModel):
pth_path: str
index_path: str
sg_input_device: str
sg_output_device: str
threhold: int = -60
pitch: int = 0
formant: float = 0.0
index_rate: float = 0.3
rms_mix_rate: float = 0.0
block_time: float = 0.25
crossfade_length: float = 0.05
extra_time: float = 2.5
n_cpu: int = 4
I_noise_reduce: bool = False
O_noise_reduce: bool = False
use_pv: bool = False
f0method: str = "fcpe"
class Harvest(Process):
def __init__(self, inp_q, opt_q):
super(Harvest, self).__init__()
self.inp_q = inp_q
self.opt_q = opt_q
def run(self):
import numpy as np
import pyworld
while True:
idx, x, res_f0, n_cpu, ts = self.inp_q.get()
f0, t = pyworld.harvest(
x.astype(np.double),
fs=16000,
f0_ceil=1100,
f0_floor=50,
frame_period=10,
)
res_f0[idx] = f0
if len(res_f0.keys()) >= n_cpu:
self.opt_q.put(ts)
class AudioAPI:
def __init__(self) -> None:
self.gui_config = GUIConfig()
self.config = None # Initialize Config object as None
self.flag_vc = False
self.function = "vc"
self.delay_time = 0
self.rvc = None # Initialize RVC object as None
self.inp_q = None
self.opt_q = None
self.n_cpu = min(cpu_count(), 8)
def initialize_queues(self):
self.inp_q = Queue()
self.opt_q = Queue()
for _ in range(self.n_cpu):
p = Harvest(self.inp_q, self.opt_q)
p.daemon = True
p.start()
def load(self):
input_devices, output_devices, _, _ = self.get_devices()
try:
with open("configs/config.json", "r", encoding='utf-8') as j:
data = json.load(j)
if data["sg_input_device"] not in input_devices:
data["sg_input_device"] = input_devices[sd.default.device[0]]
if data["sg_output_device"] not in output_devices:
data["sg_output_device"] = output_devices[sd.default.device[1]]
except Exception as e:
logger.error(f"Failed to load configuration: {e}")
with open("configs/config.json", "w", encoding='utf-8') as j:
data = {
"pth_path": "",
"index_path": "",
"sg_input_device": input_devices[sd.default.device[0]],
"sg_output_device": output_devices[sd.default.device[1]],
"threhold": -60,
"pitch": 0,
"formant": 0.0,
"index_rate": 0,
"rms_mix_rate": 0,
"block_time": 0.25,
"crossfade_length": 0.05,
"extra_time": 2.5,
"n_cpu": 4,
"f0method": "fcpe",
"use_jit": False,
"use_pv": False,
}
json.dump(data, j, ensure_ascii=False)
return data
def set_values(self, values):
logger.info(f"Setting values: {values}")
if not values.pth_path.strip():
raise HTTPException(status_code=400, detail="Please select a .pth file")
if not values.index_path.strip():
raise HTTPException(status_code=400, detail="Please select an index file")
self.set_devices(values.sg_input_device, values.sg_output_device)
self.config.use_jit = False
self.gui_config.pth_path = values.pth_path
self.gui_config.index_path = values.index_path
self.gui_config.threhold = values.threhold
self.gui_config.pitch = values.pitch
self.gui_config.formant = values.formant
self.gui_config.block_time = values.block_time
self.gui_config.crossfade_time = values.crossfade_length
self.gui_config.extra_time = values.extra_time
self.gui_config.I_noise_reduce = values.I_noise_reduce
self.gui_config.O_noise_reduce = values.O_noise_reduce
self.gui_config.rms_mix_rate = values.rms_mix_rate
self.gui_config.index_rate = values.index_rate
self.gui_config.n_cpu = values.n_cpu
self.gui_config.use_pv = values.use_pv
self.gui_config.f0method = values.f0method
return True
def start_vc(self):
torch.cuda.empty_cache()
self.flag_vc = True
self.rvc = rvc_for_realtime.RVC(
self.gui_config.pitch,
self.gui_config.pth_path,
self.gui_config.index_path,
self.gui_config.index_rate,
self.gui_config.n_cpu,
self.inp_q,
self.opt_q,
self.config,
self.rvc if self.rvc else None,
)
self.gui_config.samplerate = (
self.rvc.tgt_sr
if self.gui_config.sr_type == "sr_model"
else self.get_device_samplerate()
)
self.zc = self.gui_config.samplerate // 100
self.block_frame = (
int(
np.round(
self.gui_config.block_time
* self.gui_config.samplerate
/ self.zc
)
)
* self.zc
)
self.block_frame_16k = 160 * self.block_frame // self.zc
self.crossfade_frame = (
int(
np.round(
self.gui_config.crossfade_time
* self.gui_config.samplerate
/ self.zc
)
)
* self.zc
)
self.sola_buffer_frame = min(self.crossfade_frame, 4 * self.zc)
self.sola_search_frame = self.zc
self.extra_frame = (
int(
np.round(
self.gui_config.extra_time
* self.gui_config.samplerate
/ self.zc
)
)
* self.zc
)
self.input_wav = torch.zeros(
self.extra_frame
+ self.crossfade_frame
+ self.sola_search_frame
+ self.block_frame,
device=self.config.device,
dtype=torch.float32,
)
self.input_wav_denoise = self.input_wav.clone()
self.input_wav_res = torch.zeros(
160 * self.input_wav.shape[0] // self.zc,
device=self.config.device,
dtype=torch.float32,
)
self.rms_buffer = np.zeros(4 * self.zc, dtype="float32")
self.sola_buffer = torch.zeros(
self.sola_buffer_frame, device=self.config.device, dtype=torch.float32
)
self.nr_buffer = self.sola_buffer.clone()
self.output_buffer = self.input_wav.clone()
self.skip_head = self.extra_frame // self.zc
self.return_length = (
self.block_frame + self.sola_buffer_frame + self.sola_search_frame
) // self.zc
self.fade_in_window = (
torch.sin(
0.5
* np.pi
* torch.linspace(
0.0,
1.0,
steps=self.sola_buffer_frame,
device=self.config.device,
dtype=torch.float32,
)
)
** 2
)
self.fade_out_window = 1 - self.fade_in_window
self.resampler = tat.Resample(
orig_freq=self.gui_config.samplerate,
new_freq=16000,
dtype=torch.float32,
).to(self.config.device)
if self.rvc.tgt_sr != self.gui_config.samplerate:
self.resampler2 = tat.Resample(
orig_freq=self.rvc.tgt_sr,
new_freq=self.gui_config.samplerate,
dtype=torch.float32,
).to(self.config.device)
else:
self.resampler2 = None
self.tg = TorchGate(
sr=self.gui_config.samplerate, n_fft=4 * self.zc, prop_decrease=0.9
).to(self.config.device)
thread_vc = threading.Thread(target=self.soundinput)
thread_vc.start()
def soundinput(self):
channels = 1 if sys.platform == "darwin" else 2
with sd.Stream(
channels=channels,
callback=self.audio_callback,
blocksize=self.block_frame,
samplerate=self.gui_config.samplerate,
dtype="float32",
) as stream:
global stream_latency
stream_latency = stream.latency[-1]
while self.flag_vc:
time.sleep(self.gui_config.block_time)
logger.info("Audio block passed.")
logger.info("Ending VC")
def audio_callback(self, indata: np.ndarray, outdata: np.ndarray, frames, times, status):
start_time = time.perf_counter()
indata = librosa.to_mono(indata.T)
if self.gui_config.threhold > -60:
indata = np.append(self.rms_buffer, indata)
rms = librosa.feature.rms(y=indata, frame_length=4 * self.zc, hop_length=self.zc)[:, 2:]
self.rms_buffer[:] = indata[-4 * self.zc :]
indata = indata[2 * self.zc - self.zc // 2 :]
db_threhold = (
librosa.amplitude_to_db(rms, ref=1.0)[0] < self.gui_config.threhold
)
for i in range(db_threhold.shape[0]):
if db_threhold[i]:
indata[i * self.zc : (i + 1) * self.zc] = 0
indata = indata[self.zc // 2 :]
self.input_wav[: -self.block_frame] = self.input_wav[self.block_frame :].clone()
self.input_wav[-indata.shape[0] :] = torch.from_numpy(indata).to(self.config.device)
self.input_wav_res[: -self.block_frame_16k] = self.input_wav_res[self.block_frame_16k :].clone()
# input noise reduction and resampling
if self.gui_config.I_noise_reduce:
self.input_wav_denoise[: -self.block_frame] = self.input_wav_denoise[self.block_frame :].clone()
input_wav = self.input_wav[-self.sola_buffer_frame - self.block_frame :]
input_wav = self.tg(input_wav.unsqueeze(0), self.input_wav.unsqueeze(0)).squeeze(0)
input_wav[: self.sola_buffer_frame] *= self.fade_in_window
input_wav[: self.sola_buffer_frame] += self.nr_buffer * self.fade_out_window
self.input_wav_denoise[-self.block_frame :] = input_wav[: self.block_frame]
self.nr_buffer[:] = input_wav[self.block_frame :]
self.input_wav_res[-self.block_frame_16k - 160 :] = self.resampler(
self.input_wav_denoise[-self.block_frame - 2 * self.zc :]
)[160:]
else:
self.input_wav_res[-160 * (indata.shape[0] // self.zc + 1) :] = (
self.resampler(self.input_wav[-indata.shape[0] - 2 * self.zc :])[160:]
)
# infer
if self.function == "vc":
infer_wav = self.rvc.infer(
self.input_wav_res,
self.block_frame_16k,
self.skip_head,
self.return_length,
self.gui_config.f0method,
)
if self.resampler2 is not None:
infer_wav = self.resampler2(infer_wav)
elif self.gui_config.I_noise_reduce:
infer_wav = self.input_wav_denoise[self.extra_frame :].clone()
else:
infer_wav = self.input_wav[self.extra_frame :].clone()
# output noise reduction
if self.gui_config.O_noise_reduce and self.function == "vc":
self.output_buffer[: -self.block_frame] = self.output_buffer[self.block_frame :].clone()
self.output_buffer[-self.block_frame :] = infer_wav[-self.block_frame :]
infer_wav = self.tg(infer_wav.unsqueeze(0), self.output_buffer.unsqueeze(0)).squeeze(0)
# volume envelop mixing
if self.gui_config.rms_mix_rate < 1 and self.function == "vc":
if self.gui_config.I_noise_reduce:
input_wav = self.input_wav_denoise[self.extra_frame :]
else:
input_wav = self.input_wav[self.extra_frame :]
rms1 = librosa.feature.rms(
y=input_wav[: infer_wav.shape[0]].cpu().numpy(),
frame_length=4 * self.zc,
hop_length=self.zc,
)
rms1 = torch.from_numpy(rms1).to(self.config.device)
rms1 = F.interpolate(
rms1.unsqueeze(0),
size=infer_wav.shape[0] + 1,
mode="linear",
align_corners=True,
)[0, 0, :-1]
rms2 = librosa.feature.rms(
y=infer_wav[:].cpu().numpy(),
frame_length=4 * self.zc,
hop_length=self.zc,
)
rms2 = torch.from_numpy(rms2).to(self.config.device)
rms2 = F.interpolate(
rms2.unsqueeze(0),
size=infer_wav.shape[0] + 1,
mode="linear",
align_corners=True,
)[0, 0, :-1]
rms2 = torch.max(rms2, torch.zeros_like(rms2) + 1e-3)
infer_wav *= torch.pow(
rms1 / rms2, torch.tensor(1 - self.gui_config.rms_mix_rate)
)
# SOLA algorithm from https://github.com/yxlllc/DDSP-SVC
conv_input = infer_wav[None, None, : self.sola_buffer_frame + self.sola_search_frame]
cor_nom = F.conv1d(conv_input, self.sola_buffer[None, None, :])
cor_den = torch.sqrt(
F.conv1d(
conv_input**2,
torch.ones(1, 1, self.sola_buffer_frame, device=self.config.device),
)
+ 1e-8
)
if sys.platform == "darwin":
_, sola_offset = torch.max(cor_nom[0, 0] / cor_den[0, 0])
sola_offset = sola_offset.item()
else:
sola_offset = torch.argmax(cor_nom[0, 0] / cor_den[0, 0])
logger.info(f"sola_offset = {sola_offset}")
infer_wav = infer_wav[sola_offset:]
if "privateuseone" in str(self.config.device) or not self.gui_config.use_pv:
infer_wav[: self.sola_buffer_frame] *= self.fade_in_window
infer_wav[: self.sola_buffer_frame] += self.sola_buffer * self.fade_out_window
else:
infer_wav[: self.sola_buffer_frame] = phase_vocoder(
self.sola_buffer,
infer_wav[: self.sola_buffer_frame],
self.fade_out_window,
self.fade_in_window,
)
self.sola_buffer[:] = infer_wav[
self.block_frame : self.block_frame + self.sola_buffer_frame
]
if sys.platform == "darwin":
outdata[:] = infer_wav[: self.block_frame].cpu().numpy()[:, np.newaxis]
else:
outdata[:] = infer_wav[: self.block_frame].repeat(2, 1).t().cpu().numpy()
total_time = time.perf_counter() - start_time
logger.info(f"Infer time: {total_time:.2f}")
def get_devices(self, update: bool = True):
if update:
sd._terminate()
sd._initialize()
devices = sd.query_devices()
hostapis = sd.query_hostapis()
for hostapi in hostapis:
for device_idx in hostapi["devices"]:
devices[device_idx]["hostapi_name"] = hostapi["name"]
input_devices = [
f"{d['name']} ({d['hostapi_name']})"
for d in devices
if d["max_input_channels"] > 0
]
output_devices = [
f"{d['name']} ({d['hostapi_name']})"
for d in devices
if d["max_output_channels"] > 0
]
input_devices_indices = [
d["index"] if "index" in d else d["name"]
for d in devices
if d["max_input_channels"] > 0
]
output_devices_indices = [
d["index"] if "index" in d else d["name"]
for d in devices
if d["max_output_channels"] > 0
]
return (
input_devices,
output_devices,
input_devices_indices,
output_devices_indices,
)
def set_devices(self, input_device, output_device):
(
input_devices,
output_devices,
input_device_indices,
output_device_indices,
) = self.get_devices()
logger.debug(f"Available input devices: {input_devices}")
logger.debug(f"Available output devices: {output_devices}")
logger.debug(f"Selected input device: {input_device}")
logger.debug(f"Selected output device: {output_device}")
if input_device not in input_devices:
logger.error(f"Input device '{input_device}' is not in the list of available devices")
raise HTTPException(status_code=400, detail=f"Input device '{input_device}' is not available")
if output_device not in output_devices:
logger.error(f"Output device '{output_device}' is not in the list of available devices")
raise HTTPException(status_code=400, detail=f"Output device '{output_device}' is not available")
sd.default.device[0] = input_device_indices[input_devices.index(input_device)]
sd.default.device[1] = output_device_indices[output_devices.index(output_device)]
logger.info(f"Input device set to {sd.default.device[0]}: {input_device}")
logger.info(f"Output device set to {sd.default.device[1]}: {output_device}")
audio_api = AudioAPI()
@app.get("/inputDevices", response_model=list)
def get_input_devices():
try:
input_devices, _, _, _ = audio_api.get_devices()
return input_devices
except Exception as e:
logger.error(f"Failed to get input devices: {e}")
raise HTTPException(status_code=500, detail="Failed to get input devices")
@app.get("/outputDevices", response_model=list)
def get_output_devices():
try:
_, output_devices, _, _ = audio_api.get_devices()
return output_devices
except Exception as e:
logger.error(f"Failed to get output devices: {e}")
raise HTTPException(status_code=500, detail="Failed to get output devices")
@app.post("/config")
def configure_audio(config_data: ConfigData):
try:
logger.info(f"Configuring audio with data: {config_data}")
if audio_api.set_values(config_data):
settings = config_data.dict()
settings["use_jit"] = False
with open("configs/config.json", "w", encoding='utf-8') as j:
json.dump(settings, j, ensure_ascii=False)
logger.info("Configuration set successfully")
return {"message": "Configuration set successfully"}
except HTTPException as e:
logger.error(f"Configuration error: {e.detail}")
raise
except Exception as e:
logger.error(f"Configuration failed: {e}")
raise HTTPException(status_code=400, detail=f"Configuration failed: {e}")
@app.post("/start")
def start_conversion():
try:
if not audio_api.flag_vc:
audio_api.start_vc()
return {"message": "Audio conversion started"}
else:
logger.warning("Audio conversion already running")
raise HTTPException(status_code=400, detail="Audio conversion already running")
except HTTPException as e:
logger.error(f"Start conversion error: {e.detail}")
raise
except Exception as e:
logger.error(f"Failed to start conversion: {e}")
raise HTTPException(status_code=500, detail="Failed to start conversion: {e}")
@app.post("/stop")
def stop_conversion():
try:
if audio_api.flag_vc:
audio_api.flag_vc = False
global stream_latency
stream_latency = -1
return {"message": "Audio conversion stopped"}
else:
logger.warning("Audio conversion not running")
raise HTTPException(status_code=400, detail="Audio conversion not running")
except HTTPException as e:
logger.error(f"Stop conversion error: {e.detail}")
raise
except Exception as e:
logger.error(f"Failed to stop conversion: {e}")
raise HTTPException(status_code=500, detail="Failed to stop conversion: {e}")
if __name__ == "__main__":
if sys.platform == "win32":
freeze_support()
load_dotenv()
os.environ["OMP_NUM_THREADS"] = "4"
if sys.platform == "darwin":
os.environ["PYTORCH_ENABLE_MPS_FALLBACK"] = "1"
from tools.torchgate import TorchGate
import tools.rvc_for_realtime as rvc_for_realtime
from configs.config import Config
audio_api.config = Config()
audio_api.initialize_queues()
uvicorn.run(app, host="0.0.0.0", port=6242)

Binary file not shown.

3
assets/hubert/.gitignore vendored Normal file
View File

@ -0,0 +1,3 @@
*
!.gitignore
!hubert_inputs.pth

Binary file not shown.

3
assets/rmvpe/.gitignore vendored Normal file
View File

@ -0,0 +1,3 @@
*
!.gitignore
!rmvpe_inputs.pth

Binary file not shown.

2
assets/uvr5_weights/.gitignore vendored Normal file
View File

@ -0,0 +1,2 @@
*
!.gitignore

2
assets/weights/.gitignore vendored Normal file
View File

@ -0,0 +1,2 @@
*
!.gitignore

106
config.py
View File

@ -1,106 +0,0 @@
########################硬件参数########################
# 填写cuda:x, cpu 或 mps, x指代第几张卡只支持 N卡 / Apple Silicon 加速
device = "cuda:0"
# 9-10-20-30-40系显卡无脑True不影响质量>=20显卡开启有加速
is_half = True
# 默认0用上所有线程写数字限制CPU资源使用
n_cpu = 0
########################硬件参数########################
##################下为参数处理逻辑,勿动##################
########################命令行参数########################
import argparse
parser = argparse.ArgumentParser()
parser.add_argument("--port", type=int, default=7865, help="Listen port")
parser.add_argument("--pycmd", type=str, default="python", help="Python command")
parser.add_argument("--colab", action="store_true", help="Launch in colab")
parser.add_argument(
"--noparallel", action="store_true", help="Disable parallel processing"
)
parser.add_argument(
"--noautoopen", action="store_true", help="Do not open in browser automatically"
)
cmd_opts = parser.parse_args()
python_cmd = cmd_opts.pycmd
listen_port = cmd_opts.port if 0 <= cmd_opts.port <= 65535 else 7865
iscolab = cmd_opts.colab
noparallel = cmd_opts.noparallel
noautoopen = cmd_opts.noautoopen
########################命令行参数########################
import sys
import torch
# has_mps is only available in nightly pytorch (for now) and MasOS 12.3+.
# check `getattr` and try it for compatibility
def has_mps() -> bool:
if sys.platform != "darwin":
return False
else:
if not getattr(torch, "has_mps", False):
return False
try:
torch.zeros(1).to(torch.device("mps"))
return True
except Exception:
return False
if not torch.cuda.is_available():
if has_mps():
print("没有发现支持的N卡, 使用MPS进行推理")
device = "mps"
else:
print("没有发现支持的N卡, 使用CPU进行推理")
device = "cpu"
is_half = False
gpu_mem=None
if device not in ["cpu", "mps"]:
i_device=int(device.split(":")[-1])
gpu_name = torch.cuda.get_device_name(i_device)
if "16" in gpu_name or "P40"in gpu_name.upper() or "1070"in gpu_name or "1080"in gpu_name:
print("16系显卡强制单精度")
is_half = False
with open("configs/32k.json","r")as f:strr=f.read().replace("true","false")
with open("configs/32k.json","w")as f:f.write(strr)
with open("configs/40k.json","r")as f:strr=f.read().replace("true","false")
with open("configs/40k.json","w")as f:f.write(strr)
with open("configs/48k.json","r")as f:strr=f.read().replace("true","false")
with open("configs/48k.json","w")as f:f.write(strr)
with open("trainset_preprocess_pipeline_print.py","r")as f:strr=f.read().replace("3.7","3.0")
with open("trainset_preprocess_pipeline_print.py","w")as f:f.write(strr)
gpu_mem=int(torch.cuda.get_device_properties(i_device).total_memory/1024/1024/1024+0.4)
if(gpu_mem<=4):
with open("trainset_preprocess_pipeline_print.py","r")as f:strr=f.read().replace("3.7","3.0")
with open("trainset_preprocess_pipeline_print.py","w")as f:f.write(strr)
from multiprocessing import cpu_count
if n_cpu == 0:
n_cpu = cpu_count()
if is_half:
# 6G显存配置
x_pad = 3
x_query = 10
x_center = 60
x_max = 65
else:
# 5G显存配置
x_pad = 1
x_query = 6
x_center = 38
x_max = 41
if(gpu_mem!=None and gpu_mem<=4):
x_pad = 1
x_query = 5
x_center = 30
x_max = 32

1
configs/config.json Normal file
View File

@ -0,0 +1 @@
{"pth_path": "assets/weights/kikiV1.pth", "index_path": "logs/kikiV1.index", "sg_hostapi": "MME", "sg_wasapi_exclusive": false, "sg_input_device": "VoiceMeeter Output (VB-Audio Vo", "sg_output_device": "VoiceMeeter Input (VB-Audio Voi", "sr_type": "sr_device", "threhold": -60.0, "pitch": 12.0, "formant": 0.0, "rms_mix_rate": 0.5, "index_rate": 0.0, "block_time": 0.15, "crossfade_length": 0.08, "extra_time": 2.0, "n_cpu": 4.0, "use_jit": false, "use_pv": false, "f0method": "fcpe"}

254
configs/config.py Normal file
View File

@ -0,0 +1,254 @@
import argparse
import os
import sys
import json
import shutil
from multiprocessing import cpu_count
import torch
try:
import intel_extension_for_pytorch as ipex # pylint: disable=import-error, unused-import
if torch.xpu.is_available():
from infer.modules.ipex import ipex_init
ipex_init()
except Exception: # pylint: disable=broad-exception-caught
pass
import logging
logger = logging.getLogger(__name__)
version_config_list = [
"v1/32k.json",
"v1/40k.json",
"v1/48k.json",
"v2/48k.json",
"v2/32k.json",
]
def singleton_variable(func):
def wrapper(*args, **kwargs):
if not wrapper.instance:
wrapper.instance = func(*args, **kwargs)
return wrapper.instance
wrapper.instance = None
return wrapper
@singleton_variable
class Config:
def __init__(self):
self.device = "cuda:0"
self.is_half = True
self.use_jit = False
self.n_cpu = 0
self.gpu_name = None
self.json_config = self.load_config_json()
self.gpu_mem = None
(
self.python_cmd,
self.listen_port,
self.iscolab,
self.noparallel,
self.noautoopen,
self.dml,
) = self.arg_parse()
self.instead = ""
self.preprocess_per = 3.7
self.x_pad, self.x_query, self.x_center, self.x_max = self.device_config()
@staticmethod
def load_config_json() -> dict:
d = {}
for config_file in version_config_list:
p = f"configs/inuse/{config_file}"
if not os.path.exists(p):
shutil.copy(f"configs/{config_file}", p)
with open(f"configs/inuse/{config_file}", "r") as f:
d[config_file] = json.load(f)
return d
@staticmethod
def arg_parse() -> tuple:
exe = sys.executable or "python"
parser = argparse.ArgumentParser()
parser.add_argument("--port", type=int, default=7865, help="Listen port")
parser.add_argument("--pycmd", type=str, default=exe, help="Python command")
parser.add_argument("--colab", action="store_true", help="Launch in colab")
parser.add_argument(
"--noparallel", action="store_true", help="Disable parallel processing"
)
parser.add_argument(
"--noautoopen",
action="store_true",
help="Do not open in browser automatically",
)
parser.add_argument(
"--dml",
action="store_true",
help="torch_dml",
)
cmd_opts = parser.parse_args()
cmd_opts.port = cmd_opts.port if 0 <= cmd_opts.port <= 65535 else 7865
return (
cmd_opts.pycmd,
cmd_opts.port,
cmd_opts.colab,
cmd_opts.noparallel,
cmd_opts.noautoopen,
cmd_opts.dml,
)
# has_mps is only available in nightly pytorch (for now) and MasOS 12.3+.
# check `getattr` and try it for compatibility
@staticmethod
def has_mps() -> bool:
if not torch.backends.mps.is_available():
return False
try:
torch.zeros(1).to(torch.device("mps"))
return True
except Exception:
return False
@staticmethod
def has_xpu() -> bool:
if hasattr(torch, "xpu") and torch.xpu.is_available():
return True
else:
return False
def use_fp32_config(self):
for config_file in version_config_list:
self.json_config[config_file]["train"]["fp16_run"] = False
with open(f"configs/inuse/{config_file}", "r") as f:
strr = f.read().replace("true", "false")
with open(f"configs/inuse/{config_file}", "w") as f:
f.write(strr)
logger.info("overwrite " + config_file)
self.preprocess_per = 3.0
logger.info("overwrite preprocess_per to %d" % (self.preprocess_per))
def device_config(self) -> tuple:
if torch.cuda.is_available():
if self.has_xpu():
self.device = self.instead = "xpu:0"
self.is_half = True
i_device = int(self.device.split(":")[-1])
self.gpu_name = torch.cuda.get_device_name(i_device)
if (
("16" in self.gpu_name and "V100" not in self.gpu_name.upper())
or "P40" in self.gpu_name.upper()
or "P10" in self.gpu_name.upper()
or "1060" in self.gpu_name
or "1070" in self.gpu_name
or "1080" in self.gpu_name
):
logger.info("Found GPU %s, force to fp32", self.gpu_name)
self.is_half = False
self.use_fp32_config()
else:
logger.info("Found GPU %s", self.gpu_name)
self.gpu_mem = int(
torch.cuda.get_device_properties(i_device).total_memory
/ 1024
/ 1024
/ 1024
+ 0.4
)
if self.gpu_mem <= 4:
self.preprocess_per = 3.0
elif self.has_mps():
logger.info("No supported Nvidia GPU found")
self.device = self.instead = "mps"
self.is_half = False
self.use_fp32_config()
else:
logger.info("No supported Nvidia GPU found")
self.device = self.instead = "cpu"
self.is_half = False
self.use_fp32_config()
if self.n_cpu == 0:
self.n_cpu = cpu_count()
if self.is_half:
# 6G显存配置
x_pad = 3
x_query = 10
x_center = 60
x_max = 65
else:
# 5G显存配置
x_pad = 1
x_query = 6
x_center = 38
x_max = 41
if self.gpu_mem is not None and self.gpu_mem <= 4:
x_pad = 1
x_query = 5
x_center = 30
x_max = 32
if self.dml:
logger.info("Use DirectML instead")
if (
os.path.exists(
"runtime\Lib\site-packages\onnxruntime\capi\DirectML.dll"
)
== False
):
try:
os.rename(
"runtime\Lib\site-packages\onnxruntime",
"runtime\Lib\site-packages\onnxruntime-cuda",
)
except:
pass
try:
os.rename(
"runtime\Lib\site-packages\onnxruntime-dml",
"runtime\Lib\site-packages\onnxruntime",
)
except:
pass
# if self.device != "cpu":
import torch_directml
self.device = torch_directml.device(torch_directml.default_device())
self.is_half = False
else:
if self.instead:
logger.info(f"Use {self.instead} instead")
if (
os.path.exists(
"runtime\Lib\site-packages\onnxruntime\capi\onnxruntime_providers_cuda.dll"
)
== False
):
try:
os.rename(
"runtime\Lib\site-packages\onnxruntime",
"runtime\Lib\site-packages\onnxruntime-dml",
)
except:
pass
try:
os.rename(
"runtime\Lib\site-packages\onnxruntime-cuda",
"runtime\Lib\site-packages\onnxruntime",
)
except:
pass
logger.info(
"Half-precision floating-point: %s, device: %s"
% (self.is_half, self.device)
)
return x_pad, x_query, x_center, x_max

4
configs/inuse/.gitignore vendored Normal file
View File

@ -0,0 +1,4 @@
*
!.gitignore
!v1
!v2

2
configs/inuse/v1/.gitignore vendored Normal file
View File

@ -0,0 +1,2 @@
*
!.gitignore

2
configs/inuse/v2/.gitignore vendored Normal file
View File

@ -0,0 +1,2 @@
*
!.gitignore

46
configs/v2/32k.json Normal file
View File

@ -0,0 +1,46 @@
{
"train": {
"log_interval": 200,
"seed": 1234,
"epochs": 20000,
"learning_rate": 1e-4,
"betas": [0.8, 0.99],
"eps": 1e-9,
"batch_size": 4,
"fp16_run": true,
"lr_decay": 0.999875,
"segment_size": 12800,
"init_lr_ratio": 1,
"warmup_epochs": 0,
"c_mel": 45,
"c_kl": 1.0
},
"data": {
"max_wav_value": 32768.0,
"sampling_rate": 32000,
"filter_length": 1024,
"hop_length": 320,
"win_length": 1024,
"n_mel_channels": 80,
"mel_fmin": 0.0,
"mel_fmax": null
},
"model": {
"inter_channels": 192,
"hidden_channels": 192,
"filter_channels": 768,
"n_heads": 2,
"n_layers": 6,
"kernel_size": 3,
"p_dropout": 0,
"resblock": "1",
"resblock_kernel_sizes": [3,7,11],
"resblock_dilation_sizes": [[1,3,5], [1,3,5], [1,3,5]],
"upsample_rates": [10,8,2,2],
"upsample_initial_channel": 512,
"upsample_kernel_sizes": [20,16,4,4],
"use_spectral_norm": false,
"gin_channels": 256,
"spk_embed_dim": 109
}
}

46
configs/v2/48k.json Normal file
View File

@ -0,0 +1,46 @@
{
"train": {
"log_interval": 200,
"seed": 1234,
"epochs": 20000,
"learning_rate": 1e-4,
"betas": [0.8, 0.99],
"eps": 1e-9,
"batch_size": 4,
"fp16_run": true,
"lr_decay": 0.999875,
"segment_size": 17280,
"init_lr_ratio": 1,
"warmup_epochs": 0,
"c_mel": 45,
"c_kl": 1.0
},
"data": {
"max_wav_value": 32768.0,
"sampling_rate": 48000,
"filter_length": 2048,
"hop_length": 480,
"win_length": 2048,
"n_mel_channels": 128,
"mel_fmin": 0.0,
"mel_fmax": null
},
"model": {
"inter_channels": 192,
"hidden_channels": 192,
"filter_channels": 768,
"n_heads": 2,
"n_layers": 6,
"kernel_size": 3,
"p_dropout": 0,
"resblock": "1",
"resblock_kernel_sizes": [3,7,11],
"resblock_dilation_sizes": [[1,3,5], [1,3,5], [1,3,5]],
"upsample_rates": [12,10,2,2],
"upsample_initial_channel": 512,
"upsample_kernel_sizes": [24,20,4,4],
"use_spectral_norm": false,
"gin_channels": 256,
"spk_embed_dim": 109
}
}

20
docker-compose.yml Normal file
View File

@ -0,0 +1,20 @@
version: "3.8"
services:
rvc:
build:
context: .
dockerfile: Dockerfile
container_name: rvc
volumes:
- ./weights:/app/assets/weights
- ./opt:/app/opt
# - ./dataset:/app/dataset # you can use this folder in order to provide your dataset for model training
ports:
- 7865:7865
deploy:
resources:
reservations:
devices:
- driver: nvidia
count: 1
capabilities: [gpu]

View File

@ -1,102 +0,0 @@
<div align="center">
<h1>Retrieval-based-Voice-Conversion-WebUI</h1>
An easy-to-use SVC framework based on VITS.<br><br>
[![madewithlove](https://forthebadge.com/images/badges/built-with-love.svg)](https://github.com/liujing04/Retrieval-based-Voice-Conversion-WebUI)
<img src="https://counter.seku.su/cmoe?name=rvc&theme=r34" /><br>
[![Open In Colab](https://img.shields.io/badge/Colab-F9AB00?style=for-the-badge&logo=googlecolab&color=525252)](https://colab.research.google.com/github/liujing04/Retrieval-based-Voice-Conversion-WebUI/blob/main/Retrieval_based_Voice_Conversion_WebUI.ipynb)
[![Licence](https://img.shields.io/github/license/liujing04/Retrieval-based-Voice-Conversion-WebUI?style=for-the-badge)](https://github.com/liujing04/Retrieval-based-Voice-Conversion-WebUI/blob/main/%E4%BD%BF%E7%94%A8%E9%9C%80%E9%81%B5%E5%AE%88%E7%9A%84%E5%8D%8F%E8%AE%AE-LICENSE.txt)
[![Huggingface](https://img.shields.io/badge/🤗%20-Spaces-yellow.svg?style=for-the-badge)](https://huggingface.co/lj1995/VoiceConversionWebUI/tree/main/)
[![Discord](https://img.shields.io/badge/RVC%20Developers-Discord-7289DA?style=for-the-badge&logo=discord&logoColor=white)](https://discord.gg/HcsmBBGyVk)
</div>
------
[**Changelog**](https://github.com/liujing04/Retrieval-based-Voice-Conversion-WebUI/blob/main/Changelog_CN.md)
[**English**](./README.en.md) | [**中文简体**](../README.md) | [**日本語**](./README.ja.md) | [**한국어**](./README.ko.md)
> Check our [Demo Video](https://www.bilibili.com/video/BV1pm4y1z7Gm/) here!
> Realtime Voice Conversion Software using RVC : [w-okada/voice-changer](https://github.com/w-okada/voice-changer)
> The dataset for the pre-training model uses nearly 50 hours of high quality VCTK open source dataset.
> High quality licensed song datasets will be added to training-set one after another for your use, without worrying about copyright infringement.
## Summary
This repository has the following features:
+ Reduce tone leakage by replacing source feature to training-set feature using top1 retrieval;
+ Easy and fast training, even on relatively poor graphics cards;
+ Training with a small amount of data also obtains relatively good results (>=10min low noise speech recommended);
+ Supporting model fusion to change timbres (using ckpt processing tab->ckpt merge);
+ Easy-to-use Webui interface;
+ Use the UVR5 model to quickly separate vocals and instruments.
## Preparing the environment
We recommend you install the dependencies through poetry.
The following commands need to be executed in the environment of Python version 3.8 or higher:
```bash
# Install PyTorch-related core dependencies, skip if installed
# Reference: https://pytorch.org/get-started/locally/
pip install torch torchvision torchaudio
#For Windows + Nvidia Ampere Architecture(RTX30xx), you need to specify the cuda version corresponding to pytorch according to the experience of https://github.com/liujing04/Retrieval-based-Voice-Conversion-WebUI/issues/21
#pip install torch torchvision torchaudio --index-url https://download.pytorch.org/whl/cu117
# Install the Poetry dependency management tool, skip if installed
# Reference: https://python-poetry.org/docs/#installation
curl -sSL https://install.python-poetry.org | python3 -
# Install the project dependencies
poetry install
```
You can also use pip to install the dependencies
**Notice**: `faiss 1.7.2` will raise Segmentation Fault: 11 under `MacOS`, please use `pip install faiss-cpu==1.7.0` if you use pip to install it manually.
```bash
pip install -r requirements.txt
```
## Preparation of other Pre-models
RVC requires other pre-models to infer and train.
You need to download them from our [Huggingface space](https://huggingface.co/lj1995/VoiceConversionWebUI/tree/main/).
Here's a list of Pre-models and other files that RVC needs:
```bash
hubert_base.pt
./pretrained
./uvr5_weights
#If you are using Windows, you may also need this dictionary, skip if FFmpeg is installed
ffmpeg.exe
```
Then use this command to start Webui:
```bash
python infer-web.py
```
If you are using Windows, you can download and extract `RVC-beta.7z` to use RVC directly and use `go-web.bat` to start Webui.
There's also a tutorial on RVC in Chinese and you can check it out if needed.
## Credits
+ [ContentVec](https://github.com/auspicious3000/contentvec/)
+ [VITS](https://github.com/jaywalnut310/vits)
+ [HIFIGAN](https://github.com/jik876/hifi-gan)
+ [Gradio](https://github.com/gradio-app/gradio)
+ [FFmpeg](https://github.com/FFmpeg/FFmpeg)
+ [Ultimate Vocal Remover](https://github.com/Anjok07/ultimatevocalremovergui)
+ [audio-slicer](https://github.com/openvpi/audio-slicer)
## Thanks to all contributors for their efforts
<a href="https://github.com/liujing04/Retrieval-based-Voice-Conversion-WebUI/graphs/contributors" target="_blank">
<img src="https://contrib.rocks/image?repo=liujing04/Retrieval-based-Voice-Conversion-WebUI" />
</a>

View File

@ -1,106 +0,0 @@
<div align="center">
<h1>Retrieval-based-Voice-Conversion-WebUI</h1>
VITSに基づく使いやすい音声変換voice changerframework<br><br>
[![madewithlove](https://forthebadge.com/images/badges/built-with-love.svg)](https://github.com/liujing04/Retrieval-based-Voice-Conversion-WebUI)
<img src="https://counter.seku.su/cmoe?name=rvc&theme=r34" /><br>
[![Open In Colab](https://img.shields.io/badge/Colab-F9AB00?style=for-the-badge&logo=googlecolab&color=525252)](https://colab.research.google.com/github/liujing04/Retrieval-based-Voice-Conversion-WebUI/blob/main/Retrieval_based_Voice_Conversion_WebUI.ipynb)
[![Licence](https://img.shields.io/github/license/liujing04/Retrieval-based-Voice-Conversion-WebUI?style=for-the-badge)](https://github.com/liujing04/Retrieval-based-Voice-Conversion-WebUI/blob/main/%E4%BD%BF%E7%94%A8%E9%9C%80%E9%81%B5%E5%AE%88%E7%9A%84%E5%8D%8F%E8%AE%AE-LICENSE.txt)
[![Huggingface](https://img.shields.io/badge/🤗%20-Spaces-yellow.svg?style=for-the-badge)](https://huggingface.co/lj1995/VoiceConversionWebUI/tree/main/)
[![Discord](https://img.shields.io/badge/RVC%20Developers-Discord-7289DA?style=for-the-badge&logo=discord&logoColor=white)](https://discord.gg/HcsmBBGyVk)
</div>
------
[**更新日誌**](https://github.com/liujing04/Retrieval-based-Voice-Conversion-WebUI/blob/main/Changelog_CN.md)
[**English**](./README.en.md) | [**中文简体**](../README.md) | [**日本語**](./README.ja.md) | [**한국어**](./README.ko.md)
> デモ動画は[こちら](https://www.bilibili.com/video/BV1pm4y1z7Gm/)でご覧ください。
> RVCによるリアルタイム音声変換: [w-okada/voice-changer](https://github.com/w-okada/voice-changer)
> 著作権侵害を心配することなく使用できるように、基底モデルは約50時間の高品質なオープンソースデータセットで訓練されています。
> 今後も、次々と使用許可のある高品質な歌声の資料集を追加し、基底モデルを訓練する予定です。
## はじめに
本リポジトリには下記の特徴があります。
+ Top1検索を用いることで、生の特徴量を訓練用データセット特徴量に変換し、トーンリーケージを削減します。
+ 比較的貧弱なGPUでも、高速かつ簡単に訓練できます。
+ 少量のデータセットからでも、比較的良い結果を得ることができます。10分以上のイズの少ない音声を推奨します。
+ モデルを融合することで、音声を混ぜることができます。ckpt processingタブの、ckpt mergeを使用します。
+ 使いやすいWebUI。
+ UVR5 Modelも含んでいるため、人の声とBGMを素早く分離できます。
## 環境構築
Poetryで依存関係をインストールすることをお勧めします。
下記のコマンドは、Python3.8以上の環境で実行する必要があります:
```bash
# PyTorch関連の依存関係をインストール。インストール済の場合は省略。
# 参照先: https://pytorch.org/get-started/locally/
pip install torch torchvision torchaudio
#Windows Nvidia Ampere Architecture(RTX30xx)の場合、 #21 に従い、pytorchに対応するcuda versionを指定する必要があります。
#pip install torch torchvision torchaudio --index-url https://download.pytorch.org/whl/cu117
# PyTorch関連の依存関係をインストール。インストール済の場合は省略。
# 参照先: https://python-poetry.org/docs/#installation
curl -sSL https://install.python-poetry.org | python3 -
# Poetry経由で依存関係をインストール
poetry install
```
pipでも依存関係のインストールが可能です:
**注意**:`faiss 1.7.2``macOS``Segmentation Fault: 11`を起こすので、マニュアルインストールする場合は、 `pip install faiss-cpu==1.7.0`を実行してください。
```bash
pip install -r requirements.txt
```
## 基底modelsを準備
RVCは推論/訓練のために、様々な事前訓練を行った基底モデルを必要とします。
modelsは[Hugging Face space](https://huggingface.co/lj1995/VoiceConversionWebUI/tree/main/)からダウンロードできます。
以下は、RVCに必要な基底モデルやその他のファイルの一覧です。
```bash
hubert_base.pt
./pretrained
./uvr5_weights
# ffmpegがすでにinstallされている場合は省略
./ffmpeg
```
その後、下記のコマンドでWebUIを起動します。
```bash
python infer-web.py
```
Windowsをお使いの方は、直接`RVC-beta.7z`をダウンロード後に展開し、`go-web.bat`をクリックすることで、WebUIを起動することができます。(7zipが必要です。)
また、リポジトリに[小白简易教程.doc](./小白简易教程.doc)がありますので、参考にしてください(中国語版のみ)。
## 参考プロジェクト
+ [ContentVec](https://github.com/auspicious3000/contentvec/)
+ [VITS](https://github.com/jaywalnut310/vits)
+ [HIFIGAN](https://github.com/jik876/hifi-gan)
+ [Gradio](https://github.com/gradio-app/gradio)
+ [FFmpeg](https://github.com/FFmpeg/FFmpeg)
+ [Ultimate Vocal Remover](https://github.com/Anjok07/ultimatevocalremovergui)
+ [audio-slicer](https://github.com/openvpi/audio-slicer)
## 貢献者(contributor)の皆様の尽力に感謝します
<a href="https://github.com/liujing04/Retrieval-based-Voice-Conversion-WebUI/graphs/contributors" target="_blank">
<img src="https://contrib.rocks/image?repo=liujing04/Retrieval-based-Voice-Conversion-WebUI" />
</a>

View File

@ -1,104 +0,0 @@
<div align="center">
<h1>Retrieval-based-Voice-Conversion-WebUI</h1>
VITS 기반의 간단하고 사용하기 쉬운 음성 변환 프레임워크.<br><br>
[![madewithlove](https://forthebadge.com/images/badges/built-with-love.svg)](https://github.com/liujing04/Retrieval-based-Voice-Conversion-WebUI)
<img src="https://counter.seku.su/cmoe?name=rvc&theme=r34" /><br>
[![Open In Colab](https://img.shields.io/badge/Colab-F9AB00?style=for-the-badge&logo=googlecolab&color=525252)](https://colab.research.google.com/github/liujing04/Retrieval-based-Voice-Conversion-WebUI/blob/main/Retrieval_based_Voice_Conversion_WebUI.ipynb)
[![Licence](https://img.shields.io/github/license/liujing04/Retrieval-based-Voice-Conversion-WebUI?style=for-the-badge)](https://github.com/liujing04/Retrieval-based-Voice-Conversion-WebUI/blob/main/%E4%BD%BF%E7%94%A8%E9%9C%80%E9%81%B5%E5%AE%88%E7%9A%84%E5%8D%8F%E8%AE%AE-LICENSE.txt)
[![Huggingface](https://img.shields.io/badge/🤗%20-Spaces-yellow.svg?style=for-the-badge)](https://huggingface.co/lj1995/VoiceConversionWebUI/tree/main/)
[![Discord](https://img.shields.io/badge/RVC%20Developers-Discord-7289DA?style=for-the-badge&logo=discord&logoColor=white)](https://discord.gg/HcsmBBGyVk)
</div>
------
[**업데이트 로그**](https://github.com/liujing04/Retrieval-based-Voice-Conversion-WebUI/blob/main/Changelog_CN.md)
[**English**](./README.en.md) | [**中文简体**](../README.md) | [**日本語**](./README.ja.md) | [**한국어**](./README.ko.md)
> [데모 영상](https://www.bilibili.com/video/BV1pm4y1z7Gm/)을 확인해 보세요!
> RVC를 활용한 실시간 음성변환: [w-okada/voice-changer](https://github.com/w-okada/voice-changer)
> 기본 모델은 50시간 가량의 고퀄리티 오픈 소스 VCTK 데이터셋을 사용하였으므로, 저작권상의 염려가 없으니 안심하고 사용하시기 바랍니다.
> 저작권 문제가 없는 고퀄리티의 노래를 이후에도 계속해서 훈련할 예정입니다.
## 소개
본 Repo는 다음과 같은 특징을 가지고 있습니다:
+ top1 검색을 이용하여 입력 소스 기능을 훈련 세트 기능으로 대체하여 음색의 누출을 방지;
+ 상대적으로 낮은 성능의 GPU에서도 빠른 훈련 가능;
+ 적은 양의 데이터로 훈련해도 좋은 결과를 얻을 수 있음 (최소 10분 이상의 저잡음 음성 데이터를 사용하는 것을 권장);
+ 모델 융합을 통한 음색의 변조 가능 (ckpt 처리 탭->ckpt 병합 선택);
+ 사용하기 쉬운 WebUI (웹 인터페이스);
+ UVR5 모델을 이용하여 목소리와 배경음악의 빠른 분리;
## 환경의 준비
poetry를 통해 dependecies를 설치하는 것을 권장합니다.
다음 명령은 Python 버전 3.8 이상의 환경에서 실행되어야 합니다:
```bash
# PyTorch 관련 주요 dependencies 설치, 이미 설치되어 있는 경우 건너뛰기 가능
# 참조: https://pytorch.org/get-started/locally/
pip install torch torchvision torchaudio
# Windows + Nvidia Ampere Architecture(RTX30xx)를 사용하고 있다면, https://github.com/liujing04/Retrieval-based-Voice-Conversion-WebUI/issues/21 에서 명시된 것과 같이 PyTorch에 맞는 CUDA 버전을 지정해야 합니다.
#pip install torch torchvision torchaudio --index-url https://download.pytorch.org/whl/cu117
# Poetry 설치, 이미 설치되어 있는 경우 건너뛰기 가능
# Reference: https://python-poetry.org/docs/#installation
curl -sSL https://install.python-poetry.org | python3 -
# Dependecies 설치
poetry install
```
pip를 활용하여 dependencies를 설치하여도 무방합니다.
**공지**: `MacOS`에서 `faiss 1.7.2`를 사용하면 Segmentation Fault: 11 오류가 발생할 수 있습니다. 수동으로 pip를 사용하여 설치하는 경우 `pip install faiss-cpu==1.7.0`을 사용해야 합니다.
```bash
pip install -r requirements.txt
```
## 기타 사전 모델 준비
RVC 모델은 추론과 훈련을 위하여 다른 사전 모델이 필요합니다.
[Huggingface space](https://huggingface.co/lj1995/VoiceConversionWebUI/tree/main/)를 통해서 다운로드 할 수 있습니다.
다음은 RVC에 필요한 사전 모델 및 기타 파일 목록입니다:
```bash
hubert_base.pt
./pretrained
./uvr5_weights
# Windows를 사용하는 경우 이 사전도 필요할 수 있습니다. FFmpeg가 설치되어 있으면 건너뛰어도 됩니다.
ffmpeg.exe
```
그 후 이하의 명령을 사용하여 WebUI를 시작할 수 있습니다:
```bash
python infer-web.py
```
Windows를 사용하는 경우 `RVC-beta.7z`를 다운로드 및 압축 해제하여 RVC를 직접 사용하거나 `go-web.bat`을 사용하여 WebUi를 시작할 수 있습니다.
중국어로 된 RVC에 대한 튜토리얼도 있으니 필요하다면 확인할 수 있습니다.
## 크레딧
+ [ContentVec](https://github.com/auspicious3000/contentvec/)
+ [VITS](https://github.com/jaywalnut310/vits)
+ [HIFIGAN](https://github.com/jik876/hifi-gan)
+ [Gradio](https://github.com/gradio-app/gradio)
+ [FFmpeg](https://github.com/FFmpeg/FFmpeg)
+ [Ultimate Vocal Remover](https://github.com/Anjok07/ultimatevocalremovergui)
+ [audio-slicer](https://github.com/openvpi/audio-slicer)
## 모든 기여자 분들의 노력에 감사드립니다.
<a href="https://github.com/liujing04/Retrieval-based-Voice-Conversion-WebUI/graphs/contributors" target="_blank">
<img src="https://contrib.rocks/image?repo=liujing04/Retrieval-based-Voice-Conversion-WebUI" />
</a>

109
docs/cn/Changelog_CN.md Normal file
View File

@ -0,0 +1,109 @@
### 20231006更新
我们制作了一个用于实时变声的界面go-realtime-gui.bat/gui_v1.py事实上早就存在了本次更新重点也优化了实时变声的性能。对比0813版
- 1、优优化界面操作参数热更新调整参数不需要中止再启动懒加载模型已加载过的模型不需要重新加载增加响度因子参数响度向输入音频靠近
- 2、优化自带降噪效果与速度
- 3、大幅优化推理速度
注意输入输出设备应该选择同种类型例如都选MME类型。
1006版本整体的更新为
- 1、继续提升rmvpe音高提取算法效果对于男低音有更大的提升
- 2、优化推理界面布局
### 20230813更新
1-常规bug修复
- 保存频率总轮数最低改为1 总轮数最低改为2
- 修复无pretrain模型训练报错
- 增加伴奏人声分离完毕清理显存
- faiss保存路径绝对路径改为相对路径
- 支持路径包含空格(训练集路径+实验名称均支持,不再会报错)
- filelist取消强制utf8编码
- 解决实时变声中开启索引导致的CPU极大占用问题
2-重点更新
- 训练出当前最强开源人声音高提取模型RMVPE并用于RVC的训练、离线/实时推理支持pytorch/onnx/DirectML
- 通过pytorch-dml支持A卡和I卡的
1实时变声2推理3人声伴奏分离4训练暂未支持会切换至CPU训练通过onnx_dml支持rmvpe_gpu的推理
### 20230618更新
- v2增加32k和48k两个新预训练模型
- 修复非f0模型推理报错
- 对于超过一小时的训练集的索引建立环节自动kmeans缩小特征处理以加速索引训练、加入和查询
- 附送一个人声转吉他玩具仓库
- 数据处理剔除异常值切片
- onnx导出选项卡
失败的实验:
- ~~特征检索增加时序维度:寄,没啥效果~~
- ~~特征检索增加PCAR降维可选项数据大用kmeans缩小数据量数据小降维操作耗时比省下的匹配耗时还多~~
- ~~支持onnx推理附带仅推理的小压缩包生成nsf还是需要pytorch~~
- ~~训练时在音高、gender、eq、噪声等方面对输入进行随机增强没啥效果~~
- ~~接入小型声码器调研:寄,效果变差~~
todolist
- ~~训练集音高识别支持crepe已经被RMVPE取代不需要~~
- ~~多进程harvest推理已经被RMVPE取代不需要~~
- ~~crepe的精度支持和RVC-config同步已经被RMVPE取代不需要。支持这个还要同步torchcrepe的库麻烦~~
- 对接F0编辑器
### 20230528更新
- 增加v2的jupyter notebook韩文changelog增加一些环境依赖
- 增加呼吸、清辅音、齿音保护模式
- 支持crepe-full推理
- UVR5人声伴奏分离加上3个去延迟模型和MDX-Net去混响模型增加HP3人声提取模型
- 索引名称增加版本和实验名称
- 人声伴奏分离、推理批量导出增加音频导出格式选项
- 废弃32k模型的训练
### 20230513更新
- 清除一键包内部老版本runtime内残留的lib.infer_pack和uvr5_pack
- 修复训练集预处理伪多进程的bug
- 增加harvest识别音高可选通过中值滤波削弱哑音现象可调整中值滤波半径
- 导出音频增加后处理重采样
- 训练n_cpu进程数从"仅调整f0提取"改为"调整数据预处理和f0提取"
- 自动检测logs文件夹下的index路径提供下拉列表功能
- tab页增加"常见问题解答"也可参考github-rvc-wiki
- 相同路径的输入音频推理增加了音高缓存用途使用harvest音高提取整个pipeline会经历漫长且重复的音高提取过程如果不使用缓存实验不同音色、索引、音高中值滤波半径参数的用户在第一次测试后的等待结果会非常痛苦
### 20230514更新
- 音量包络对齐输入混合可以缓解“输入静音输出小幅度噪声”的问题。如果输入音频背景底噪大则不建议开启默认不开启值为1可视为不开启
- 支持按照指定频率保存提取的小模型假如你想尝试不同epoch下的推理效果但是不想保存所有大checkpoint并且每次都要ckpt手工处理提取小模型这项功能会非常实用
- 通过设置环境变量解决服务端开了系统全局代理导致浏览器连接错误的问题
- 支持v2预训练模型目前只公开了40k版本进行测试另外2个采样率还没有训练完全
- 推理前限制超过1的过大音量
- 微调数据预处理参数
### 20230409更新
- 修正训练参数提升显卡平均利用率A100最高从25%提升至90%左右V100:50%->90%左右2060S:60%->85%左右P40:25%->95%左右,训练速度显著提升
- 修正参数总batch_size改为每张卡的batch_size
- 修正total_epoch最大限制100解锁至1000默认10提升至默认20
- 修复ckpt提取识别是否带音高错误导致推理异常的问题
- 修复分布式训练每个rank都保存一次ckpt的问题
- 特征提取进行nan特征过滤
- 修复静音输入输出随机辅音or噪声的问题老版模型需要重做训练集重训
### 20230416更新
- 新增本地实时变声迷你GUI双击go-realtime-gui.bat启动
- 训练推理均对<50Hz的频段进行滤波过滤
- 训练推理音高提取pyworld最低音高从默认80下降至50,50-80hz间的男声低音不会哑
- WebUI支持根据系统区域变更语言现支持en_USja_JPzh_CNzh_HKzh_SGzh_TW不支持的默认en_US
- 修正部分显卡识别例如V100-16G识别失败P4识别失败
### 20230428更新
- 升级faiss索引设置速度更快质量更高
- 取消total_npy依赖后续分享模型不再需要填写total_npy
- 解锁16系限制。4G显存GPU给到4G的推理设置。
- 修复部分音频格式下UVR5人声伴奏分离的bug
- 实时变声迷你gui增加对非40k与不懈怠音高模型的支持
### 后续计划:
功能:
- 支持多人训练选项卡至多4人
底模:
- 收集呼吸wav加入训练集修正呼吸变声电音的问题
- 我们正在训练增加了歌声训练集的底模,未来会公开

108
docs/cn/faq.md Normal file
View File

@ -0,0 +1,108 @@
## Q1:ffmpeg error/utf8 error.
大概率不是ffmpeg问题而是音频路径问题<br>
ffmpeg读取路径带空格、()等特殊符号可能出现ffmpeg error训练集音频带中文路径在写入filelist.txt的时候可能出现utf8 error<br>
## Q2:一键训练结束没有索引
显示"Training is done. The program is closed."则模型训练成功,后续紧邻的报错是假的;<br>
一键训练结束完成没有added开头的索引文件可能是因为训练集太大卡住了添加索引的步骤已通过批处理add索引解决内存add索引对内存需求过大的问题。临时可尝试再次点击"训练索引"按钮。<br>
## Q3:训练结束推理没看到训练集的音色
点刷新音色再看看如果还没有看看训练有没有报错控制台和webui的截图logs/实验名下的log都可以发给开发者看看。<br>
## Q4:如何分享模型
rvc_root/logs/实验名 下面存储的pth不是用来分享模型用来推理的而是为了存储实验状态供复现以及继续训练用的。用来分享的模型应该是weights文件夹下大小为60+MB的pth文件<br>
后续将把weights/exp_name.pth和logs/exp_name/added_xxx.index合并打包成weights/exp_name.zip省去填写index的步骤那么zip文件用来分享不要分享pth文件除非是想换机器继续训练<br>
如果你把logs文件夹下的几百MB的pth文件复制/分享到weights文件夹下强行用于推理可能会出现f0tgt_sr等各种key不存在的报错。你需要用ckpt选项卡最下面手工或自动本地logs下如果能找到相关信息则会自动选择是否携带音高、目标音频采样率的选项后进行ckpt小模型提取输入路径填G开头的那个提取完在weights文件夹下会出现60+MB的pth文件刷新音色后可以选择使用。<br>
## Q5:Connection Error.
也许你关闭了控制台(黑色窗口)。<br>
## Q6:WebUI弹出Expecting value: line 1 column 1 (char 0).
请关闭系统局域网代理/全局代理。<br>
这个不仅是客户端的代理也包括服务端的代理例如你使用autodl设置了http_proxy和https_proxy学术加速使用时也需要unset关掉<br>
## Q7:不用WebUI如何通过命令训练推理
训练脚本:<br>
可先跑通WebUI消息窗内会显示数据集处理和训练用命令行<br>
推理脚本:<br>
https://huggingface.co/lj1995/VoiceConversionWebUI/blob/main/myinfer.py<br>
例子:<br>
runtime\python.exe myinfer.py 0 "E:\codes\py39\RVC-beta\todo-songs\1111.wav" "E:\codes\py39\logs\mi-test\added_IVF677_Flat_nprobe_7.index" harvest "test.wav" "weights/mi-test.pth" 0.6 cuda:0 True<br>
f0up_key=sys.argv[1]<br>
input_path=sys.argv[2]<br>
index_path=sys.argv[3]<br>
f0method=sys.argv[4]#harvest or pm<br>
opt_path=sys.argv[5]<br>
model_path=sys.argv[6]<br>
index_rate=float(sys.argv[7])<br>
device=sys.argv[8]<br>
is_half=bool(sys.argv[9])<br>
## Q8:Cuda error/Cuda out of memory.
小概率是cuda配置问题、设备不支持大概率是显存不够out of memory<br>
训练的话缩小batch size如果缩小到1还不够只能更换显卡训练推理的话酌情缩小config.py结尾的x_padx_queryx_centerx_max。4G以下显存例如10603G和各种2G显卡可以直接放弃4G显存显卡还有救。<br>
## Q9:total_epoch调多少比较好
如果训练集音质差底噪大20~30足够了调太高底模音质无法带高你的低音质训练集<br>
如果训练集音质高底噪低时长多可以调高200是ok的训练速度很快既然你有条件准备高音质训练集显卡想必条件也不错肯定不在乎多一些训练时间<br>
## Q10:需要多少训练集时长
推荐10min至50min<br>
  保证音质高底噪低的情况下,如果有个人特色的音色统一,则多多益善<br>
  高水平的训练集(精简+音色有特色5min至10min也是ok的仓库作者本人就经常这么玩<br>
也有人拿1min至2min的数据来训练并且训练成功的但是成功经验是其他人不可复现的不太具备参考价值。这要求训练集音色特色非常明显比如说高频气声较明显的萝莉少女音且音质高<br>
1min以下时长数据目前没见有人尝试成功过。不建议进行这种鬼畜行为。<br>
## Q11:index rate干嘛用的怎么调科普
  如果底模和推理源的音质高于训练集的音质,他们可以带高推理结果的音质,但代价可能是音色往底模/推理源的音色靠,这种现象叫做"音色泄露"<br>
index rate用来削减/解决音色泄露问题。调到1则理论上不存在推理源的音色泄露问题但音质更倾向于训练集。如果训练集音质比推理源低则index rate调高可能降低音质。调到0则不具备利用检索混合来保护训练集音色的效果<br>
如果训练集优质时长多可调高total_epoch此时模型本身不太会引用推理源和底模的音色很少存在"音色泄露"问题此时index_rate不重要你甚至可以不建立/分享index索引文件。<br>
## Q11:推理怎么选gpu
config.py文件里device cuda:后面选择卡号;<br>
卡号和显卡的映射关系,在训练选项卡的显卡信息栏里能看到。<br>
## Q12:如何推理训练中间保存的pth
通过ckpt选项卡最下面提取小模型。<br>
## Q13:如何中断和继续训练
现阶段只能关闭WebUI控制台双击go-web.bat重启程序。网页参数也要刷新重新填写<br>
继续训练相同网页参数点训练模型就会接着上次的checkpoint继续训练。<br>
## Q14:训练时出现文件页面/内存error
进程开太多了,内存炸了。你可能可以通过如下方式解决<br>
1、"提取音高和处理数据使用的CPU进程数" 酌情拉低;<br>
2、训练集音频手工切一下不要太长。<br>
## Q15:如何中途加数据训练
1、所有数据新建一个实验名<br>
2、拷贝上一次的最新的那个G和D文件或者你想基于哪个中间ckpt训练也可以拷贝中间的到新实验名<br>
3、一键训练新实验名他会继续上一次的最新进度训练。<br>
## Q16: error about llvmlite.dll
OSError: Could not load shared object file: llvmlite.dll
FileNotFoundError: Could not find module lib\site-packages\llvmlite\binding\llvmlite.dll (or one of its dependencies). Try using the full path with constructor syntax.
win平台会报这个错装上https://aka.ms/vs/17/release/vc_redist.x64.exe这个再重启WebUI就好了。
## Q17: RuntimeError: The expanded size of the tensor (17280) must match the existing size (0) at non-singleton dimension 1. Target sizes: [1, 17280]. Tensor sizes: [0]
wavs16k文件夹下找到文件大小显著比其他都小的一些音频文件删掉点击训练模型就不会报错了不过由于一键流程中断了你训练完模型还要点训练索引。
## Q18: RuntimeError: The size of tensor a (24) must match the size of tensor b (16) at non-singleton dimension 2
不要中途变更采样率继续训练。如果一定要变更应更换实验名从头训练。当然你也可以把上次提取的音高和特征0/1/2/2b folders拷贝过去加速训练流程。

105
docs/en/Changelog_EN.md Normal file
View File

@ -0,0 +1,105 @@
### 2023-10-06
- We have created a GUI for real-time voice change: go-realtime-gui.bat/gui_v1.py (Note that you should choose the same type of input and output device, e.g. MME and MME).
- We trained a better pitch extract RMVPE model.
- Optimize inference GUI layout.
### 2023-08-13
1-Regular bug fix
- Change the minimum total epoch number to 1, and change the minimum total epoch number to 2
- Fix training errors of not using pre-train models
- After accompaniment vocals separation, clear graphics memory
- Change faiss save path absolute path to relative path
- Support path containing spaces (both training set path and experiment name are supported, and errors will no longer be reported)
- Filelist cancels mandatory utf8 encoding
- Solve the CPU consumption problem caused by faiss searching during real-time voice changes
2-Key updates
- Train the current strongest open-source vocal pitch extraction model RMVPE, and use it for RVC training, offline/real-time inference, supporting PyTorch/Onnx/DirectML
- Support for AMD and Intel graphics cards through Pytorch_DML
(1) Real time voice change (2) Inference (3) Separation of vocal accompaniment (4) Training not currently supported, will switch to CPU training; supports RMVPE inference of gpu by Onnx_Dml
### 2023-06-18
- New pretrained v2 models: 32k and 48k
- Fix non-f0 model inference errors
- For training-set exceeding 1 hour, do automatic minibatch-kmeans to reduce feature shape, so that index training, adding, and searching will be much faster.
- Provide a toy vocal2guitar huggingface space
- Auto delete outlier short cut training-set audios
- Onnx export tab
Failed experiments:
- ~~Feature retrieval: add temporal feature retrieval: not effective~~
- ~~Feature retrieval: add PCAR dimensionality reduction: searching is even slower~~
- ~~Random data augmentation when training: not effective~~
todolist
- ~~Vocos-RVC (tiny vocoder): not effective~~
- ~~Crepe support for trainingreplaced by RMVPE~~
- ~~Half precision crepe inferencereplaced by RMVPE. And hard to achive.~~
- F0 editor support
### 2023-05-28
- Add v2 jupyter notebook, korean changelog, fix some environment requirments
- Add voiceless consonant and breath protection mode
- Support crepe-full pitch detect
- UVR5 vocal separation: support dereverb models and de-echo models
- Add experiment name and version on the name of index
- Support users to manually select export format of output audios when batch voice conversion processing and UVR5 vocal separation
- v1 32k model training is no more supported
### 2023-05-13
- Clear the redundant codes in the old version of runtime in the one-click-package: lib.infer_pack and uvr5_pack
- Fix pseudo multiprocessing bug in training set preprocessing
- Adding median filtering radius adjustment for harvest pitch recognize algorithm
- Support post processing resampling for exporting audio
- Multi processing "n_cpu" setting for training is changed from "f0 extraction" to "data preprocessing and f0 extraction"
- Automatically detect the index paths under the logs folder and provide a drop-down list function
- Add "Frequently Asked Questions and Answers" on the tab page (you can also refer to github RVC wiki)
- When inference, harvest pitch is cached when using same input audio path (purpose: using harvest pitch extraction, the entire pipeline will go through a long and repetitive pitch extraction process. If caching is not used, users who experiment with different timbre, index, and pitch median filtering radius settings will experience a very painful waiting process after the first inference)
### 2023-05-14
- Use volume envelope of input to mix or replace the volume envelope of output (can alleviate the problem of "input muting and output small amplitude noise". If the input audio background noise is high, it is not recommended to turn it on, and it is not turned on by default (1 can be considered as not turned on)
- Support saving extracted small models at a specified frequency (if you want to see the performance under different epochs, but do not want to save all large checkpoints and manually extract small models by ckpt-processing every time, this feature will be very practical)
- Resolve the issue of "connection errors" caused by the server's global proxy by setting environment variables
- Supports pre-trained v2 models (currently only 40k versions are publicly available for testing, and the other two sampling rates have not been fully trained yet)
- Limit excessive volume exceeding 1 before inference
- Slightly adjusted the settings of training-set preprocessing
#######################
History changelogs:
### 2023-04-09
- Fixed training parameters to improve GPU utilization rate: A100 increased from 25% to around 90%, V100: 50% to around 90%, 2060S: 60% to around 85%, P40: 25% to around 95%; significantly improved training speed
- Changed parameter: total batch_size is now per GPU batch_size
- Changed total_epoch: maximum limit increased from 100 to 1000; default increased from 10 to 20
- Fixed issue of ckpt extraction recognizing pitch incorrectly, causing abnormal inference
- Fixed issue of distributed training saving ckpt for each rank
- Applied nan feature filtering for feature extraction
- Fixed issue with silent input/output producing random consonants or noise (old models need to retrain with a new dataset)
### 2023-04-16 Update
- Added local real-time voice changing mini-GUI, start by double-clicking go-realtime-gui.bat
- Applied filtering for frequency bands below 50Hz during training and inference
- Lowered the minimum pitch extraction of pyworld from the default 80 to 50 for training and inference, allowing male low-pitched voices between 50-80Hz not to be muted
- WebUI supports changing languages according to system locale (currently supporting en_US, ja_JP, zh_CN, zh_HK, zh_SG, zh_TW; defaults to en_US if not supported)
- Fixed recognition of some GPUs (e.g., V100-16G recognition failure, P4 recognition failure)
### 2023-04-28 Update
- Upgraded faiss index settings for faster speed and higher quality
- Removed dependency on total_npy; future model sharing will not require total_npy input
- Unlocked restrictions for the 16-series GPUs, providing 4GB inference settings for 4GB VRAM GPUs
- Fixed bug in UVR5 vocal accompaniment separation for certain audio formats
- Real-time voice changing mini-GUI now supports non-40k and non-lazy pitch models
### Future Plans:
Features:
- Add option: extract small models for each epoch save
- Add option: export additional mp3 to the specified path during inference
- Support multi-person training tab (up to 4 people)
Base model:
- Collect breathing wav files to add to the training dataset to fix the issue of distorted breath sounds
- We are currently training a base model with an extended singing dataset, which will be released in the future

215
docs/en/README.en.md Normal file
View File

@ -0,0 +1,215 @@
<div align="center">
<h1>Retrieval-based-Voice-Conversion-WebUI</h1>
An easy-to-use Voice Conversion framework based on VITS.<br><br>
[![madewithlove](https://img.shields.io/badge/made_with-%E2%9D%A4-red?style=for-the-badge&labelColor=orange
)](https://github.com/RVC-Project/Retrieval-based-Voice-Conversion-WebUI)
<img src="https://counter.seku.su/cmoe?name=rvc&theme=r34" /><br>
[![Open In Colab](https://img.shields.io/badge/Colab-F9AB00?style=for-the-badge&logo=googlecolab&color=525252)](https://colab.research.google.com/github/RVC-Project/Retrieval-based-Voice-Conversion-WebUI/blob/main/Retrieval_based_Voice_Conversion_WebUI.ipynb)
[![Licence](https://img.shields.io/github/license/RVC-Project/Retrieval-based-Voice-Conversion-WebUI?style=for-the-badge)](https://github.com/RVC-Project/Retrieval-based-Voice-Conversion-WebUI/blob/main/LICENSE)
[![Huggingface](https://img.shields.io/badge/🤗%20-Spaces-yellow.svg?style=for-the-badge)](https://huggingface.co/lj1995/VoiceConversionWebUI/tree/main/)
[![Discord](https://img.shields.io/badge/RVC%20Developers-Discord-7289DA?style=for-the-badge&logo=discord&logoColor=white)](https://discord.gg/HcsmBBGyVk)
[**Changelog**](https://github.com/RVC-Project/Retrieval-based-Voice-Conversion-WebUI/blob/main/docs/Changelog_EN.md) | [**FAQ (Frequently Asked Questions)**](https://github.com/RVC-Project/Retrieval-based-Voice-Conversion-WebUI/wiki/FAQ-(Frequently-Asked-Questions))
[**English**](../en/README.en.md) | [**中文简体**](../../README.md) | [**日本語**](../jp/README.ja.md) | [**한국어**](../kr/README.ko.md) ([**韓國語**](../kr/README.ko.han.md)) | [**Français**](../fr/README.fr.md) | [**Türkçe**](../tr/README.tr.md) | [**Português**](../pt/README.pt.md)
</div>
> Check out our [Demo Video](https://www.bilibili.com/video/BV1pm4y1z7Gm/) here!
<table>
<tr>
<td align="center">Training and inference Webui</td>
<td align="center">Real-time voice changing GUI</td>
</tr>
<tr>
<td align="center"><img src="https://github.com/RVC-Project/Retrieval-based-Voice-Conversion-WebUI/assets/129054828/092e5c12-0d49-4168-a590-0b0ef6a4f630"></td>
<td align="center"><img src="https://github.com/RVC-Project/Retrieval-based-Voice-Conversion-WebUI/assets/129054828/730b4114-8805-44a1-ab1a-04668f3c30a6"></td>
</tr>
<tr>
<td align="center">go-web.bat</td>
<td align="center">go-realtime-gui.bat</td>
</tr>
<tr>
<td align="center">You can freely choose the action you want to perform.</td>
<td align="center">We have achieved an end-to-end latency of 170ms. With the use of ASIO input and output devices, we have managed to achieve an end-to-end latency of 90ms, but it is highly dependent on hardware driver support.</td>
</tr>
</table>
> The dataset for the pre-training model uses nearly 50 hours of high quality audio from the VCTK open source dataset.
> High quality licensed song datasets will be added to the training-set often for your use, without having to worry about copyright infringement.
> Please look forward to the pretrained base model of RVCv3, which has larger parameters, more training data, better results, unchanged inference speed, and requires less training data for training.
## Features:
+ Reduce tone leakage by replacing the source feature to training-set feature using top1 retrieval;
+ Easy + fast training, even on poor graphics cards;
+ Training with a small amounts of data (>=10min low noise speech recommended);
+ Model fusion to change timbres (using ckpt processing tab->ckpt merge);
+ Easy-to-use WebUI;
+ UVR5 model to quickly separate vocals and instruments;
+ High-pitch Voice Extraction Algorithm [InterSpeech2023-RMVPE](#Credits) to prevent a muted sound problem. Provides the best results (significantly) and is faster with lower resource consumption than Crepe_full;
+ AMD/Intel graphics cards acceleration supported;
+ Intel ARC graphics cards acceleration with IPEX supported.
## Preparing the environment
The following commands need to be executed with Python 3.8 or higher.
(Windows/Linux)
First install the main dependencies through pip:
```bash
# Install PyTorch-related core dependencies, skip if installed
# Reference: https://pytorch.org/get-started/locally/
pip install torch torchvision torchaudio
#For Windows + Nvidia Ampere Architecture(RTX30xx), you need to specify the cuda version corresponding to pytorch according to the experience of https://github.com/RVC-Project/Retrieval-based-Voice-Conversion-WebUI/issues/21
#pip install torch torchvision torchaudio --index-url https://download.pytorch.org/whl/cu117
#For Linux + AMD Cards, you need to use the following pytorch versions:
#pip install torch torchvision torchaudio --index-url https://download.pytorch.org/whl/rocm5.4.2
```
Then can use poetry to install the other dependencies:
```bash
# Install the Poetry dependency management tool, skip if installed
# Reference: https://python-poetry.org/docs/#installation
curl -sSL https://install.python-poetry.org | python3 -
# Install the project dependencies
poetry install
```
You can also use pip to install them:
```bash
for Nvidia graphics cards
pip install -r requirements.txt
for AMD/Intel graphics cards on Windows (DirectML)
pip install -r requirements-dml.txt
for Intel ARC graphics cards on Linux / WSL using Python 3.10:
pip install -r requirements-ipex.txt
for AMD graphics cards on Linux (ROCm):
pip install -r requirements-amd.txt
```
------
Mac users can install dependencies via `run.sh`:
```bash
sh ./run.sh
```
## Preparation of other Pre-models
RVC requires other pre-models to infer and train.
```bash
#Download all needed models from https://huggingface.co/lj1995/VoiceConversionWebUI/tree/main/
python tools/download_models.py
```
Or just download them by yourself from our [Huggingface space](https://huggingface.co/lj1995/VoiceConversionWebUI/tree/main/).
Here's a list of Pre-models and other files that RVC needs:
```bash
./assets/hubert/hubert_base.pt
./assets/pretrained
./assets/uvr5_weights
Additional downloads are required if you want to test the v2 version of the model.
./assets/pretrained_v2
If you want to test the v2 version model (the v2 version model has changed the input from the 256 dimensional feature of 9-layer Hubert+final_proj to the 768 dimensional feature of 12-layer Hubert, and has added 3 period discriminators), you will need to download additional features
./assets/pretrained_v2
If you want to use the latest SOTA RMVPE vocal pitch extraction algorithm, you need to download the RMVPE weights and place them in the RVC root directory
https://huggingface.co/lj1995/VoiceConversionWebUI/blob/main/rmvpe.pt
For AMD/Intel graphics cards users you need download:
https://huggingface.co/lj1995/VoiceConversionWebUI/blob/main/rmvpe.onnx
```
### 2. Install FFmpeg
If you have FFmpeg and FFprobe installed on your computer, you can skip this step.
#### For Ubuntu/Debian users
```bash
sudo apt install ffmpeg
```
#### For MacOS users
```bash
brew install ffmpeg
```
#### For Windows users
Download these files and place them in the root folder:
- [ffmpeg.exe](https://huggingface.co/lj1995/VoiceConversionWebUI/blob/main/ffmpeg.exe)
- [ffprobe.exe](https://huggingface.co/lj1995/VoiceConversionWebUI/blob/main/ffprobe.exe)
## ROCm Support for AMD graphic cards (Linux only)
To use ROCm on Linux install all required drivers as described [here](https://rocm.docs.amd.com/en/latest/deploy/linux/os-native/install.html).
On Arch use pacman to install the driver:
````
pacman -S rocm-hip-sdk rocm-opencl-sdk
````
You might also need to set these environment variables (e.g. on a RX6700XT):
````
export ROCM_PATH=/opt/rocm
export HSA_OVERRIDE_GFX_VERSION=10.3.0
````
Make sure your user is part of the `render` and `video` group:
````
sudo usermod -aG render $USERNAME
sudo usermod -aG video $USERNAME
````
## Get started
### start up directly
Use the following command to start WebUI:
```bash
python infer-web.py
```
### Use the integration package
Download and extract file `RVC-beta.7z`, then follow the steps below according to your system:
#### For Windows users
Double click `go-web.bat`
#### For MacOS users
```bash
sh ./run.sh
```
### For Intel IPEX users (Linux Only)
```bash
source /opt/intel/oneapi/setvars.sh
```
## Credits
+ [ContentVec](https://github.com/auspicious3000/contentvec/)
+ [VITS](https://github.com/jaywalnut310/vits)
+ [HIFIGAN](https://github.com/jik876/hifi-gan)
+ [Gradio](https://github.com/gradio-app/gradio)
+ [FFmpeg](https://github.com/FFmpeg/FFmpeg)
+ [Ultimate Vocal Remover](https://github.com/Anjok07/ultimatevocalremovergui)
+ [audio-slicer](https://github.com/openvpi/audio-slicer)
+ [Vocal pitch extraction:RMVPE](https://github.com/Dream-High/RMVPE)
+ The pretrained model is trained and tested by [yxlllc](https://github.com/yxlllc/RMVPE) and [RVC-Boss](https://github.com/RVC-Boss).
## Thanks to all contributors for their efforts
<a href="https://github.com/RVC-Project/Retrieval-based-Voice-Conversion-WebUI/graphs/contributors" target="_blank">
<img src="https://contrib.rocks/image?repo=RVC-Project/Retrieval-based-Voice-Conversion-WebUI" />
</a>

View File

@ -12,10 +12,7 @@ In '/logs/your-experiment/3_feature256' where the model is located, features ext
From here we read the npy files in order sorted by filename and concatenate the vectors to create big_npy. (This vector has shape [N, 256].)
After saving big_npy as /logs/your-experiment/total_fea.npy, train it with faiss.
As of 2023/04/18, IVF based on L2 distance is used using the index factory function of faiss.
The number of IVF divisions (n_ivf) is N//39, and n_probe uses int(np.power(n_ivf, 0.3)). (Look around train_index in infer-web.py.)
In this article, I will first explain the meaning of these parameters, and then write advice for developers to create a better index.
In this article, I will explain the meaning of these parameters.
# Explanation of the method
## index factory
@ -103,44 +100,3 @@ https://github.com/facebookresearch/faiss/wiki/Fast-accumulation-of-PQ-and-AQ-co
## RFlat
RFlat is an instruction to recalculate the rough distance calculated by FastScan with the exact distance specified by the third argument of index factory.
When getting k neighbors, k*k_factor points are recalculated.
# Techniques for embedding
## alpha query expansion
Query expansion is a technique used in searches, for example in full-text searches, where a few words are added to the entered search sentence to improve search accuracy. Several methods have also been proposed for vector search, among which α-query expansion is known as a highly effective method that does not require additional learning. In the paper, it is introduced in [Attention-Based Query Expansion Learning](https://arxiv.org/abs/2007.08019), etc., and [2nd place solution of kaggle shopee competition](https://www.kaggle.com/code/lyakaap/2nd-place-solution/notebook).
α-query expansion can be done by summing a vector with neighboring vectors with weights raised to the power of similarity. How to paste the code example. Replace big_npy with α query expansion.
```python
alpha = 3.
index = faiss.index_factory(256, "IVF512,PQ128x4fs,RFlat")
original_norm = np.maximum(np.linalg.norm(big_npy, ord=2, axis=1, keepdims=True), 1e-9)
big_npy /= original_norm
index.train(big_npy)
index.add(big_npy)
dist, neighbor = index.search(big_npy, num_expand)
expand_arrays = []
ixs = np.arange(big_npy.shape[0])
for i in range(-(-big_npy.shape[0]//batch_size)):
ix = ixs[i*batch_size:(i+1)*batch_size]
weight = np.power(np.einsum("nd,nmd->nm", big_npy[ix], big_npy[neighbor[ix]]), alpha)
expand_arrays.append(np.sum(big_npy[neighbor[ix]] * np.expand_dims(weight, axis=2),axis=1))
big_npy = np.concatenate(expand_arrays, axis=0)
# normalize index version
big_npy = big_npy / np.maximum(np.linalg.norm(big_npy, ord=2, axis=1, keepdims=True), 1e-9)
```
This is a technique that can be applied both to the query that does the search and to the DB being searched.
## Compress embedding with MiniBatch KMeans
If total_fea.npy is too large, it is possible to shrink the vector using KMeans.
Compression of embedding is possible with the following code. Specify the size you want to compress for n_clusters, and specify 256 * number of CPU cores for batch_size to fully benefit from CPU parallelization.
```python
import multiprocessing
from sklearn.cluster import MiniBatchKMeans
kmeans = MiniBatchKMeans(n_clusters=10000, batch_size=256 * multiprocessing.cpu_count(), init="random")
kmeans.fit(big_npy)
sample_npy = kmeans.cluster_centers_
```

119
docs/en/faq_en.md Normal file
View File

@ -0,0 +1,119 @@
## Q1:ffmpeg error/utf8 error.
It is most likely not a FFmpeg issue, but rather an audio path issue;
FFmpeg may encounter an error when reading paths containing special characters like spaces and (), which may cause an FFmpeg error; and when the training set's audio contains Chinese paths, writing it into filelist.txt may cause a utf8 error.<br>
## Q2:Cannot find index file after "One-click Training".
If it displays "Training is done. The program is closed," then the model has been trained successfully, and the subsequent errors are fake;
The lack of an 'added' index file after One-click training may be due to the training set being too large, causing the addition of the index to get stuck; this has been resolved by using batch processing to add the index, which solves the problem of memory overload when adding the index. As a temporary solution, try clicking the "Train Index" button again.<br>
## Q3:Cannot find the model in “Inferencing timbre” after training
Click “Refresh timbre list” and check again; if still not visible, check if there are any errors during training and send screenshots of the console, web UI, and logs/experiment_name/*.log to the developers for further analysis.<br>
## Q4:How to share a model/How to use others' models?
The pth files stored in rvc_root/logs/experiment_name are not meant for sharing or inference, but for storing the experiment checkpoits for reproducibility and further training. The model to be shared should be the 60+MB pth file in the weights folder;
In the future, weights/exp_name.pth and logs/exp_name/added_xxx.index will be merged into a single weights/exp_name.zip file to eliminate the need for manual index input; so share the zip file, not the pth file, unless you want to continue training on a different machine;
Copying/sharing the several hundred MB pth files from the logs folder to the weights folder for forced inference may result in errors such as missing f0, tgt_sr, or other keys. You need to use the ckpt tab at the bottom to manually or automatically (if the information is found in the logs/exp_name), select whether to include pitch infomation and target audio sampling rate options and then extract the smaller model. After extraction, there will be a 60+ MB pth file in the weights folder, and you can refresh the voices to use it.<br>
## Q5:Connection Error.
You may have closed the console (black command line window).<br>
## Q6:WebUI popup 'Expecting value: line 1 column 1 (char 0)'.
Please disable system LAN proxy/global proxy and then refresh.<br>
## Q7:How to train and infer without the WebUI?
Training script:<br>
You can run training in WebUI first, and the command-line versions of dataset preprocessing and training will be displayed in the message window.<br>
Inference script:<br>
https://huggingface.co/lj1995/VoiceConversionWebUI/blob/main/myinfer.py<br>
e.g.<br>
runtime\python.exe myinfer.py 0 "E:\codes\py39\RVC-beta\todo-songs\1111.wav" "E:\codes\py39\logs\mi-test\added_IVF677_Flat_nprobe_7.index" harvest "test.wav" "weights/mi-test.pth" 0.6 cuda:0 True<br>
f0up_key=sys.argv[1]<br>
input_path=sys.argv[2]<br>
index_path=sys.argv[3]<br>
f0method=sys.argv[4]#harvest or pm<br>
opt_path=sys.argv[5]<br>
model_path=sys.argv[6]<br>
index_rate=float(sys.argv[7])<br>
device=sys.argv[8]<br>
is_half=bool(sys.argv[9])<br>
## Q8:Cuda error/Cuda out of memory.
There is a small chance that there is a problem with the CUDA configuration or the device is not supported; more likely, there is not enough memory (out of memory).<br>
For training, reduce the batch size (if reducing to 1 is still not enough, you may need to change the graphics card); for inference, adjust the x_pad, x_query, x_center, and x_max settings in the config.py file as needed. 4G or lower memory cards (e.g. 1060(3G) and various 2G cards) can be abandoned, while 4G memory cards still have a chance.<br>
## Q9:How many total_epoch are optimal?
If the training dataset's audio quality is poor and the noise floor is high, 20-30 epochs are sufficient. Setting it too high won't improve the audio quality of your low-quality training set.<br>
If the training set audio quality is high, the noise floor is low, and there is sufficient duration, you can increase it. 200 is acceptable (since training is fast, and if you're able to prepare a high-quality training set, your GPU likely can handle a longer training duration without issue).<br>
## Q10:How much training set duration is needed?
A dataset of around 10min to 50min is recommended.<br>
With guaranteed high sound quality and low bottom noise, more can be added if the dataset's timbre is uniform.<br>
For a high-level training set (lean + distinctive tone), 5min to 10min is fine.<br>
There are some people who have trained successfully with 1min to 2min data, but the success is not reproducible by others and is not very informative. <br>This requires that the training set has a very distinctive timbre (e.g. a high-frequency airy anime girl sound) and the quality of the audio is high;
Data of less than 1min duration has not been successfully attempted so far. This is not recommended.<br>
## Q11:What is the index rate for and how to adjust it?
If the tone quality of the pre-trained model and inference source is higher than that of the training set, they can bring up the tone quality of the inference result, but at the cost of a possible tone bias towards the tone of the underlying model/inference source rather than the tone of the training set, which is generally referred to as "tone leakage".<br>
The index rate is used to reduce/resolve the timbre leakage problem. If the index rate is set to 1, theoretically there is no timbre leakage from the inference source and the timbre quality is more biased towards the training set. If the training set has a lower sound quality than the inference source, then a higher index rate may reduce the sound quality. Turning it down to 0 does not have the effect of using retrieval blending to protect the training set tones.<br>
If the training set has good audio quality and long duration, turn up the total_epoch, when the model itself is less likely to refer to the inferred source and the pretrained underlying model, and there is little "tone leakage", the index_rate is not important and you can even not create/share the index file.<br>
## Q12:How to choose the gpu when inferring?
In the config.py file, select the card number after "device cuda:".<br>
The mapping between card number and graphics card can be seen in the graphics card information section of the training tab.<br>
## Q13:How to use the model saved in the middle of training?
Save via model extraction at the bottom of the ckpt processing tab.
## Q14:File/memory error(when training)?
Too many processes and your memory is not enough. You may fix it by:
1、decrease the input in field "Threads of CPU".
2、pre-cut trainset to shorter audio files.
## Q15: How to continue training using more data
step1: put all wav data to path2.
step2: exp_name2+path2 -> process dataset and extract feature.
step3: copy the latest G and D file of exp_name1 (your previous experiment) into exp_name2 folder.
step4: click "train the model", and it will continue training from the beginning of your previous exp model epoch.
## Q16: error about llvmlite.dll
OSError: Could not load shared object file: llvmlite.dll
FileNotFoundError: Could not find module lib\site-packages\llvmlite\binding\llvmlite.dll (or one of its dependencies). Try using the full path with constructor syntax.
The issue will happen in windows, install https://aka.ms/vs/17/release/vc_redist.x64.exe and it will be fixed.
## Q17: RuntimeError: The expanded size of the tensor (17280) must match the existing size (0) at non-singleton dimension 1. Target sizes: [1, 17280]. Tensor sizes: [0]
Delete the wav files whose size is significantly smaller than others, and that won't happen again. Than click "train the model"and "train the index".
## Q18: RuntimeError: The size of tensor a (24) must match the size of tensor b (16) at non-singleton dimension 2
Do not change the sampling rate and then continue training. If it is necessary to change, the exp name should be changed and the model will be trained from scratch. You can also copy the pitch and features (0/1/2/2b folders) extracted last time to accelerate the training process.

View File

@ -6,8 +6,12 @@ This TIPS explains how data training is done.
I will explain along the steps in the training tab of the GUI.
## step1
Set the experiment name here. You can also set here whether the model should take pitch into account.
Data for each experiment is placed in `/logs/experiment name/`.
Set the experiment name here.
You can also set here whether the model should take pitch into account.
If the model doesn't consider pitch, the model will be lighter, but not suitable for singing.
Data for each experiment is placed in `/logs/your-experiment-name/`.
## step2a
Loads and preprocesses audio.
@ -23,14 +27,14 @@ After converting to int16 with ffmpeg, convert to float32 and normalize between
The audio is smoothed by scipy's filtfilt.
### Audio Split
First, the input audio is divided by detecting parts of silence that last longer than a certain period (max_sil_kept=5 seconds?). After splitting the audio on silence, split the audio every 4 seconds with an overlap of 0.3 seconds. For audio separated within 4 seconds, after normalizing the volume, convert the wav file to `/logs/experiment name/0_gt_wavs` and then convert it to 16k sampling rate to `/logs/experiment name/1_16k_wavs ` as a wav file.
First, the input audio is divided by detecting parts of silence that last longer than a certain period (max_sil_kept=5 seconds?). After splitting the audio on silence, split the audio every 4 seconds with an overlap of 0.3 seconds. For audio separated within 4 seconds, after normalizing the volume, convert the wav file to `/logs/your-experiment-name/0_gt_wavs` and then convert it to 16k sampling rate to `/logs/your-experiment-name/1_16k_wavs ` as a wav file.
## step2b
### Extract pitch
Extract pitch information from wav files. Extract the pitch information (=f0) using the method built into parselmouth or pyworld and save it in `/logs/experiment name/2a_f0`. Then logarithmically convert the pitch information to an integer between 1 and 255 and save it in `/logs/experiment name/2b-f0nsf`.
Extract pitch information from wav files. Extract the pitch information (=f0) using the method built into parselmouth or pyworld and save it in `/logs/your-experiment-name/2a_f0`. Then logarithmically convert the pitch information to an integer between 1 and 255 and save it in `/logs/your-experiment-name/2b-f0nsf`.
### Extract feature_print
Convert the wav file to embedding in advance using HuBERT. Read the wav file saved in `/logs/experiment name/1_16k_wavs`, convert the wav file to 256-dimensional features with HuBERT, and save in npy format in `/logs/experiment name/3_feature256`.
Convert the wav file to embedding in advance using HuBERT. Read the wav file saved in `/logs/your-experiment-name/1_16k_wavs`, convert the wav file to 256-dimensional features with HuBERT, and save in npy format in `/logs/your-experiment-name/3_feature256`.
## step3
train the model.
@ -40,11 +44,20 @@ In deep learning, the data set is divided and the learning proceeds little by li
Therefore, the learning time is the learning time per step x (the number of data in the dataset / batch size) x the number of epochs. In general, the larger the batch size, the more stable the learning becomes (learning time per step ÷ batch size) becomes smaller, but it uses more GPU memory. GPU RAM can be checked with the nvidia-smi command. Learning can be done in a short time by increasing the batch size as much as possible according to the machine of the execution environment.
### Specify pretrained model
RVC starts training the model from pretrained weights instead of from 0, so it can be trained with a small dataset. By default it loads `rvc-location/pretrained/f0G40k.pth` and `rvc-location/pretrained/f0D40k.pth`. When learning, model parameters are saved in `logs/experiment name/G_{}.pth` and `logs/experiment name/D_{}.pth` for each save_every_epoch, but by specifying this path, you can start learning. You can restart or start training from model weights learned in a different experiment.
RVC starts training the model from pretrained weights instead of from 0, so it can be trained with a small dataset.
By default
- If you consider pitch, it loads `rvc-location/pretrained/f0G40k.pth` and `rvc-location/pretrained/f0D40k.pth`.
- If you don't consider pitch, it loads `rvc-location/pretrained/f0G40k.pth` and `rvc-location/pretrained/f0D40k.pth`.
When learning, model parameters are saved in `logs/your-experiment-name/G_{}.pth` and `logs/your-experiment-name/D_{}.pth` for each save_every_epoch, but by specifying this path, you can start learning. You can restart or start training from model weights learned in a different experiment.
### learning index
RVC saves the HuBERT feature values used during training, and during inference, searches for feature values that are similar to the feature values used during learning to perform inference. In order to perform this search at high speed, the index is learned in advance.
For index learning, we use the approximate neighborhood search library faiss. Read the feature value of `/logs/experiment name/3_feature256`, save the combined feature value as `/logs/experiment name/total_fea.npy`, and use it to learn the index `/logs/experiment name Save it as /add_XXX.index`.
For index learning, we use the approximate neighborhood search library faiss. Read the feature value of `logs/your-experiment-name/3_feature256` and use it to learn the index, and save it as `logs/your-experiment-name/add_XXX.index`.
(From the 20230428update version, it is read from the index, and saving / specifying is no longer necessary.)
### Button description
- Train model: After executing step2b, press this button to train the model.

102
docs/fr/Changelog_FR.md Normal file
View File

@ -0,0 +1,102 @@
### 2023-08-13
1-Corrections régulières de bugs
- Modification du nombre total d'époques minimum à 1 et changement du nombre total d'époques minimum à 2
- Correction des erreurs d'entraînement sans utiliser de modèles pré-entraînés
- Après la séparation des voix d'accompagnement, libération de la mémoire graphique
- Changement du chemin absolu d'enregistrement de faiss en chemin relatif
- Prise en charge des chemins contenant des espaces (le chemin du jeu de données d'entraînement et le nom de l'expérience sont pris en charge, et aucune erreur ne sera signalée)
- La liste de fichiers annule l'encodage utf8 obligatoire
- Résolution du problème de consommation de CPU causé par la recherche faiss lors des changements de voix en temps réel
2-Mises à jour clés
- Entraînement du modèle d'extraction de hauteur vocale open-source le plus puissant actuel, RMVPE, et utilisation pour l'entraînement, l'inférence hors ligne/en temps réel de RVC, supportant PyTorch/Onnx/DirectML
- Prise en charge des cartes graphiques AMD et Intel via Pytorch_DML
(1) Changement de voix en temps réel (2) Inférence (3) Séparation de l'accompagnement vocal (4) L'entraînement n'est pas actuellement pris en charge, passera à l'entraînement CPU; prend en charge l'inférence RMVPE de la GPU par Onnx_Dml
### 2023-06-18
- Nouveaux modèles pré-entraînés v2 : 32k et 48k
- Correction des erreurs d'inférence du modèle non-f0
- Pour un jeu de données d'entraînement dépassant 1 heure, réalisation automatique de minibatch-kmeans pour réduire la forme des caractéristiques, afin que l'entraînement, l'ajout et la recherche d'index soient beaucoup plus rapides.
- Fourniture d'un espace huggingface vocal2guitar jouet
- Suppression automatique des audios de jeu de données d'entraînement court-circuitant les valeurs aberrantes
- Onglet d'exportation Onnx
Expériences échouées:
- ~~Récupération de caractéristiques : ajout de la récupération de caractéristiques temporelles : non efficace~~
- ~~Récupération de caractéristiques : ajout de la réduction de dimensionnalité PCAR : la recherche est encore plus lente~~
- ~~Augmentation aléatoire des données lors de l'entraînement : non efficace~~
Liste de tâches:
- ~~Vocos-RVC (vocodeur minuscule) : non efficace~~
- ~~Support de Crepe pour l'entraînement : remplacé par RMVPE~~
- ~~Inférence de précision à moitié crepe : remplacée par RMVPE. Et difficile à réaliser.~~
- Support de l'éditeur F0
### 2023-05-28
- Ajout d'un cahier v2, changelog coréen, correction de certaines exigences environnementales
- Ajout d'un mode de protection des consonnes muettes et de la respiration
- Support de la détection de hauteur crepe-full
- Séparation vocale UVR5 : support des modèles de déréverbération et de désécho
- Ajout du nom de l'expérience et de la version sur le nom de l'index
- Support pour les utilisateurs de sélectionner manuellement le format d'exportation des audios de sortie lors du traitement de conversion vocale en lots et de la séparation vocale UVR5
- L'entraînement du modèle v1 32k n'est plus pris en charge
### 2023-05-13
- Nettoyage des codes redondants de l'ancienne version du runtime dans le package en un clic : lib.infer_pack et uvr5_pack
- Correction du bug de multiprocessus pseudo dans la préparation du jeu de données d'entraînement
- Ajout de l'ajustement du rayon de filtrage médian pour l'algorithme de reconnaissance de hauteur de récolte
- Prise en charge du rééchantillonnage post-traitement pour l'exportation audio
- Réglage de multi-traitement "n_cpu" pour l'entraînement est passé de "extraction f0" à "prétraitement des données et extraction f0"
- Détection automatique des chemins d'index sous le dossier de logs et fourniture d'une fonction de liste déroulante
- Ajout de "Questions fréquemment posées et réponses" sur la page d'onglet (vous pouvez également consulter le wiki github RVC)
- Lors de l'inférence, la hauteur de la récolte est mise en cache lors de l'utilisation du même chemin d'accès audio d'entrée (objectif : en utilisant l'extraction de
la hauteur de la récolte, l'ensemble du pipeline passera par un long processus d'extraction de la hauteur répétitif. Si la mise en cache n'est pas utilisée, les utilisateurs qui expérimentent différents timbres, index, et réglages de rayon de filtrage médian de hauteur connaîtront un processus d'attente très douloureux après la première inférence)
### 2023-05-14
- Utilisation de l'enveloppe de volume de l'entrée pour mixer ou remplacer l'enveloppe de volume de la sortie (peut atténuer le problème du "muet en entrée et bruit de faible amplitude en sortie". Si le bruit de fond de l'audio d'entrée est élevé, il n'est pas recommandé de l'activer, et il n'est pas activé par défaut (1 peut être considéré comme n'étant pas activé)
- Prise en charge de la sauvegarde des modèles extraits à une fréquence spécifiée (si vous voulez voir les performances sous différentes époques, mais que vous ne voulez pas sauvegarder tous les grands points de contrôle et extraire manuellement les petits modèles par ckpt-processing à chaque fois, cette fonctionnalité sera très pratique)
- Résolution du problème des "erreurs de connexion" causées par le proxy global du serveur en définissant des variables d'environnement
- Prise en charge des modèles pré-entraînés v2 (actuellement, seule la version 40k est disponible au public pour les tests, et les deux autres taux d'échantillonnage n'ont pas encore été entièrement entraînés)
- Limite le volume excessif dépassant 1 avant l'inférence
- Réglages légèrement ajustés de la préparation du jeu de données d'entraînement
#######################
Historique des changelogs:
### 2023-04-09
- Correction des paramètres d'entraînement pour améliorer le taux d'utilisation du GPU : A100 est passé de 25% à environ 90%, V100 : de 50% à environ 90%, 2060S : de 60% à environ 85%, P40 : de 25% à environ 95% ; amélioration significative de la vitesse d'entraînement
- Changement de paramètre : la taille de batch_size totale est maintenant la taille de batch_size par GPU
- Changement de total_epoch : la limite maximale est passée de 100 à 1000 ; la valeur par défaut est passée de 10 à 20
- Correction du problème d'extraction de ckpt reconnaissant la hauteur de manière incorrecte, causant une inférence anormale
- Correction du problème d'entraînement distribué sauvegardant ckpt pour chaque rang
- Application du filtrage des caractéristiques nan pour l'extraction des caractéristiques
- Correction du problème d'entrée/sortie silencieuse produisant des consonnes aléatoires ou du bruit (les anciens modèles doivent être réentraînés avec un nouveau jeu de données)
### 2023-04-16 Mise à jour
- Ajout d'une mini-interface graphique pour le changement de voix en temps réel, démarrage par double-clic sur go-realtime-gui.bat
- Application d'un filtrage pour les bandes de fréquences inférieures à 50Hz pendant l'entraînement et l'inférence
- Abaissement de l'extraction de hauteur minimale de pyworld du défaut 80 à 50 pour l'entraînement et l'inférence, permettant aux voix masculines graves entre 50-80Hz de ne pas être mises en sourdine
- WebUI prend en charge le changement de langue en fonction des paramètres régionaux du système (prise en charge actuelle de en_US, ja_JP, zh_CN, zh_HK, zh_SG, zh_TW ; défaut à en_US si non pris en charge)
- Correction de la reconnaissance de certains GPU (par exemple, échec de reconnaissance V100-16G, échec de reconnaissance P4)
### 2023-04-28 Mise à jour
- Mise à niveau des paramètres d'index de faiss pour une vitesse plus rapide et une meilleure qualité
- Suppression de la dépendance à total_npy ; le partage futur de modèles ne nécessitera pas d'entrée total
_npy
- Levée des restrictions pour les GPU de la série 16, fournissant des paramètres d'inférence de 4 Go pour les GPU VRAM de 4 Go
- Correction d'un bug dans la séparation vocale d'accompagnement UVR5 pour certains formats audio
- La mini-interface de changement de voix en temps réel prend maintenant en charge les modèles de hauteur non-40k et non-lazy
### Plans futurs :
Fonctionnalités :
- Ajouter une option : extraire de petits modèles pour chaque sauvegarde d'époque
- Ajouter une option : exporter un mp3 supplémentaire vers le chemin spécifié pendant l'inférence
- Prise en charge de l'onglet d'entraînement multi-personnes (jusqu'à 4 personnes)
Modèle de base :
- Collecter des fichiers wav de respiration pour les ajouter au jeu de données d'entraînement pour résoudre le problème des sons de respiration déformés
- Nous entraînons actuellement un modèle de base avec un jeu de données de chant étendu, qui sera publié à l'avenir

178
docs/fr/README.fr.md Normal file
View File

@ -0,0 +1,178 @@
<div align="center">
<h1>Retrieval-based-Voice-Conversion-WebUI</h1>
Un framework simple et facile à utiliser pour la conversion vocale (modificateur de voix) basé sur VITS<br><br>
[![madewithlove](https://img.shields.io/badge/made_with-%E2%9D%A4-red?style=for-the-badge&labelColor=orange
)](https://github.com/RVC-Project/Retrieval-based-Voice-Conversion-WebUI)
<img src="https://counter.seku.su/cmoe?name=rvc&theme=r34" /><br>
[![Open In Colab](https://img.shields.io/badge/Colab-F9AB00?style=for-the-badge&logo=googlecolab&color=525252)](https://colab.research.google.com/github/RVC-Project/Retrieval-based-Voice-Conversion-WebUI/blob/main/Retrieval_based_Voice_Conversion_WebUI.ipynb)
[![Licence](https://img.shields.io/badge/LICENSE-MIT-green.svg?style=for-the-badge)](https://github.com/RVC-Project/Retrieval-based-Voice-Conversion-WebUI/blob/main/LICENSE)
[![Huggingface](https://img.shields.io/badge/🤗%20-Spaces-yellow.svg?style=for-the-badge)](https://huggingface.co/lj1995/VoiceConversionWebUI/tree/main/)
[![Discord](https://img.shields.io/badge/RVC%20Developers-Discord-7289DA?style=for-the-badge&logo=discord&logoColor=white)](https://discord.gg/HcsmBBGyVk)
[**Journal de mise à jour**](https://github.com/RVC-Project/Retrieval-based-Voice-Conversion-WebUI/blob/main/docs/Changelog_CN.md) | [**FAQ**](https://github.com/RVC-Project/Retrieval-based-Voice-Conversion-WebUI/wiki/%E5%B8%B8%E8%A7%81%E9%97%AE%E9%A2%98%E8%A7%A3%E7%AD%94) | [**AutoDL·Formation d'un chanteur AI pour 5 centimes**](https://github.com/RVC-Project/Retrieval-based-Voice-Conversion-WebUI/wiki/Autodl%E8%AE%AD%E7%BB%83RVC%C2%B7AI%E6%AD%8C%E6%89%8B%E6%95%99%E7%A8%8B) | [**Enregistrement des expériences comparatives**](https://github.com/RVC-Project/Retrieval-based-Voice-Conversion-WebUI/wiki/%E5%AF%B9%E7%85%A7%E5%AE%9E%E9%AA%8C%C2%B7%E5%AE%9E%E9%AA%8C%E8%AE%B0%E5%BD%95) | [**Démonstration en ligne**](https://huggingface.co/spaces/Ricecake123/RVC-demo)
</div>
------
[**English**](../en/README.en.md) | [ **中文简体**](../../README.md) | [**日本語**](../jp/README.ja.md) | [**한국어**](../kr/README.ko.md) ([**韓國語**](../kr/README.ko.han.md)) | [**Français**](../fr/README.fr.md) | [**Turc**](../tr/README.tr.md) | [**Português**](../pt/README.pt.md)
Cliquez ici pour voir notre [vidéo de démonstration](https://www.bilibili.com/video/BV1pm4y1z7Gm/) !
> Conversion vocale en temps réel avec RVC : [w-okada/voice-changer](https://github.com/w-okada/voice-changer)
> Le modèle de base est formé avec près de 50 heures de données VCTK de haute qualité et open source. Aucun souci concernant les droits d'auteur, n'hésitez pas à l'utiliser.
> Attendez-vous au modèle de base RVCv3 : plus de paramètres, plus de données, de meilleurs résultats, une vitesse d'inférence presque identique, et nécessite moins de données pour la formation.
## Introduction
Ce dépôt a les caractéristiques suivantes :
+ Utilise le top1 pour remplacer les caractéristiques de la source d'entrée par les caractéristiques de l'ensemble d'entraînement pour éliminer les fuites de timbre vocal.
+ Peut être formé rapidement même sur une carte graphique relativement moins performante.
+ Obtient de bons résultats même avec peu de données pour la formation (il est recommandé de collecter au moins 10 minutes de données vocales avec un faible bruit de fond).
+ Peut changer le timbre vocal en fusionnant des modèles (avec l'aide de l'onglet ckpt-merge).
+ Interface web simple et facile à utiliser.
+ Peut appeler le modèle UVR5 pour séparer rapidement la voix et l'accompagnement.
+ Utilise l'algorithme de pitch vocal le plus avancé [InterSpeech2023-RMVPE](#projets-référencés) pour éliminer les problèmes de voix muette. Meilleurs résultats, plus rapide que crepe_full, et moins gourmand en ressources.
+ Support d'accélération pour les cartes AMD et Intel.
## Configuration de l'environnement
Exécutez les commandes suivantes dans un environnement Python de version 3.8 ou supérieure.
(Windows/Linux)
Installez d'abord les dépendances principales via pip :
```bash
# Installez Pytorch et ses dépendances essentielles, sautez si déjà installé.
# Voir : https://pytorch.org/get-started/locally/
pip install torch torchvision torchaudio
# Pour les utilisateurs de Windows avec une architecture Nvidia Ampere (RTX30xx), en se basant sur l'expérience #21, spécifiez la version CUDA correspondante pour Pytorch.
pip install torch torchvision torchaudio --index-url https://download.pytorch.org/whl/cu117
# Pour Linux + carte AMD, utilisez cette version de Pytorch:
pip install torch torchvision torchaudio --index-url https://download.pytorch.org/whl/rocm5.4.2
```
Vous pouvez utiliser poetry pour installer les dépendances :
```bash
# Installez l'outil de gestion des dépendances Poetry, sautez si déjà installé.
# Voir : https://python-poetry.org/docs/#installation
curl -sSL https://install.python-poetry.org | python3 -
# Installez les dépendances avec poetry.
poetry install
```
Ou vous pouvez utiliser pip pour installer les dépendances :
```bash
# Cartes Nvidia :
pip install -r requirements.txt
# Cartes AMD/Intel :
pip install -r requirements-dml.txt
# Cartes Intel avec IPEX
pip install -r requirements-ipex.txt
# Cartes AMD sur Linux (ROCm)
pip install -r requirements-amd.txt
```
------
Les utilisateurs de Mac peuvent exécuter `run.sh` pour installer les dépendances :
```bash
sh ./run.sh
```
## Préparation d'autres modèles pré-entraînés
RVC nécessite d'autres modèles pré-entraînés pour l'inférence et la formation.
```bash
#Télécharger tous les modèles depuis https://huggingface.co/lj1995/VoiceConversionWebUI/tree/main/
python tools/download_models.py
```
Ou vous pouvez télécharger ces modèles depuis notre [espace Hugging Face](https://huggingface.co/lj1995/VoiceConversionWebUI/tree/main/).
Voici une liste des modèles et autres fichiers requis par RVC :
```bash
./assets/hubert/hubert_base.pt
./assets/pretrained
./assets/uvr5_weights
# Pour tester la version v2 du modèle, téléchargez également :
./assets/pretrained_v2
# Si vous utilisez Windows, vous pourriez avoir besoin de ces fichiers pour ffmpeg et ffprobe, sautez cette étape si vous avez déjà installé ffmpeg et ffprobe. Les utilisateurs d'ubuntu/debian peuvent installer ces deux bibliothèques avec apt install ffmpeg. Les utilisateurs de Mac peuvent les installer avec brew install ffmpeg (prérequis : avoir installé brew).
# ./ffmpeg
https://huggingface.co/lj1995/VoiceConversionWebUI/blob/main/ffmpeg.exe
# ./ffprobe
https://huggingface.co/lj1995/VoiceConversionWebUI/blob/main/ffprobe.exe
# Si vous souhaitez utiliser le dernier algorithme RMVPE de pitch vocal, téléchargez les paramètres du modèle de pitch et placez-les dans le répertoire racine de RVC.
https://huggingface.co/lj1995/VoiceConversionWebUI/blob/main/rmvpe.pt
# Les utilisateurs de cartes AMD/Intel nécessitant l'environnement DML doivent télécharger :
https://huggingface.co/lj1995/VoiceConversionWebUI/blob/main/rmvpe.onnx
```
Pour les utilisateurs d'Intel ARC avec IPEX, exécutez d'abord `source /opt/intel/oneapi/setvars.sh`.
Ensuite, exécutez la commande suivante pour démarrer WebUI :
```bash
python infer-web.py
```
Si vous utilisez Windows ou macOS, vous pouvez télécharger et extraire `RVC-beta.7z`. Les utilisateurs de Windows peuvent exécuter `go-web.bat` pour démarrer WebUI, tandis que les utilisateurs de macOS peuvent exécuter `sh ./run.sh`.
## Compatibilité ROCm pour les cartes AMD (seulement Linux)
Installez tous les pilotes décrits [ici](https://rocm.docs.amd.com/en/latest/deploy/linux/os-native/install.html).
Sur Arch utilisez pacman pour installer le pilote:
````
pacman -S rocm-hip-sdk rocm-opencl-sdk
````
Vous devrez peut-être créer ces variables d'environnement (par exemple avec RX6700XT):
````
export ROCM_PATH=/opt/rocm
export HSA_OVERRIDE_GFX_VERSION=10.3.0
````
Assurez-vous que votre utilisateur est dans les groupes `render` et `video`:
````
sudo usermod -aG render $USERNAME
sudo usermod -aG video $USERNAME
````
Enfin vous pouvez exécuter WebUI:
```bash
python infer-web.py
```
## Crédits
+ [ContentVec](https://github.com/auspicious3000/contentvec/)
+ [VITS](https://github.com/jaywalnut310/vits)
+ [HIFIGAN](https://github.com/jik876/hifi-gan)
+ [Gradio](https://github.com/gradio-app/gradio)
+ [FFmpeg](https://github.com/FFmpeg/FFmpeg)
+ [Ultimate Vocal Remover](https://github.com/Anjok07/ultimatevocalremovergui)
+ [audio-slicer](https://github.com/openvpi/audio-slicer)
+ [Extraction de la hauteur vocale : RMVPE](https://github.com/Dream-High/RMVPE)
+ Le modèle pré-entraîné a été formé et testé par [yxlllc](https://github.com/yxlllc/RMVPE) et [RVC-Boss](https://github.com/RVC-Boss).
## Remerciements à tous les contributeurs pour leurs efforts
<a href="https://github.com/RVC-Project/Retrieval-based-Voice-Conversion-WebUI/graphs/contributors" target="_blank">
<img src="https://contrib.rocks/image?repo=RVC-Project/Retrieval-based-Voice-Conversion-WebUI" />
</a>

105
docs/fr/faiss_tips_fr.md Normal file
View File

@ -0,0 +1,105 @@
Conseils de réglage pour faiss
==================
# À propos de faiss
faiss est une bibliothèque de recherches de voisins pour les vecteurs denses, développée par Facebook Research, qui implémente efficacement de nombreuses méthodes de recherche de voisins approximatifs.
La recherche de voisins approximatifs trouve rapidement des vecteurs similaires tout en sacrifiant une certaine précision.
## faiss dans RVC
Dans RVC, pour l'incorporation des caractéristiques converties par HuBERT, nous recherchons des incorporations similaires à l'incorporation générée à partir des données d'entraînement et les mixons pour obtenir une conversion plus proche de la parole originale. Cependant, cette recherche serait longue si elle était effectuée de manière naïve, donc une conversion à haute vitesse est réalisée en utilisant une recherche de voisinage approximatif.
# Vue d'ensemble de la mise en œuvre
Dans '/logs/votre-expérience/3_feature256' où le modèle est situé, les caractéristiques extraites par HuBERT de chaque donnée vocale sont situées.
À partir de là, nous lisons les fichiers npy dans un ordre trié par nom de fichier et concaténons les vecteurs pour créer big_npy. (Ce vecteur a la forme [N, 256].)
Après avoir sauvegardé big_npy comme /logs/votre-expérience/total_fea.npy, nous l'entraînons avec faiss.
Dans cet article, j'expliquerai la signification de ces paramètres.
# Explication de la méthode
## Usine d'index
Une usine d'index est une notation unique de faiss qui exprime un pipeline qui relie plusieurs méthodes de recherche de voisinage approximatif sous forme de chaîne.
Cela vous permet d'essayer diverses méthodes de recherche de voisinage approximatif simplement en changeant la chaîne de l'usine d'index.
Dans RVC, elle est utilisée comme ceci :
```python
index = faiss.index_factory(256, "IVF%s,Flat" % n_ivf)
```
Parmi les arguments de index_factory, le premier est le nombre de dimensions du vecteur, le second est la chaîne de l'usine d'index, et le troisième est la distance à utiliser.
Pour une notation plus détaillée :
https://github.com/facebookresearch/faiss/wiki/The-index-factory
## Index pour la distance
Il existe deux index typiques utilisés comme similarité de l'incorporation comme suit :
- Distance euclidienne (METRIC_L2)
- Produit intérieur (METRIC_INNER_PRODUCT)
La distance euclidienne prend la différence au carré dans chaque dimension, somme les différences dans toutes les dimensions, puis prend la racine carrée. C'est la même chose que la distance en 2D et 3D que nous utilisons au quotidien.
Le produit intérieur n'est pas utilisé comme index de similarité tel quel, et la similarité cosinus qui prend le produit intérieur après avoir été normalisé par la norme L2 est généralement utilisée.
Lequel est le mieux dépend du cas, mais la similarité cosinus est souvent utilisée dans l'incorporation obtenue par word2vec et des modèles de récupération d'images similaires appris par ArcFace. Si vous voulez faire une normalisation l2 sur le vecteur X avec numpy, vous pouvez le faire avec le code suivant avec eps suffisamment petit pour éviter une division par 0.
```python
X_normed = X / np.maximum(eps, np.linalg.norm(X, ord=2, axis=-1, keepdims=True))
```
De plus, pour l'usine d'index, vous pouvez changer l'index de distance utilisé pour le calcul en choisissant la valeur à passer comme troisième argument.
```python
index = faiss.index_factory(dimention, texte, faiss.METRIC_INNER_PRODUCT)
```
## IVF
IVF (Inverted file indexes) est un algorithme similaire à l'index inversé dans la recherche en texte intégral.
Lors de l'apprentissage, la cible de recherche est regroupée avec kmeans, et une partition de Voronoi est effectuée en utilisant le centre du cluster. Chaque point de données est attribué à un cluster, nous créons donc un dictionnaire qui permet de rechercher les points de données à partir des clusters.
Par exemple, si des clusters sont attribués comme suit :
|index|Cluster|
|-----|-------|
|1|A|
|2|B|
|3|A|
|4|C|
|5|B|
L'index inversé résultant ressemble à ceci :
|cluster|index|
|-------|-----|
|A|1, 3|
|B|2, 5|
|C|4|
Lors de la recherche, nous recherchons d'abord n_probe clusters parmi les clusters, puis nous calculons les distances pour les points de données appartenant à chaque cluster.
# Recommandation de paramètre
Il existe des directives officielles sur la façon de choisir un index, je vais donc expliquer en conséquence.
https://github.com/facebookresearch/faiss/wiki/Guidelines-to-choose-an-index
Pour les ensembles de données inférieurs à 1M, 4bit-PQ est la méthode la plus efficace disponible dans faiss en avril 2023.
En combinant cela avec IVF, en réduisant les candidats avec 4bit-PQ, et enfin en recalculant la distance avec un index précis, on peut le décrire en utilisant l'usine d'index suivante.
```python
index = faiss.index_factory(256, "IVF1024,PQ128x4fs,RFlat")
```
## Paramètres recommandés pour IVF
Considérez le cas de trop d'IVF. Par exemple, si une quantification grossière par IVF est effectuée pour le nombre de données, cela revient à une recherche exhaustive naïve et est inefficace.
Pour 1M ou moins, les valeurs IVF sont recommandées entre 4*sqrt(N) ~ 16*sqrt(N) pour N nombre de points de données.
Comme le temps de calcul augmente proportionnellement au nombre de n_probes, veuillez consulter la précision et choisir de manière appropriée. Personnellement, je ne pense pas que RVC ait besoin de tant de précision, donc n_probe = 1 est bien.
## FastScan
FastScan est une méthode qui permet d'approximer rapidement les distances par quantification de produit cartésien en les effectuant dans les registres.
La quantification du produit cartésien effectue un regroupement indépendamment
pour chaque dimension d (généralement d = 2) pendant l'apprentissage, calcule la distance entre les clusters à l'avance, et crée une table de recherche. Au moment de la prédiction, la distance de chaque dimension peut être calculée en O(1) en consultant la table de recherche.
Le nombre que vous spécifiez après PQ spécifie généralement la moitié de la dimension du vecteur.
Pour une description plus détaillée de FastScan, veuillez consulter la documentation officielle.
https://github.com/facebookresearch/faiss/wiki/Fast-accumulation-of-PQ-and-AQ-codes-(FastScan)
## RFlat
RFlat est une instruction pour recalculer la distance approximative calculée par FastScan avec la distance exacte spécifiée par le troisième argument de l'usine d'index.
Lors de l'obtention de k voisins, k*k_factor points sont recalculés.

169
docs/fr/faq_fr.md Normal file
View File

@ -0,0 +1,169 @@
## Q1: Erreur ffmpeg/erreur utf8.
Il s'agit très probablement non pas d'un problème lié à FFmpeg, mais d'un problème lié au chemin de l'audio ;
FFmpeg peut rencontrer une erreur lors de la lecture de chemins contenant des caractères spéciaux tels que des espaces et (), ce qui peut provoquer une erreur FFmpeg ; et lorsque l'audio du jeu d'entraînement contient des chemins en chinois, l'écrire dans filelist.txt peut provoquer une erreur utf8.<br>
## Q2: Impossible de trouver le fichier index après "Entraînement en un clic".
Si l'affichage indique "L'entraînement est terminé. Le programme est fermé", alors le modèle a été formé avec succès, et les erreurs subséquentes sont fausses ;
L'absence d'un fichier index 'ajouté' après un entraînement en un clic peut être due au fait que le jeu d'entraînement est trop grand, ce qui bloque l'ajout de l'index ; cela a été résolu en utilisant un traitement par lots pour ajouter l'index, ce qui résout le problème de surcharge de mémoire lors de l'ajout de l'index. Comme solution temporaire, essayez de cliquer à nouveau sur le bouton "Entraîner l'index".<br>
## Q3: Impossible de trouver le modèle dans “Inférence du timbre” après l'entraînement
Cliquez sur “Actualiser la liste des timbres” et vérifiez à nouveau ; si vous ne le voyez toujours pas, vérifiez s'il y a des erreurs pendant l'entraînement et envoyez des captures d'écran de la console, de l'interface utilisateur web, et des logs/nom_de_l'expérience/*.log aux développeurs pour une analyse plus approfondie.<br>
## Q4: Comment partager un modèle/Comment utiliser les modèles d'autres personnes ?
Les fichiers pth stockés dans rvc_root/logs/nom_de_l'expérience ne sont pas destinés à être partagés ou inférés, mais à stocker les points de contrôle de l'expérience pour la reproductibilité et l'entraînement ultérieur. Le modèle à partager doit être le fichier pth de 60+MB dans le dossier des poids ;
À l'avenir, les poids/nom_de_l'expérience.pth et les logs/nom_de_l'expérience/ajouté_xxx.index seront fusionnés en un seul fichier poids/nom_de_l'expérience.zip pour éliminer le besoin d'une entrée d'index manuelle ; partagez donc le fichier zip, et non le fichier pth, sauf si vous souhaitez continuer l'entraînement sur une machine différente ;
Copier/partager les fichiers pth de plusieurs centaines de Mo du dossier des logs au dossier des poids pour une inférence forcée peut entraîner des erreurs telles que des f0, tgt_sr, ou d'autres clés manquantes. Vous devez utiliser l'onglet ckpt en bas pour sélectionner manuellement ou automatiquement (si l'information se trouve dans les logs/nom_de_l'expérience), si vous souhaitez inclure les informations sur la hauteur et les options de taux d'échantillonnage audio cible, puis extraire le modèle plus petit. Après extraction, il y aura un fichier pth de 60+ MB dans le dossier des poids, et vous pouvez actualiser les voix pour l'utiliser.<br>
## Q5: Erreur de connexion.
Il se peut que vous ayez fermé la console (fenêtre de ligne de commande noire).<br>
## Q6: WebUI affiche 'Expecting value: line 1 column 1 (char 0)'.
Veuillez désactiver le proxy système LAN/proxy global puis rafraîchir.<br>
## Q7: Comment s'entraîner et déduire sans le WebUI ?
Script d'entraînement :<br>
Vous pouvez d'abord lancer l'entraînement dans WebUI, et les versions en ligne de commande de la préparation du jeu de données et de l'entraînement seront affichées dans la fenêtre de message.<br>
Script d'inférence :<br>
https://huggingface.co/lj1995/VoiceConversionWebUI/blob/main/myinfer.py<br>
Par exemple :<br>
runtime\python.exe myinfer.py 0 "E:\codes\py39\RVC-beta\todo-songs\1111.wav" "E:\codes\py39\logs\mi-test\added_IVF677_Flat_nprobe_7.index" récolte "test.wav" "weights/mi-test.pth" 0.6 cuda:0 True<br>
f0up_key=sys.argv[1]<br>
input_path=sys.argv[2]<br>
index_path=sys.argv[3]<br>
f0method=sys.argv[4]#récolte ou pm<br>
opt_path=sys.argv[5]<br>
model_path=sys.argv[6]<br>
index_rate=float(sys.argv[7])<br>
device=sys.argv[8]<br>
is_half=bool(sys.argv[9])<br>
### Explication des arguments :
1. **Numéro de voix cible** : `0` (dans cet exemple)
2. **Chemin du fichier audio d'entrée** : `"C:\ YOUR PATH FOR THE ROOT (RVC0813Nvidia)\INPUTS_VOCAL\vocal.wav"`
3. **Chemin du fichier index** : `"C:\ YOUR PATH FOR THE ROOT (RVC0813Nvidia)\logs\Hagrid.index"`
4. **Méthode pour l'extraction du pitch (F0)** : `harvest` (dans cet exemple)
5. **Chemin de sortie pour le fichier audio traité** : `"C:\ YOUR PATH FOR THE ROOT (RVC0813Nvidia)\INPUTS_VOCAL\test.wav"`
6. **Chemin du modèle** : `"C:\ YOUR PATH FOR THE ROOT (RVC0813Nvidia)\weights\HagridFR.pth"`
7. **Taux d'index** : `0.6` (dans cet exemple)
8. **Périphérique pour l'exécution (GPU/CPU)** : `cuda:0` pour une carte NVIDIA, par exemple.
9. **Protection des droits d'auteur (True/False)**.
<!-- Pour myinfer nouveau models :
runtime\python.exe myinfer.py 0 "C:\ YOUR PATH FOR THE ROOT (RVC0813Nvidia)\INPUTS_VOCAL\vocal.wav" "C:\ YOUR PATH FOR THE ROOT (RVC0813Nvidia)\logs\Hagrid.index" harvest "C:\ YOUR PATH FOR THE ROOT (RVC0813Nvidia)\INPUTS_VOCAL\test.wav" "C:\ YOUR PATH FOR THE ROOT (RVC0813Nvidia)\weights\HagridFR.pth" 0.6 cuda:0 True 5 44100 44100 1.0 1.0 True
f0up_key=sys.argv[1]
input_path = sys.argv[2]
index_path = sys.argv[3]
f0method = sys.argv[4]
opt_path = sys.argv[5]
model_path = sys.argv[6]
index_rate = float(sys.argv[7])
device = sys.argv[8]
is_half = bool(sys.argv[9])
filter_radius = int(sys.argv[10])
tgt_sr = int(sys.argv[11])
resample_sr = int(sys.argv[12])
rms_mix_rate = float(sys.argv[13])
version = sys.argv[14]
protect = sys.argv[15].lower() == 'false' # change for true if needed
### Explication des arguments :
1. **Numéro de voix cible** : `0` (dans cet exemple)
2. **Chemin du fichier audio d'entrée** : `"C:\ YOUR PATH FOR THE ROOT (RVC0813Nvidia)\INPUTS_VOCAL\vocal.wav"`
3. **Chemin du fichier index** : `"C:\ YOUR PATH FOR THE ROOT (RVC0813Nvidia)\logs\Hagrid.index"`
4. **Méthode pour l'extraction du pitch (F0)** : `harvest` (dans cet exemple)
5. **Chemin de sortie pour le fichier audio traité** : `"C:\ YOUR PATH FOR THE ROOT (RVC0813Nvidia)\INPUTS_VOCAL\test.wav"`
6. **Chemin du modèle** : `"C:\ YOUR PATH FOR THE ROOT (RVC0813Nvidia)\weights\HagridFR.pth"`
7. **Taux d'index** : `0.6` (dans cet exemple)
8. **Périphérique pour l'exécution (GPU/CPU)** : `cuda:0` pour une carte NVIDIA, par exemple.
9. **Protection des droits d'auteur (True/False)**.
10. **Rayon du filtre** : `5` (dans cet exemple)
11. **Taux d'échantillonnage cible** : `44100` (dans cet exemple)
12. **Taux d'échantillonnage pour le rééchantillonnage** : `44100` (dans cet exemple)
13. **Taux de mixage RMS** : `1.0` (dans cet exemple)
14. **Version** : `1.0` (dans cet exemple)
15. **Protection** : `True` (dans cet exemple)
Assurez-vous de remplacer les chemins par ceux correspondant à votre configuration et d'ajuster les autres paramètres selon vos besoins.
-->
## Q8: Erreur Cuda/Mémoire Cuda épuisée.
Il y a une faible chance qu'il y ait un problème avec la configuration CUDA ou que le dispositif ne soit pas pris en charge ; plus probablement, il n'y a pas assez de mémoire (manque de mémoire).<br>
Pour l'entraînement, réduisez la taille du lot (si la réduction à 1 n'est toujours pas suffisante, vous devrez peut-être changer la carte graphique) ; pour l'inférence, ajustez les paramètres x_pad, x_query, x_center, et x_max dans le fichier config.py selon les besoins. Les cartes mémoire de 4 Go ou moins (par exemple 1060(3G) et diverses cartes de 2 Go) peuvent être abandonnées, tandis que les cartes mémoire de 4 Go ont encore une chance.<br>
## Q9: Combien de total_epoch sont optimaux ?
Si la qualité audio du jeu d'entraînement est médiocre et que le niveau de bruit est élevé, 20-30 époques sont suffisantes. Le fixer trop haut n'améliorera pas la qualité audio de votre jeu d'entraînement de faible qualité.<br>
Si la qualité audio du jeu d'entraînement est élevée, le niveau de bruit est faible, et la durée est suffisante, vous pouvez l'augmenter. 200 est acceptable (puisque l'entraînement est rapide, et si vous êtes capable de préparer un jeu d'entraînement de haute qualité, votre GPU peut probablement gérer une durée d'entraînement plus longue sans problème).<br>
## Q10: Quelle durée de jeu d'entraînement est nécessaire ?
Un jeu d'environ 10 min à 50 min est recommandé.<br>
Avec une garantie de haute qualité sonore et de faible bruit de fond, plus peut être ajouté si le timbre du jeu est uniforme.<br>
Pour un jeu d'entraînement de haut niveau (ton maigre + ton distinctif), 5 min à 10 min sont suffisantes.<br>
Il y a des personnes qui ont réussi à s'entraîner avec des données de 1 min à 2 min, mais le succès n'est pas reproductible par d'autres et n'est pas très informatif. <br>Cela nécessite que le jeu d'entraînement ait un timbre très distinctif (par exemple, un son de fille d'anime aérien à haute fréquence) et que la qualité de l'audio soit élevée ;
Aucune tentative réussie n'a été faite jusqu'à présent avec des données de moins de 1 min. Cela n'est pas recommandé.<br>
## Q11: À quoi sert le taux d'index et comment l'ajuster ?
Si la qualité tonale du modèle pré-entraîné et de la source d'inférence est supérieure à celle du jeu d'entraînement, ils peuvent améliorer la qualité tonale du résultat d'inférence, mais au prix d'un possible biais tonal vers le ton du modèle sous-jacent/source d'inférence plutôt que le ton du jeu d'entraînement, ce qui est généralement appelé "fuite de ton".<br>
Le taux d'index est utilisé pour réduire/résoudre le problème de la fuite de timbre. Si le taux d'index est fixé à 1, théoriquement il n'y a pas de fuite de timbre de la source d'inférence et la qualité du timbre est plus biaisée vers le jeu d'entraînement. Si le jeu d'entraînement a une qualité sonore inférieure à celle de la source d'inférence, alors un taux d'index plus élevé peut réduire la qualité sonore. Le réduire à 0 n'a pas l'effet d'utiliser le mélange de récupération pour protéger les tons du jeu d'entraînement.<br>
Si le jeu d'entraînement a une bonne qualité audio et une longue durée, augmentez le total_epoch, lorsque le modèle lui-même est moins susceptible de se référer à la source déduite et au modèle sous-jacent pré-entraîné, et qu'il y a peu de "fuite de ton", le taux d'index n'est pas important et vous pouvez même ne pas créer/partager le fichier index.<br>
## Q12: Comment choisir le gpu lors de l'inférence ?
Dans le fichier config.py, sélectionnez le numéro de carte après "device cuda:".<br>
La correspondance entre le numéro de carte et la carte graphique peut être vue dans la section d'information de la carte graphique de l'onglet d'entraînement.<br>
## Q13: Comment utiliser le modèle sauvegardé au milieu de l'entraînement ?
Sauvegardez via l'extraction de modèle en bas de l'onglet de traitement ckpt.
## Q14: Erreur de fichier/erreur de mémoire (lors de l'entraînement) ?
Il y a trop de processus et votre mémoire n'est pas suffisante. Vous pouvez le corriger en :
1. Diminuer l'entrée dans le champ "Threads of CPU".
2. Pré-découper le jeu d'entraînement en fichiers audio plus courts.
## Q15: Comment poursuivre l'entraînement avec plus de données
étape 1 : mettre toutes les données wav dans path2.
étape 2 : exp_name2+path2 -> traiter le jeu de données et extraire la caractéristique.
étape 3 : copier les derniers fichiers G et D de exp_name1 (votre expérience précédente) dans le dossier exp_name2.
étape 4 : cliquez sur "entraîner le modèle", et il continuera l'entraînement depuis le début de votre époque de modèle exp précédente.
## Q16: erreur à propos de llvmlite.dll
OSError: Impossible de charger le fichier objet partagé : llvmlite.dll
FileNotFoundError: Impossible de trouver le module lib\site-packages\llvmlite\binding\llvmlite.dll (ou l'une de ses dépendances). Essayez d'utiliser la syntaxe complète du constructeur.
Le problème se produira sous Windows, installez https://aka.ms/vs/17/release/vc_redist.x64.exe et il sera corrigé.
## Q17: RuntimeError: La taille étendue du tensor (17280) doit correspondre à la taille existante (0) à la dimension non-singleton 1. Tailles cibles : [1, 17280]. Tailles des tensors : [0]
Supprimez les fichiers wav dont la taille est nettement inférieure à celle des autres, et cela ne se reproduira plus. Ensuite, cliquez sur "entraîner le modèle" et "entraîner l'index".
## Q18: RuntimeError: La taille du tensor a (24) doit correspondre à la taille du tensor b (16) à la dimension non-singleton 2
Ne changez pas le taux d'échantillonnage puis continuez l'entraînement. S'il est nécessaire de changer, le nom de l'expérience doit être modifié et le modèle sera formé à partir de zéro. Vous pouvez également copier les hauteurs et caractéristiques (dossiers 0/1/2/2b) extraites la dernière fois pour accélérer le processus d'entraînement.

View File

@ -0,0 +1,65 @@
Instructions et conseils pour la formation RVC
======================================
Ces conseils expliquent comment se déroule la formation des données.
# Flux de formation
Je vais expliquer selon les étapes de l'onglet de formation de l'interface graphique.
## étape 1
Définissez ici le nom de l'expérience.
Vous pouvez également définir ici si le modèle doit prendre en compte le pitch.
Si le modèle ne considère pas le pitch, le modèle sera plus léger, mais pas adapté au chant.
Les données de chaque expérience sont placées dans `/logs/nom-de-votre-experience/`.
## étape 2a
Charge et pré-traite l'audio.
### charger l'audio
Si vous spécifiez un dossier avec de l'audio, les fichiers audio de ce dossier seront lus automatiquement.
Par exemple, si vous spécifiez `C:Users\hoge\voices`, `C:Users\hoge\voices\voice.mp3` sera chargé, mais `C:Users\hoge\voices\dir\voice.mp3` ne sera pas chargé.
Comme ffmpeg est utilisé en interne pour lire l'audio, si l'extension est prise en charge par ffmpeg, elle sera lue automatiquement.
Après la conversion en int16 avec ffmpeg, convertir en float32 et normaliser entre -1 et 1.
### débruitage
L'audio est lissé par filtfilt de scipy.
### Séparation audio
Tout d'abord, l'audio d'entrée est divisé en détectant des parties de silence qui durent plus d'une certaine période (max_sil_kept = 5 secondes ?). Après avoir séparé l'audio sur le silence, séparez l'audio toutes les 4 secondes avec un chevauchement de 0,3 seconde. Pour l'audio séparé en 4 secondes, après normalisation du volume, convertir le fichier wav en `/logs/nom-de-votre-experience/0_gt_wavs` puis le convertir à un taux d'échantillonnage de 16k dans `/logs/nom-de-votre-experience/1_16k_wavs` sous forme de fichier wav.
## étape 2b
### Extraire le pitch
Extrait les informations de pitch des fichiers wav. Extraire les informations de pitch (=f0) en utilisant la méthode intégrée dans parselmouth ou pyworld et les sauvegarder dans `/logs/nom-de-votre-experience/2a_f0`. Convertissez ensuite logarithmiquement les informations de pitch en un entier entre 1 et 255 et sauvegardez-le dans `/logs/nom-de-votre-experience/2b-f0nsf`.
### Extraire l'empreinte de caractéristique
Convertissez le fichier wav en incorporation à l'avance en utilisant HuBERT. Lisez le fichier wav sauvegardé dans `/logs/nom-de-votre-experience/1_16k_wavs`, convertissez le fichier wav en caractéristiques de dimension 256 avec HuBERT, et sauvegardez au format npy dans `/logs/nom-de-votre-experience/3_feature256`.
## étape 3
former le modèle.
### Glossaire pour les débutants
Dans l'apprentissage profond, l'ensemble de données est divisé et l'apprentissage progresse petit à petit. Dans une mise à jour de modèle (étape), les données de batch_size sont récupérées et des prédictions et corrections d'erreur sont effectuées. Faire cela une fois pour un ensemble de données compte comme une époque.
Par conséquent, le temps d'apprentissage est le temps d'apprentissage par étape x (le nombre de données dans l'ensemble de données / taille du lot) x le nombre d'époques. En général, plus la taille du lot est grande, plus l'apprentissage devient stable (temps d'apprentissage par étape ÷ taille du lot) devient plus petit, mais il utilise plus de mémoire GPU. La RAM GPU peut être vérifiée avec la commande nvidia-smi. L'apprentissage peut être effectué en peu de temps en augmentant la taille du lot autant que possible selon la machine de l'environnement d'exécution.
### Spécifier le modèle pré-entraîné
RVC commence à former le modèle à partir de poids pré-entraînés plutôt que de zéro, il peut donc être formé avec un petit ensemble de données.
Par défaut :
- Si vous considérez le pitch, il charge `rvc-location/pretrained/f0G40k.pth` et `rvc-location/pretrained/f0D40k.pth`.
- Si vous ne considérez pas le pitch, il charge `rvc-location/pretrained/f0G40k.pth` et `rvc-location/pretrained/f0D40k.pth`.
Lors de l'apprentissage, les paramètres du modèle sont sauvegardés dans `logs/nom-de-votre-experience/G_{}.pth` et `logs/nom-de-votre-experience/D_{}.pth` pour chaque save_every_epoch, mais en spécifiant ce chemin, vous pouvez démarrer l'apprentissage. Vous pouvez redémarrer ou commencer à former à partir de poids de modèle appris lors d'une expérience différente.
### Index d'apprentissage
RVC sauvegarde les valeurs de caractéristique HuBERT utilisées lors de la formation, et pendant l'inférence, recherche les valeurs de caractéristique qui sont similaires aux valeurs de caractéristique utilisées lors de l'apprentissage pour effectuer l'inférence. Afin d'effectuer cette recherche à haute vitesse, l'index est appris à l'avance.
Pour l'apprentissage d'index, nous utilisons la bibliothèque de recherche de voisinage approximatif faiss. Lisez la valeur de caractéristique de `logs/nom-de-votre-experience/3_feature256` et utilisez-la pour apprendre l'index, et sauvegardez-la sous `logs/nom-de-votre-experience/add_XXX.index`.
(À partir de la version de mise à jour 20230428, elle est lue à partir de l'index, et la sauvegarde / spécification n'est plus nécessaire.)
### Description du bouton
- Former le modèle : après avoir exécuté l'étape 2b, appuyez sur ce bouton pour former le modèle.
- Former l'index de caractéristique : après avoir formé le modèle, effectuez un apprentissage d'index.
- Formation en un clic : étape 2b, formation du modèle et formation de l'index de caractéristique tout d'un coup.```

123
docs/jp/Changelog_JA.md Normal file
View File

@ -0,0 +1,123 @@
### 2023 年 10 月 6 日更新
リアルタイム声変換のためのインターフェース go-realtime-gui.bat/gui_v1.py を作成しました実際には既に存在していました。今回のアップデートでは、リアルタイム声変換のパフォーマンスを重点的に最適化しました。0813 版との比較:
- 1. インターフェース操作の最適化:パラメータのホット更新(パラメータ調整時に中断して再起動する必要がない)、レイジーロードモデル(既にロードされたモデルは再ロードする必要がない)、音量因子パラメータ追加(音量を入力オーディオに近づける)
- 2. 内蔵ノイズリダクション効果と速度の最適化
- 3. 推論速度の大幅な最適化
入出力デバイスは同じタイプを選択する必要があります。例えば、両方とも MME タイプを選択します。
1006 バージョンの全体的な更新は:
- 1. rmvpe 音声ピッチ抽出アルゴリズムの効果をさらに向上、特に男性の低音部分で大きな改善
- 2. 推論インターフェースレイアウトの最適化
### 2023 年 8 月 13 日更新
1-通常のバグ修正
- 保存頻度と総ラウンド数の最小値を 1 に変更。総ラウンド数の最小値を 2 に変更
- pretrain モデルなしでのトレーニングエラーを修正
- 伴奏とボーカルの分離完了後の VRAM クリア
- faiss 保存パスを絶対パスから相対パスに変更
- パスに空白が含まれる場合のサポート(トレーニングセットのパス+実験名がサポートされ、エラーにならない)
- filelist の強制的な utf8 エンコーディングをキャンセル
- リアルタイム声変換中にインデックスを有効にすることによる CPU の大幅な使用問題を解決
2-重要なアップデート
- 現在最も強力なオープンソースの人間の声のピッチ抽出モデル RMVPE をトレーニングし、RVC のトレーニング、オフライン/リアルタイム推論に使用。pytorch/onnx/DirectML をサポート
- pytorch-dml を通じて A カードと I カードのサポート
1リアルタイム声変換2推論3ボーカルと伴奏の分離4トレーニングはまだサポートされておらず、CPU でのトレーニングに切り替わります。onnx_dml を通じて rmvpe_gpu の推論をサポート
### 2023 年 6 月 18 日更新
- v2 に 32k と 48k の 2 つの新しい事前トレーニングモデルを追加
- 非 f0 モデルの推論エラーを修正
- 1 時間を超えるトレーニングセットのインデックス構築フェーズでは、自動的に kmeans で特徴を縮小し、インデックスのトレーニングを加速し、検索に追加
- 人間の声をギターに変換するおもちゃのリポジトリを添付
- データ処理で異常値スライスを除外
- onnx エクスポートオプションタブ
失敗した実験:
- ~~特徴検索に時間次元を追加:ダメ、効果がない~~
- ~~特徴検索に PCAR 次元削減オプションを追加:ダメ、大きなデータは kmeans でデータ量を減らし、小さいデータは次元削減の時間が節約するマッチングの時間よりも長い~~
- ~~onnx 推論のサポート推論のみの小さな圧縮パッケージ付きダメ、nsf の生成には pytorch が必要~~
- ~~トレーニング中に音声、ジェンダー、eq、イズなどで入力をランダムに増強ダメ、効果がない~~
- ~~小型声码器の接続調査:ダメ、効果が悪化~~
todolist
- ~~トレーニングセットの音声ピッチ認識に crepe をサポート:既に RMVPE に置き換えられているため不要~~
- ~~多プロセス harvest 推論:既に RMVPE に置き換えられているため不要~~
- ~~crepe の精度サポートと RVC-config の同期:既に RMVPE に置き換えられているため不要。これをサポートするには torchcrepe ライブラリも同期する必要があり、面倒~~
- F0 エディタとの連携
### 2023 年 5 月 28 日更新
- v2 の jupyter notebook を追加、韓国語の changelog を追加、いくつかの環境依存関係を追加
- 呼吸、清辅音、歯音の保護モードを追加
- crepe-full 推論をサポート
- UVR5 人間の声と伴奏の分離に 3 つの遅延除去モデルと MDX-Net の混响除去モデルを追加、HP3 人声抽出モデルを追加
- インデックス名にバージョンと実験名を追加
- 人間の声と伴奏の分離、推論のバッチエクスポートにオーディオエクスポートフォーマットオプションを追加
- 32k モデルのトレーニングを廃止
### 2023 年 5 月 13 日更新
- ワンクリックパッケージ内の古いバージョンの runtime 内の lib.infer_pack と uvr5_pack の残骸をクリア
- トレーニングセットの事前処理の擬似マルチプロセスバグを修正
- harvest による音声ピッチ認識で無声音現象を弱めるために中間値フィルターを追加、中間値フィルターの半径を調整可能
- 音声エクスポートにポストプロセスリサンプリングを追加
- トレーニング時の n_cpu プロセス数を「F0 抽出のみ調整」から「データ事前処理と F0 抽出の調整」に変更
- logs フォルダ下の index パスを自動検出し、ドロップダウンリスト機能を提供
- タブページに「よくある質問」を追加(または github-rvc-wiki を参照)
- 同じパスの入力音声推論に音声ピッチキャッシュを追加用途harvest 音声ピッチ抽出を使用すると、全体のパイプラインが長く繰り返される音声ピッチ抽出プロセスを経験し、キャッシュを使用しない場合、異なる音色、インデックス、音声ピッチ中間値フィルター半径パラメーターをテストするユーザーは、最初のテスト後の待機結果が非常に苦痛になります)
### 2023 年 5 月 14 日更新
- 音量エンベロープのアライメント入力ミックス「入力が無音で出力がわずかなイズ」の問題を緩和することができます。入力音声の背景イズが大きい場合は、オンにしないことをお勧めします。デフォルトではオフ1 として扱われる))
- 指定された頻度で抽出された小型モデルを保存する機能をサポート(異なるエポックでの推論効果を試したいが、すべての大きなチェックポイントを保存して手動で小型モデルを抽出するのが面倒な場合、この機能は非常に便利です)
- システム全体のプロキシが開かれている場合にブラウザの接続エラーが発生する問題を環境変数の設定で解決
- v2 事前訓練モデルをサポート(現在、テストのために 40k バージョンのみが公開されており、他の 2 つのサンプリングレートはまだ完全に訓練されていません)
- 推論前に 1 を超える過大な音量を制限
- データ事前処理パラメーターを微調整
### 2023 年 4 月 9 日更新
- トレーニングパラメーターを修正し、GPU の平均利用率を向上させる。A100 は最高 25から約 90に、V100 は 50から約 90に、2060S は 60から約 85に、P40 は 25から約 95に向上し、トレーニング速度が大幅に向上
- パラメーターを修正:全体の batch_size を各カードの batch_size に変更
- total_epoch を修正:最大制限 100 から 1000 に解除; デフォルト 10 からデフォルト 20 に引き上げ
- ckpt 抽出時に音声ピッチの有無を誤って認識し、推論が異常になる問題を修正
- 分散トレーニングで各ランクが ckpt を 1 回ずつ保存する問題を修正
- 特徴抽出で nan 特徴をフィルタリング
- 入力が無音で出力がランダムな子音またはノイズになる問題を修正(旧バージョンのモデルはトレーニングセットを作り直して再トレーニングする必要があります)
### 2023 年 4 月 16 日更新
- ローカルリアルタイム音声変換ミニ GUI を新設、go-realtime-gui.bat をダブルクリックで起動
- トレーニングと推論で 50Hz 以下の周波数帯をフィルタリング
- トレーニングと推論の音声ピッチ抽出 pyworld の最低音声ピッチをデフォルトの 80 から 50 に下げ、50-80hz の男性低音声が無声にならないように
- WebUI がシステムの地域に基づいて言語を変更する機能をサポート(現在サポートされているのは en_US、ja_JP、zh_CN、zh_HK、zh_SG、zh_TW、サポートされていない場合はデフォルトで en_US になります)
- 一部のグラフィックカードの認識を修正(例えば V100-16G の認識失敗、P4 の認識失敗)
### 2023 年 4 月 28 日更新
- faiss インデックス設定をアップグレードし、速度が速く、品質が高くなりました
- total_npy 依存をキャンセルし、今後のモデル共有では total_npy の記入は不要
- 16 シリーズの制限を解除。4G メモリ GPU に 4G の推論設定を提供
- 一部のオーディオ形式で UVR5 の人声伴奏分離のバグを修正
- リアルタイム音声変換ミニ gui に 40k 以外のモデルと妥協のない音声ピッチモデルのサポートを追加
### 今後の計画:
機能:
- 複数人のトレーニングタブのサポート(最大 4 人)
底層モデル:
- 呼吸 wav をトレーニングセットに追加し、呼吸が音声変換の電子音の問題を修正
- 歌声トレーニングセットを追加した底層モデルをトレーニングしており、将来的には公開する予定です

257
docs/jp/README.ja.md Normal file
View File

@ -0,0 +1,257 @@
<div align="center">
<h1>Retrieval-based-Voice-Conversion-WebUI</h1>
VITSに基づく使いやすい音声変換voice changerframework<br><br>
[![madewithlove](https://img.shields.io/badge/made_with-%E2%9D%A4-red?style=for-the-badge&labelColor=orange)](https://github.com/RVC-Project/Retrieval-based-Voice-Conversion-WebUI)
<img src="https://counter.seku.su/cmoe?name=rvc&theme=r34" /><br>
[![Open In Colab](https://img.shields.io/badge/Colab-F9AB00?style=for-the-badge&logo=googlecolab&color=525252)](https://colab.research.google.com/github/RVC-Project/Retrieval-based-Voice-Conversion-WebUI/blob/main/Retrieval_based_Voice_Conversion_WebUI.ipynb)
[![Licence](https://img.shields.io/badge/LICENSE-MIT-green.svg?style=for-the-badge)](https://github.com/RVC-Project/Retrieval-based-Voice-Conversion-WebUI/blob/main/LICENSE)
[![Huggingface](https://img.shields.io/badge/🤗%20-Spaces-yellow.svg?style=for-the-badge)](https://huggingface.co/lj1995/VoiceConversionWebUI/tree/main/)
[![Discord](https://img.shields.io/badge/RVC%20Developers-Discord-7289DA?style=for-the-badge&logo=discord&logoColor=white)](https://discord.gg/HcsmBBGyVk)
[**更新日誌**](./Changelog_JA.md) | [**よくある質問**](./faq_ja.md) | [**AutoDL·5 円で AI 歌手をトレーニング**](https://github.com/RVC-Project/Retrieval-based-Voice-Conversion-WebUI/wiki/Autodl%E8%AE%AD%E7%BB%83RVC%C2%B7AI%E6%AD%8C%E6%89%8B%E6%95%99%E7%A8%8B) | [**対照実験記録**](https://github.com/RVC-Project/Retrieval-based-Voice-Conversion-WebUI/wiki/%E5%AF%B9%E7%85%A7%E5%AE%9E%E9%AA%8C%C2%B7%E5%AE%9E%E9%AA%8C%E8%AE%B0%E5%BD%95) | [**オンラインデモ**](https://modelscope.cn/studios/FlowerCry/RVCv2demo)
[**English**](../en/README.en.md) | [**中文简体**](../../README.md) | [**日本語**](../jp/README.ja.md) | [**한국어**](../kr/README.ko.md) ([**韓國語**](../kr/README.ko.han.md)) | [**Français**](../fr/README.fr.md) | [**Türkçe**](../tr/README.tr.md) | [**Português**](../pt/README.pt.md)
</div>
> デモ動画は[こちら](https://www.bilibili.com/video/BV1pm4y1z7Gm/)でご覧ください。
> RVC によるリアルタイム音声変換: [w-okada/voice-changer](https://github.com/w-okada/voice-changer)
> 著作権侵害を心配することなく使用できるように、基底モデルは約 50 時間の高品質なオープンソースデータセットで訓練されています。
> RVCv3 の基底モデルルをご期待ください。より大きなパラメータ、より大きなデータ、より良い効果を提供し、基本的に同様の推論速度を維持しながら、トレーニングに必要なデータ量はより少なくなります。
<table>
<tr>
<td align="center">トレーニングと推論インターフェース</td>
<td align="center">リアルタイム音声変換インターフェース</td>
</tr>
<tr>
<td align="center"><img src="https://github.com/RVC-Project/Retrieval-based-Voice-Conversion-WebUI/assets/129054828/092e5c12-0d49-4168-a590-0b0ef6a4f630"></td>
<td align="center"><img src="https://github.com/RVC-Project/Retrieval-based-Voice-Conversion-WebUI/assets/129054828/730b4114-8805-44a1-ab1a-04668f3c30a6"></td>
</tr>
<tr>
<td align="center">go-web.bat</td>
<td align="center">go-realtime-gui.bat</td>
</tr>
<tr>
<td align="center">実行したい操作を自由に選択できます。</td>
<td align="center">既に端から端までの170msの遅延を実現しました。ASIO入出力デバイスを使用すれば、端から端までの90msの遅延を達成できますが、ハードウェアドライバーのサポートに非常に依存しています。</td>
</tr>
</table>
## はじめに
本リポジトリには下記の特徴があります。
- Top1 検索を用いることで、生の特徴量を訓練用データセット特徴量に変換し、トーンリーケージを削減します。
- 比較的貧弱な GPU でも、高速かつ簡単に訓練できます。
- 少量のデータセットからでも、比較的良い結果を得ることができます。10 分以上のノイズの少ない音声を推奨します。)
- モデルを融合することで、音声を混ぜることができます。ckpt processing タブの、ckpt merge を使用します。)
- 使いやすい WebUI。
- UVR5 Model も含んでいるため、人の声と BGM を素早く分離できます。
- 最先端の[人間の声のピッチ抽出アルゴリズム InterSpeech2023-RMVPE](#参照プロジェクト)を使用して無声音問題を解決します。効果は最高著しくで、crepe_full よりも速く、リソース使用が少ないです。
- A カードと I カードの加速サポート
私たちの[デモビデオ](https://www.bilibili.com/video/BV1pm4y1z7Gm/)をチェックしてください!
## 環境構築
下記のコマンドは、Python3.8 以上の環境で実行する必要があります:
### Windows/Linux/MacOS などのプラットフォーム共通方法
以下の方法のいずれかを選択してください。
#### 1. pip を通じた依存関係のインストール
1. Pytorch 及びその主要な依存関係のインストール、すでにインストールされている場合はスキップ。参照https://pytorch.org/get-started/locally/
```bash
pip install torch torchvision torchaudio
```
2. win システム + Nvidia Ampere アーキテクチャRTX30xxの場合、#21 の経験に基づいて pytorch に対応する cuda バージョンを指定
```bash
pip install torch torchvision torchaudio --index-url https://download.pytorch.org/whl/cu117
```
3. 自分のグラフィックカードに合わせた依存関係のインストール
- N カード
```bash
pip install -r requirements.txt
```
- A カード/I カード
```bash
pip install -r requirements-dml.txt
```
- A カード ROCM(Linux)
```bash
pip install -r requirements-amd.txt
```
- I カード IPEX(Linux)
```bash
pip install -r requirements-ipex.txt
```
#### 2. poetry を通じた依存関係のインストール
Poetry 依存関係管理ツールのインストール、すでにインストールされている場合はスキップ。参照https://python-poetry.org/docs/#installation
```bash
curl -sSL https://install.python-poetry.org | python3 -
```
poetry を使って依存関係をインストール
```bash
poetry install
```
### MacOS
`run.sh`を使って依存関係をインストールできます
```bash
sh ./run.sh
```
## その他の事前訓練されたモデルの準備
RVC は推論とトレーニングのために他のいくつかの事前訓練されたモデルが必要です。
これらのモデルは私たちの[Hugging Face space](https://huggingface.co/lj1995/VoiceConversionWebUI/tree/main/)でダウンロードできます。
### 1. assets のダウンロード
以下は、RVC に必要なすべての事前学習モデルとその他のファイルのリストです。`tools`フォルダーにこれらをダウンロードするスクリプトがあります。
- ./assets/hubert/hubert_base.pt
- ./assets/pretrained
- ./assets/uvr5_weights
v2 バージョンのモデルを使用する場合、追加で以下をダウンロードする必要があります。
- ./assets/pretrained_v2
### 2. ffmpeg のインストール
ffmpeg と ffprobe が既にインストールされている場合はスキップします。
#### Ubuntu/Debian ユーザー
```bash
sudo apt install ffmpeg
```
#### MacOS ユーザー
```bash
brew install ffmpeg
```
#### Windows ユーザー
ダウンロード後、ルートディレクトリに配置してください。
- [ffmpeg.exe をダウンロード](https://huggingface.co/lj1995/VoiceConversionWebUI/blob/main/ffmpeg.exe)
- [ffprobe.exe をダウンロード](https://huggingface.co/lj1995/VoiceConversionWebUI/blob/main/ffprobe.exe)
### 3. RMVPE 人間の声のピッチ抽出アルゴリズムに必要なファイルのダウンロード
最新の RMVPE 人間の声のピッチ抽出アルゴリズムを使用する場合、ピッチ抽出モデルのパラメータをダウンロードして RVC のルートディレクトリに配置する必要があります。
- [rmvpe.pt をダウンロード](https://huggingface.co/lj1995/VoiceConversionWebUI/blob/main/rmvpe.pt)
#### dml 環境の RMVPE をダウンロード(オプション、A カード/I カードユーザー)
- [rmvpe.onnx をダウンロード](https://huggingface.co/lj1995/VoiceConversionWebUI/blob/main/rmvpe.onnx)
### 4. AMD グラフィックカード Rocm(オプション、Linux のみ)
Linux システムで AMD の Rocm 技術をベースに RVC を実行したい場合、[こちら](https://rocm.docs.amd.com/en/latest/deploy/linux/os-native/install.html)で必要なドライバーを先にインストールしてください。
Arch Linux を使用している場合、pacman を使用して必要なドライバーをインストールできます。
```
pacman -S rocm-hip-sdk rocm-opencl-sdk
```
一部のモデルのグラフィックカードRX6700XTの場合、以下のような環境変数を追加で設定する必要があるかもしれません。
```
export ROCM_PATH=/opt/rocm
export HSA_OVERRIDE_GFX_VERSION=10.3.0
```
同時に、現在のユーザーが`render`および`video`ユーザーグループに属していることを確認してください。
```
sudo usermod -aG render $USERNAME
sudo usermod -aG video $USERNAME
```
## 使用開始
### 直接起動
以下のコマンドで WebUI を起動します
```bash
python infer-web.py
```
### 統合パッケージの使用
`RVC-beta.7z`をダウンロードして解凍
#### Windows ユーザー
`go-web.bat`をダブルクリック
#### MacOS ユーザー
```bash
sh ./run.sh
```
### IPEX 技術が必要な I カードユーザー向け(Linux のみ)
```bash
source /opt/intel/oneapi/setvars.sh
```
## 参考プロジェクト
- [ContentVec](https://github.com/auspicious3000/contentvec/)
- [VITS](https://github.com/jaywalnut310/vits)
- [HIFIGAN](https://github.com/jik876/hifi-gan)
- [Gradio](https://github.com/gradio-app/gradio)
- [FFmpeg](https://github.com/FFmpeg/FFmpeg)
- [Ultimate Vocal Remover](https://github.com/Anjok07/ultimatevocalremovergui)
- [audio-slicer](https://github.com/openvpi/audio-slicer)
- [Vocal pitch extraction:RMVPE](https://github.com/Dream-High/RMVPE)
- 事前訓練されたモデルは[yxlllc](https://github.com/yxlllc/RMVPE)と[RVC-Boss](https://github.com/RVC-Boss)によって訓練され、テストされました。
## すべての貢献者の努力に感謝します
<a href="https://github.com/RVC-Project/Retrieval-based-Voice-Conversion-WebUI/graphs/contributors" target="_blank">
<img src="https://contrib.rocks/image?repo=RVC-Project/Retrieval-based-Voice-Conversion-WebUI" />
</a>

View File

@ -9,13 +9,9 @@ RVCではHuBERTで変換した特徴量のEmbeddingに対し、学習データ
# 実装のoverview
モデルが配置されている '/logs/your-experiment/3_feature256'には各音声データからHuBERTで抽出された特徴量が配置されています。
ここからnpyファイルをファイル名でソートした順番で読み込み、ベクトルを連結してbig_npyを作成します。(このベクトルのshapeは[N, 256]です。)
big_npyを/logs/your-experiment/total_fea.npyとして保存した後、faissを学習させます。
ここからnpyファイルをファイル名でソートした順番で読み込み、ベクトルを連結してbig_npyを作成しfaissを学習させます。(このベクトルのshapeは[N, 256]です。)
2023/04/18時点ではfaissのindex factoryの機能を用いて、L2距離に基づくIVFを用いています。
IVFの分割数(n_ivf)はN//39で、n_probeはint(np.power(n_ivf, 0.3))が採用されています。(infer-web.pyのtrain_index周りを探してください。)
本Tipsではまずこれらのパラメータの意味を解説し、その後よりよいindexを作成するための開発者向けアドバイスを書きます。
本Tipsではまずこれらのパラメータの意味を解説します。
# 手法の解説
## index factory
@ -103,44 +99,3 @@ https://github.com/facebookresearch/faiss/wiki/Fast-accumulation-of-PQ-and-AQ-co
## RFlat
RFlatはFastScanで計算した大まかな距離を、index factoryの第三引数で指定した正確な距離で再計算する指示です。
k個の近傍を取得する際は、k*k_factor個の点について再計算が行われます。
# Embeddingに関するテクニック
## alpha query expansion
クエリ拡張は検索で使われるテクニックで、例えば全文検索では入力された検索文に単語を幾つか追加することで検索精度を上げることがあります。ベクトル検索にもいくつか提唱されていて、その内追加の学習がいらず効果が高い手法としてα-query expansionが知られています。論文では[Attention-Based Query Expansion Learning](https://arxiv.org/abs/2007.08019)などで紹介されていて、[kaggleのshopeeコンペの2位の解法](https://www.kaggle.com/code/lyakaap/2nd-place-solution/notebook)にも用いられていました。
α-query expansionはあるベクトルに対し、近傍のベクトルを類似度のα乗した重みで足し合わせることでできます。いかにコードの例を張ります。big_npyをα query expansionしたものに置き換えます。
```python
alpha = 3.
index = faiss.index_factory(256, "IVF512,PQ128x4fs,RFlat")
original_norm = np.maximum(np.linalg.norm(big_npy, ord=2, axis=1, keepdims=True), 1e-9)
big_npy /= original_norm
index.train(big_npy)
index.add(big_npy)
dist, neighbor = index.search(big_npy, num_expand)
expand_arrays = []
ixs = np.arange(big_npy.shape[0])
for i in range(-(-big_npy.shape[0]//batch_size)):
ix = ixs[i*batch_size:(i+1)*batch_size]
weight = np.power(np.einsum("nd,nmd->nm", big_npy[ix], big_npy[neighbor[ix]]), alpha)
expand_arrays.append(np.sum(big_npy[neighbor[ix]] * np.expand_dims(weight, axis=2),axis=1))
big_npy = np.concatenate(expand_arrays, axis=0)
# normalize index version
big_npy = big_npy / np.maximum(np.linalg.norm(big_npy, ord=2, axis=1, keepdims=True), 1e-9)
```
これは、検索を行うクエリにも、検索対象のDBにも適応可能なテクニックです。
## MiniBatch KMeansによるembeddingの圧縮
total_fea.npyが大きすぎる場合、KMeansを用いてベクトルを小さくすることが可能です。
以下のコードで、embeddingの圧縮が可能です。n_clustersは圧縮したい大きさを指定し、batch_sizeは256 * CPUのコア数を指定することでCPUの並列化の恩恵を十分に得ることができます。
```python
import multiprocessing
from sklearn.cluster import MiniBatchKMeans
kmeans = MiniBatchKMeans(n_clusters=10000, batch_size=256 * multiprocessing.cpu_count(), init="random")
kmeans.fit(big_npy)
sample_npy = kmeans.cluster_centers_
```

122
docs/jp/faq_ja.md Normal file
View File

@ -0,0 +1,122 @@
## Q1: ffmpeg error/utf8 error
大体の場合、ffmpeg の問題ではなく、音声パスの問題です。<br>
ffmpeg は空白や()などの特殊文字を含むパスを読み込む際に ffmpeg error が発生する可能性があります。トレーニングセットの音声が中国語のパスを含む場合、filelist.txt に書き込む際に utf8 error が発生する可能性があります。<br>
## Q2: ワンクリックトレーニングが終わってもインデックスがない
"Training is done. The program is closed."と表示された場合、モデルトレーニングは成功しています。その直後のエラーは誤りです。<br>
ワンクリックトレーニングが終了しても added で始まるインデックスファイルがない場合、トレーニングセットが大きすぎてインデックス追加のステップが停止している可能性があります。バッチ処理 add インデックスでメモリの要求が高すぎる問題を解決しました。一時的に「トレーニングインデックス」ボタンをもう一度クリックしてみてください。<br>
## Q3: トレーニングが終了してもトレーニングセットの音色が見えない
音色をリフレッシュしてもう一度確認してください。それでも見えない場合は、トレーニングにエラーがなかったか、コンソールと WebUI のスクリーンショット、logs/実験名の下のログを開発者に送って確認してみてください。<br>
## Q4: モデルをどのように共有するか
rvc_root/logs/実験名の下に保存されている pth は、推論に使用するために共有するためのものではなく、実験の状態を保存して再現およびトレーニングを続けるためのものです。共有するためのモデルは、weights フォルダの下にある 60MB 以上の pth ファイルです。<br>
今後、weights/exp_name.pth と logs/exp_name/added_xxx.index を組み合わせて weights/exp_name.zip にパッケージ化し、インデックスの記入ステップを省略します。その場合、zip ファイルを共有し、pth ファイルは共有しないでください。別のマシンでトレーニングを続ける場合を除きます。<br>
logs フォルダの数百 MB の pth ファイルを weights フォルダにコピー/共有して推論に強制的に使用すると、f0、tgt_sr などのさまざまなキーが存在しないというエラーが発生する可能性があります。ckpt タブの一番下で、音高、目標オーディオサンプリングレートを手動または自動(ローカルの logs に関連情報が見つかる場合は自動的にで選択してから、ckpt の小型モデルを抽出する必要があります(入力パスに G で始まるものを記入。抽出が完了すると、weights フォルダに 60MB 以上の pth ファイルが表示され、音色をリフレッシュした後に使用できます。<br>
## Q5: Connection Error
コンソール(黒いウィンドウ)を閉じた可能性があります。<br>
## Q6: WebUI が Expecting value: line 1 column 1 (char 0)と表示する
システムのローカルネットワークプロキシ/グローバルプロキシを閉じてください。<br>
これはクライアントのプロキシだけでなく、サーバー側のプロキシも含まれます(例えば autodl で http_proxy と https_proxy を設定して学術的な加速を行っている場合、使用する際には unset でオフにする必要があります)。<br>
## Q7: WebUI を使わずにコマンドでトレーニングや推論を行うには
トレーニングスクリプト:<br>
まず WebUI を実行し、メッセージウィンドウにデータセット処理とトレーニング用のコマンドラインが表示されます。<br>
推論スクリプト:<br>
https://huggingface.co/lj1995/VoiceConversionWebUI/blob/main/myinfer.py<br>
例:<br>
runtime\python.exe myinfer.py 0 "E:\codes\py39\RVC-beta\todo-songs\1111.wav" "E:\codes\py39\logs\mi-test\added_IVF677_Flat_nprobe_7.index" harvest "test.wav" "weights/mi-test.pth" 0.6 cuda:0 True<br>
f0up_key=sys.argv[1]<br>
input_path=sys.argv[2]<br>
index_path=sys.argv[3]<br>
f0method=sys.argv[4]#harvest or pm<br>
opt_path=sys.argv[5]<br>
model_path=sys.argv[6]<br>
index_rate=float(sys.argv[7])<br>
device=sys.argv[8]<br>
is_half=bool(sys.argv[9])<br>
## Q8: Cuda error/Cuda out of memory
まれに cuda の設定問題やデバイスがサポートされていない可能性がありますが、大半はメモリ不足out of memoryが原因です。<br>
トレーニングの場合は batch size を小さくします1 にしても足りない場合はグラフィックカードを変更するしかありません。推論の場合は、config.py の末尾にある x_pad、x_query、x_center、x_max を適宜小さくします。4GB 以下のメモリ(例えば 10603Gや各種 2GB のグラフィックカードは諦めることをお勧めしますが、4GB のメモリのグラフィックカードはまだ救いがあります。<br>
## Q9: total_epoch はどのくらいに設定するのが良いですか
トレーニングセットの音質が悪く、イズが多い場合は、20〜30 で十分です。高すぎると、ベースモデルの音質が低音質のトレーニングセットを高めることができません。<br>
トレーニングセットの音質が高く、イズが少なく、長い場合は、高く設定できます。200 は問題ありません(トレーニング速度が速いので、高音質のトレーニングセットを準備できる条件がある場合、グラフィックカードも条件が良いはずなので、少しトレーニング時間が長くなることを気にすることはありません)。<br>
## Q10: トレーニングセットはどれくらいの長さが必要ですか
10 分から 50 分を推奨します。
音質が良く、バックグラウンドノイズが低い場合、個人的な特徴のある音色であれば、多ければ多いほど良いです。
高品質のトレーニングセット(精巧に準備された + 特徴的な音色であれば、5 分から 10 分でも大丈夫です。リポジトリの作者もよくこの方法で遊びます。
1 分から 2 分のデータでトレーニングに成功した人もいますが、その成功体験は他人には再現できないため、あまり参考になりません。トレーニングセットの音色が非常に特徴的である必要があります(例:高い周波数の透明な声や少女の声など)、そして音質が良い必要があります。
1 分未満のデータでトレーニングを試みた(成功した)ケースはまだ見たことがありません。このような試みはお勧めしません。
## Q11: index rate は何に使うもので、どのように調整するのか(啓蒙)
もしベースモデルや推論ソースの音質がトレーニングセットよりも高い場合、推論結果の音質を向上させることができますが、音色がベースモデル/推論ソースの音色に近づくことがあります。これを「音色漏れ」と言います。
index rate は音色漏れの問題を減少させたり解決するために使用されます。1 に設定すると、理論的には推論ソースの音色漏れの問題は存在しませんが、音質はトレーニングセットに近づきます。トレーニングセットの音質が推論ソースよりも低い場合、index rate を高くすると音質が低下する可能性があります。0 に設定すると、検索ミックスを利用してトレーニングセットの音色を保護する効果はありません。
トレーニングセットが高品質で長い場合、total_epoch を高く設定することができ、この場合、モデル自体は推論ソースやベースモデルの音色をあまり参照しないため、「音色漏れ」の問題はほとんど発生しません。この時、index rate は重要ではなく、インデックスファイルを作成したり共有したりする必要もありません。
## Q11: 推論時に GPU をどのように選択するか
config.py ファイルの device cuda:の後にカード番号を選択します。
カード番号とグラフィックカードのマッピング関係は、トレーニングタブのグラフィックカード情報欄で確認できます。
## Q12: トレーニング中に保存された pth ファイルをどのように推論するか
ckpt タブの一番下で小型モデルを抽出します。
## Q13: トレーニングをどのように中断し、続行するか
現在の段階では、WebUI コンソールを閉じて go-web.bat をダブルクリックしてプログラムを再起動するしかありません。ウェブページのパラメータもリフレッシュして再度入力する必要があります。
トレーニングを続けるには:同じウェブページのパラメータでトレーニングモデルをクリックすると、前回のチェックポイントからトレーニングを続けます。
## Q14: トレーニング中にファイルページ/メモリエラーが発生した場合の対処法
プロセスが多すぎてメモリがオーバーフローしました。以下の方法で解決できるかもしれません。
1. 「音高抽出とデータ処理に使用する CPU プロセス数」を適宜下げます。
2. トレーニングセットのオーディオを手動でカットして、あまり長くならないようにします。
## Q15: 途中でデータを追加してトレーニングする方法
1. 全データに新しい実験名を作成します。
2. 前回の最新の G と D ファイル(あるいはどの中間 ckpt を基にトレーニングしたい場合は、その中間のものをコピーすることもできます)を新しい実験名にコピーします。
3. 新しい実験名でワンクリックトレーニングを開始すると、前回の最新の進捗からトレーニングを続けます。
## Q16: llvmlite.dll に関するエラー
```bash
OSError: Could not load shared object file: llvmlite.dll
FileNotFoundError: Could not find module lib\site-packages\llvmlite\binding\llvmlite.dll (or one of its dependencies). Try using the full path with constructor syntax.
```
Windows プラットフォームではこのエラーが発生しますが、https://aka.ms/vs/17/release/vc_redist.x64.exeをインストールしてWebUIを再起動すれば解決します。
## Q17: RuntimeError: テンソルの拡張サイズ17280は、非シングルトン次元 1 での既存サイズ0と一致する必要があります。 ターゲットサイズ:[1, 17280]。 テンソルサイズ:[0]
wavs16k フォルダーの下で、他のファイルよりも明らかに小さいいくつかのオーディオファイルを見つけて削除し、トレーニングモデルをクリックすればエラーは発生しませんが、ワンクリックプロセスが中断されたため、モデルのトレーニングが完了したらインデックスのトレーニングをクリックする必要があります。
## Q18: RuntimeError: テンソル a のサイズ24は、非シングルトン次元 2 でテンソル b16のサイズと一致する必要があります
トレーニング中にサンプリングレートを変更してはいけません。変更する必要がある場合は、実験名を変更して最初からトレーニングする必要があります。もちろん、前回抽出した音高と特徴0/1/2/2b フォルダ)をコピーしてトレーニングプロセスを加速することもできます。

View File

@ -6,7 +6,10 @@ RVCの訓練における説明、およびTIPS
GUIの訓練タブのstepに沿って説明します。
## step1
実験名の設定を行います。また、モデルにピッチを考慮させるかもここで設定できます。
実験名の設定を行います。
また、モデルに音高ガイド(ピッチ)を考慮させるかもここで設定できます。考慮させない場合はモデルは軽量になりますが、歌唱には向かなくなります。
各実験のデータは`/logs/実験名/`に配置されます。
## step2a
@ -40,11 +43,19 @@ HuBERTを用いてwavファイルを事前にembeddingに変換します。`/log
そのため、学習時間は 1step当たりの学習時間 x (データセット内のデータ数 ÷ バッチサイズ) x epoch数 かかります。一般にバッチサイズを大きくするほど学習は安定し、(1step当たりの学習時間÷バッチサイズ)は小さくなりますが、その分GPUのメモリを多く使用します。GPUのRAMはnvidia-smiコマンド等で確認できます。実行環境のマシンに合わせてバッチサイズをできるだけ大きくするとより短時間で学習が可能です。
### pretrained modelの指定
RVCではモデルの訓練を0からではなく、事前学習済みの重みから開始するため、少ないデータセットで学習を行えます。デフォルトでは`RVCのある場所/pretrained/f0G40k.pth``RVCのある場所/pretrained/f0D40k.pth`を読み込みます。学習時はsave_every_epochごとにモデルのパラメータが`logs/実験名/G_{}.pth``logs/実験名/D_{}.pth`に保存されますが、このパスを指定することで学習を再開したり、もしくは違う実験で学習したモデルの重みから学習を開始できます。
RVCではモデルの訓練を0からではなく、事前学習済みの重みから開始するため、少ないデータセットで学習を行えます。
デフォルトでは
- 音高ガイドを考慮する場合、`RVCのある場所/pretrained/f0G40k.pth``RVCのある場所/pretrained/f0D40k.pth`を読み込みます。
- 音高ガイドを考慮しない場合、`RVCのある場所/pretrained/G40k.pth``RVCのある場所/pretrained/D40k.pth`を読み込みます。
学習時はsave_every_epochごとにモデルのパラメータが`logs/実験名/G_{}.pth``logs/実験名/D_{}.pth`に保存されますが、このパスを指定することで学習を再開したり、もしくは違う実験で学習したモデルの重みから学習を開始できます。
### indexの学習
RVCでは学習時に使われたHuBERTの特徴量を保存し、推論時は学習時の特徴量から近い特徴量を探してきて推論を行います。この検索を高速に行うために事前にindexの学習を行います。
indexの学習には近似近傍探索ライブラリのfaissを用います。`/logs/実験名/3_feature256`の特徴量を読み込み、全て結合させた特徴量を`/logs/実験名/total_fea.npy`として保存、それを用いて学習したindexを`/logs/実験名/add_XXX.index`として保存します。
indexの学習には近似近傍探索ライブラリのfaissを用います。`/logs/実験名/3_feature256`の特徴量を読み込み、それを用いて学習したindexを`/logs/実験名/add_XXX.index`として保存します。
(20230428updateよりtotal_fea.npyはindexから読み込むので不要になりました。)
### ボタンの説明
- モデルのトレーニング: step2bまでを実行した後、このボタンを押すとモデルの学習を行います。

124
docs/kr/Changelog_KO.md Normal file
View File

@ -0,0 +1,124 @@
### 2023년 10월 6일 업데이트
실시간 음성 변환을 위한 인터페이스인 go-realtime-gui.bat/gui_v1.py를 제작했습니다(사실 이는 이미 존재했었습니다). 이번 업데이트는 주로 실시간 음성 변환 성능을 최적화하는 데 중점을 두었습니다. 0813 버전과 비교하여:
- 1. 인터페이스 조작 최적화: 매개변수 핫 업데이트(매개변수 조정 시 중단 후 재시작 필요 없음), 모델 지연 로딩(이미 로드된 모델은 재로드 필요 없음), 음량 인자 매개변수 추가(음량을 입력 오디오에 가깝게 조정)
- 2. 내장된 노이즈 감소 효과 및 속도 최적화
- 3. 추론 속도 크게 향상
입력 및 출력 장치는 동일한 유형을 선택해야 합니다. 예를 들어, 모두 MME 유형을 선택해야 합니다.
1006 버전의 전체 업데이트는 다음과 같습니다:
- 1. rmvpe 음성 피치 추출 알고리즘의 효과를 계속해서 향상, 특히 남성 저음역에 대한 개선이 큼
- 2. 추론 인터페이스 레이아웃 최적화
### 2023년 08월 13일 업데이트
1-정기적인 버그 수정
- 최소 총 에포크 수를 1로 변경하고, 최소 총 에포크 수를 2로 변경합니다.
- 사전 훈련(pre-train) 모델을 사용하지 않는 훈련 오류 수정
- 반주 보컬 분리 후 그래픽 메모리 지우기
- 페이즈 저장 경로 절대 경로를 상대 경로로 변경
- 공백이 포함된 경로 지원(훈련 세트 경로와 실험 이름 모두 지원되며 더 이상 오류가 보고되지 않음)
- 파일 목록에서 필수 utf8 인코딩 취소
- 실시간 음성 변경 중 faiss 검색으로 인한 CPU 소모 문제 해결
2-키 업데이트
- 현재 가장 강력한 오픈 소스 보컬 피치 추출 모델 RMVPE를 훈련하고, 이를 RVC 훈련, 오프라인/실시간 추론에 사용하며, PyTorch/Onx/DirectML을 지원합니다.
- 파이토치\_DML을 통한 AMD 및 인텔 그래픽 카드 지원
(1) 실시간 음성 변화 (2) 추론 (3) 보컬 반주 분리 (4) 현재 지원되지 않는 훈련은 CPU 훈련으로 전환, Onnx_Dml을 통한 gpu의 RMVPE 추론 지원
### 2023년 6월 18일 업데이트
- v2 버전에서 새로운 32k와 48k 사전 학습 모델을 추가.
- non-f0 모델들의 추론 오류 수정.
- 학습 세트가 1시간을 넘어가는 경우, 인덱스 생성 단계에서 minibatch-kmeans을 사용해, 학습속도 가속화.
- [huggingface](https://huggingface.co/spaces/lj1995/vocal2guitar)에서 vocal2guitar 제공.
- 데이터 처리 단계에서 이상 값 자동으로 제거.
- ONNX로 내보내는(export) 옵션 탭 추가.
업데이트에 적용되지 않았지만 시도한 것들 :
- ~~시계열 차원을 추가하여 특징 검색을 진행했지만, 유의미한 효과는 없었습니다.~~
- ~~PCA 차원 축소를 추가하여 특징 검색을 진행했지만, 유의미한 효과는 없었습니다.~~
- ~~ONNX 추론을 지원하는 것에 실패했습니다. nsf 생성시, Pytorch가 필요하기 때문입니다.~~
- ~~훈련 중에 입력에 대한 음고, 성별, 이퀄라이저, 노이즈 등 무작위로 강화하는 것에, 유의미한 효과는 없었습니다.~~
추후 업데이트 목록:
- ~~Vocos-RVC (소형 보코더) 통합 예정.~~
- ~~학습 단계에 음고 인식을 위한 Crepe 지원 예정.~~
- ~~Crepe의 정밀도를 REC-config와 동기화하여 지원 예정.~~
- FO 에디터 지원 예정.
### 2023년 5월 28일 업데이트
- v2 jupyter notebook 추가, 한국어 업데이트 로그 추가, 의존성 모듈 일부 수정.
- 무성음 및 숨소리 보호 모드 추가.
- crepe-full pitch 감지 지원.
- UVR5 보컬 분리: 디버브 및 디-에코 모델 지원.
- index 이름에 experiment 이름과 버전 추가.
- 배치 음성 변환 처리 및 UVR5 보컬 분리 시, 사용자가 수동으로 출력 오디오의 내보내기(export) 형식을 선택할 수 있도록 지원.
- 32k 훈련 모델 지원 종료.
### 2023년 5월 13일 업데이트
- 원클릭 패키지의 이전 버전 런타임 내, 불필요한 코드(lib.infer_pack 및 uvr5_pack) 제거.
- 훈련 세트 전처리의 유사 다중 처리 버그 수정.
- Harvest 피치 인식 알고리즘에 대한 중위수 필터링 반경 조정 추가.
- 오디오 내보낼 때, 후처리 리샘플링 지원.
- 훈련에 대한 다중 처리 "n_cpu" 설정이 "f0 추출"에서 "데이터 전처리 및 f0 추출"로 변경.
- logs 폴더 하의 인덱스 경로를 자동으로 감지 및 드롭다운 목록 기능 제공.
- 탭 페이지에 "자주 묻는 질문과 답변" 추가. (github RVC wiki 참조 가능)
- 동일한 입력 오디오 경로를 사용할 때 추론, Harvest 피치를 캐시.
(주의: Harvest 피치 추출을 사용하면 전체 파이프라인은 길고 반복적인 피치 추출 과정을 거치게됩니다. 캐싱을 하지 않는다면, 첫 inference 이후의 단계에서 timbre, 인덱스, 피치 중위수 필터링 반경 설정 등 대기시간이 엄청나게 길어집니다!)
### 2023년 5월 14일 업데이트
- 입력의 볼륨 캡슐을 사용하여 출력의 볼륨 캡슐을 혼합하거나 대체. (입력이 무음이거나 출력의 노이즈 문제를 최소화 할 수 있습니다. 입력 오디오의 배경 노이즈(소음)가 큰 경우 해당 기능을 사용하지 않는 것이 좋습니다. 기본적으로 비활성화 되어있는 옵션입니다. (1: 비활성화 상태))
- 추출된 소형 모델을 지정된 빈도로 저장하는 기능을 지원. (다양한 에폭 하에서의 성능을 보려고 하지만 모든 대형 체크포인트를 저장하고 매번 ckpt 처리를 통해 소형 모델을 수동으로 추출하고 싶지 않은 경우 이 기능은 매우 유용합니다)
- 환경 변수를 설정하여 서버의 전역 프록시로 인한 "연결 오류" 문제 해결.
- 사전 훈련된 v2 모델 지원. (현재 40k 버전만 테스트를 위해 공개적으로 사용 가능하며, 다른 두 개의 샘플링 비율은 아직 완전히 훈련되지 않아 보류되었습니다.)
- 추론 전, 1을 초과하는 과도한 볼륨 제한.
- 데이터 전처리 매개변수 미세 조정.
### 2023년 4월 9일 업데이트
- GPU 이용률 향상을 위해 훈련 파라미터 수정: A100은 25%에서 약 90%로 증가, V100: 50%에서 약 90%로 증가, 2060S: 60%에서 약 85%로 증가, P40: 25%에서 약 95%로 증가.
훈련 속도가 크게 향상.
- 매개변수 기준 변경: total batch_size는 GPU당 batch_size를 의미.
- total_epoch 변경: 최대 한도가 100에서 1000으로 증가. 기본값이 10에서 20으로 증가.
- ckpt 추출이 피치를 잘못 인식하여 비정상적인 추론을 유발하는 문제 수정.
- 분산 훈련 과정에서 각 랭크마다 ckpt를 저장하는 문제 수정.
- 특성 추출 과정에 나노 특성 필터링 적용.
- 무음 입력/출력이 랜덤하게 소음을 생성하는 문제 수정. (이전 모델은 새 데이터셋으로 다시 훈련해야 합니다)
### 2023년 4월 16일 업데이트
- 로컬 실시간 음성 변경 미니-GUI 추가, go-realtime-gui.bat를 더블 클릭하여 시작.
- 훈련 및 추론 중 50Hz 이하의 주파수 대역에 대해 필터링 적용.
- 훈련 및 추론의 pyworld 최소 피치 추출을 기본 80에서 50으로 낮춤. 이로 인해, 50-80Hz 사이의 남성 저음이 무음화되지 않습니다.
- 시스템 지역에 따른 WebUI 언어 변경 지원. (현재 en_US, ja_JP, zh_CN, zh_HK, zh_SG, zh_TW를 지원하며, 지원되지 않는 경우 기본값은 en_US)
- 일부 GPU의 인식 수정. (예: V100-16G 인식 실패, P4 인식 실패)
### 2023년 4월 28일 업데이트
- Faiss 인덱스 설정 업그레이드로 속도가 더 빨라지고 품질이 향상.
- total_npy에 대한 의존성 제거. 추후의 모델 공유는 total_npy 입력을 필요로 하지 않습니다.
- 16 시리즈 GPU에 대한 제한 해제, 4GB VRAM GPU에 대한 4GB 추론 설정 제공.
- 일부 오디오 형식에 대한 UVR5 보컬 동반 분리에서의 버그 수정.
- 실시간 음성 변경 미니-GUI는 이제 non-40k 및 non-lazy 피치 모델을 지원합니다.
### 추후 계획
Features:
- 다중 사용자 훈련 탭 지원.(최대 4명)
Base model:
- 훈련 데이터셋에 숨소리 wav 파일을 추가하여, 보컬의 호흡이 노이즈로 변환되는 문제 수정.
- 보컬 훈련 세트의 기본 모델을 추가하기 위한 작업을 진행중이며, 이는 향후에 발표될 예정.

105
docs/kr/README.ko.han.md Normal file
View File

@ -0,0 +1,105 @@
<div align="center">
<h1>Retrieval-based-Voice-Conversion-WebUI</h1>
VITS基盤의 簡單하고使用하기 쉬운音聲變換틀<br><br>
[![madewithlove](https://img.shields.io/badge/made_with-%E2%9D%A4-red?style=for-the-badge&labelColor=orange
)](https://github.com/RVC-Project/Retrieval-based-Voice-Conversion-WebUI)
<img src="https://counter.seku.su/cmoe?name=rvc&theme=r34" /><br>
[![Open In Colab](https://img.shields.io/badge/Colab-F9AB00?style=for-the-badge&logo=googlecolab&color=525252)](https://colab.research.google.com/github/RVC-Project/Retrieval-based-Voice-Conversion-WebUI/blob/main/Retrieval_based_Voice_Conversion_WebUI.ipynb)
[![Licence](https://img.shields.io/github/license/RVC-Project/Retrieval-based-Voice-Conversion-WebUI?style=for-the-badge)](https://github.com/RVC-Project/Retrieval-based-Voice-Conversion-WebUI/blob/main/LICENSE)
[![Huggingface](https://img.shields.io/badge/🤗%20-Spaces-yellow.svg?style=for-the-badge)](https://huggingface.co/lj1995/VoiceConversionWebUI/tree/main/)
[![Discord](https://img.shields.io/badge/RVC%20Developers-Discord-7289DA?style=for-the-badge&logo=discord&logoColor=white)](https://discord.gg/HcsmBBGyVk)
</div>
------
[**更新日誌**](https://github.com/RVC-Project/Retrieval-based-Voice-Conversion-WebUI/blob/main/docs/Changelog_KO.md)
[**English**](../en/README.en.md) | [**中文简体**](../../README.md) | [**日本語**](../jp/README.ja.md) | [**한국어**](../kr/README.ko.md) ([**韓國語**](../kr/README.ko.han.md)) | [**Français**](../fr/README.fr.md) | [**Türkçe**](../tr/README.tr.md) | [**Português**](../pt/README.pt.md)
> [示範映像](https://www.bilibili.com/video/BV1pm4y1z7Gm/)을 確認해 보세요!
> RVC를活用한實時間音聲變換: [w-okada/voice-changer](https://github.com/w-okada/voice-changer)
> 基本모델은 50時間假量의 高品質 오픈 소스 VCTK 데이터셋을 使用하였으므로, 著作權上의 念慮가 없으니 安心하고 使用하시기 바랍니다.
> 著作權問題가 없는 高品質의 노래를 以後에도 繼續해서 訓練할 豫定입니다.
## 紹介
本Repo는 다음과 같은 特徵을 가지고 있습니다:
+ top1檢索을利用하여 入力音色特徵을 訓練세트音色特徵으로 代替하여 音色의漏出을 防止;
+ 相對的으로 낮은性能의 GPU에서도 빠른訓練可能;
+ 적은量의 데이터로 訓練해도 좋은 結果를 얻을 수 있음 (最小10分以上의 低雜음音聲데이터를 使用하는 것을 勸獎);
+ 모델融合을通한 音色의 變調可能 (ckpt處理탭->ckpt混合選擇);
+ 使用하기 쉬운 WebUI (웹 使用者인터페이스);
+ UVR5 모델을 利用하여 목소리와 背景音樂의 빠른 分離;
## 環境의準備
poetry를通해 依存를設置하는 것을 勸獎합니다.
다음命令은 Python 버전3.8以上의環境에서 實行되어야 합니다:
```bash
# PyTorch 關聯主要依存設置, 이미設置되어 있는 境遇 건너뛰기 可能
# 參照: https://pytorch.org/get-started/locally/
pip install torch torchvision torchaudio
# Windows + Nvidia Ampere Architecture(RTX30xx)를 使用하고 있다面, #21 에서 명시된 것과 같이 PyTorch에 맞는 CUDA 버전을 指定해야 합니다.
#pip install torch torchvision torchaudio --index-url https://download.pytorch.org/whl/cu117
# Poetry 設置, 이미設置되어 있는 境遇 건너뛰기 可能
# Reference: https://python-poetry.org/docs/#installation
curl -sSL https://install.python-poetry.org | python3 -
# 依存設置
poetry install
```
pip를 活用하여依存를 設置하여도 無妨합니다.
```bash
pip install -r requirements.txt
```
## 其他預備모델準備
RVC 모델은 推論과訓練을 依하여 다른 預備모델이 必要합니다.
[Huggingface space](https://huggingface.co/lj1995/VoiceConversionWebUI/tree/main/)를 通해서 다운로드 할 수 있습니다.
다음은 RVC에 必要한 預備모델 및 其他 파일 目錄입니다:
```bash
./assets/hubert/hubert_base.pt
./assets/pretrained
./assets/uvr5_weights
V2 버전 모델을 테스트하려면 추가 다운로드가 필요합니다.
./assets/pretrained_v2
# Windows를 使用하는境遇 이 사전도 必要할 수 있습니다. FFmpeg가 設置되어 있으면 건너뛰어도 됩니다.
ffmpeg.exe
```
그後 以下의 命令을 使用하여 WebUI를 始作할 수 있습니다:
```bash
python infer-web.py
```
Windows를 使用하는境遇 `RVC-beta.7z`를 다운로드 및 壓縮解除하여 RVC를 直接使用하거나 `go-web.bat`을 使用하여 WebUi를 直接할 수 있습니다.
## 參考
+ [ContentVec](https://github.com/auspicious3000/contentvec/)
+ [VITS](https://github.com/jaywalnut310/vits)
+ [HIFIGAN](https://github.com/jik876/hifi-gan)
+ [Gradio](https://github.com/gradio-app/gradio)
+ [FFmpeg](https://github.com/FFmpeg/FFmpeg)
+ [Ultimate Vocal Remover](https://github.com/Anjok07/ultimatevocalremovergui)
+ [audio-slicer](https://github.com/openvpi/audio-slicer)
## 모든寄與者분들의勞力에感謝드립니다
<a href="https://github.com/RVC-Project/Retrieval-based-Voice-Conversion-WebUI/graphs/contributors" target="_blank">
<img src="https://contrib.rocks/image?repo=RVC-Project/Retrieval-based-Voice-Conversion-WebUI" />
</a>

258
docs/kr/README.ko.md Normal file
View File

@ -0,0 +1,258 @@
<div align="center">
<h1>Retrieval-based-Voice-Conversion-WebUI</h1>
VITS 기반의 간단하고 사용하기 쉬운 음성 변환 프레임워크.<br><br>
[![madewithlove](https://img.shields.io/badge/made_with-%E2%9D%A4-red?style=for-the-badge&labelColor=orange)](https://github.com/RVC-Project/Retrieval-based-Voice-Conversion-WebUI)
<img src="https://counter.seku.su/cmoe?name=rvc&theme=r34" /><br>
[![Open In Colab](https://img.shields.io/badge/Colab-F9AB00?style=for-the-badge&logo=googlecolab&color=525252)](https://colab.research.google.com/github/RVC-Project/Retrieval-based-Voice-Conversion-WebUI/blob/main/Retrieval_based_Voice_Conversion_WebUI.ipynb)
[![Licence](https://img.shields.io/badge/LICENSE-MIT-green.svg?style=for-the-badge)](https://github.com/RVC-Project/Retrieval-based-Voice-Conversion-WebUI/blob/main/LICENSE)
[![Huggingface](https://img.shields.io/badge/🤗%20-Spaces-yellow.svg?style=for-the-badge)](https://huggingface.co/lj1995/VoiceConversionWebUI/tree/main/)
[![Discord](https://img.shields.io/badge/RVC%20Developers-Discord-7289DA?style=for-the-badge&logo=discord&logoColor=white)](https://discord.gg/HcsmBBGyVk)
[**업데이트 로그**](./Changelog_KO.md) | [**자주 묻는 질문**](./faq_ko.md) | [**AutoDL·5원으로 AI 가수 훈련**](https://github.com/RVC-Project/Retrieval-based-Voice-Conversion-WebUI/wiki/Autodl%E8%AE%AD%E7%BB%83RVC%C2%B7AI%E6%AD%8C%E6%89%8B%E6%95%99%E7%A8%8B) | [**대조 실험 기록**](https://github.com/RVC-Project/Retrieval-based-Voice-Conversion-WebUI/wiki/%E5%AF%B9%E7%85%A7%E5%AE%9E%E9%AA%8C%C2%B7%E5%AE%9E%E9%AA%8C%E8%AE%B0%E5%BD%95) | [**온라인 데모**](https://modelscope.cn/studios/FlowerCry/RVCv2demo)
[**English**](../en/README.en.md) | [**中文简体**](../../README.md) | [**日本語**](../jp/README.ja.md) | [**한국어**](../kr/README.ko.md) ([**韓國語**](../kr/README.ko.han.md)) | [**Français**](../fr/README.fr.md) | [**Türkçe**](../tr/README.tr.md) | [**Português**](../pt/README.pt.md)
</div>
> [데모 영상](https://www.bilibili.com/video/BV1pm4y1z7Gm/)을 확인해 보세요!
> RVC를 활용한 실시간 음성변환: [w-okada/voice-changer](https://github.com/w-okada/voice-changer)
> 기본 모델은 50시간 가량의 고퀄리티 오픈 소스 VCTK 데이터셋을 사용하였으므로, 저작권상의 염려가 없으니 안심하고 사용하시기 바랍니다.
> 더 큰 매개변수, 더 큰 데이터, 더 나은 효과, 기본적으로 동일한 추론 속도, 더 적은 양의 훈련 데이터가 필요한 RVCv3의 기본 모델을 기대해 주십시오.
<table>
<tr>
<td align="center">훈련 및 추론 인터페이스</td>
<td align="center">실시간 음성 변환 인터페이스</td>
</tr>
<tr>
<td align="center"><img src="https://github.com/RVC-Project/Retrieval-based-Voice-Conversion-WebUI/assets/129054828/092e5c12-0d49-4168-a590-0b0ef6a4f630"></td>
<td align="center"><img src="https://github.com/RVC-Project/Retrieval-based-Voice-Conversion-WebUI/assets/129054828/730b4114-8805-44a1-ab1a-04668f3c30a6"></td>
</tr>
<tr>
<td align="center">go-web.bat</td>
<td align="center">go-realtime-gui.bat</td>
</tr>
<tr>
<td align="center">원하는 작업을 자유롭게 선택할 수 있습니다.</td>
<td align="center">우리는 이미 끝에서 끝까지 170ms의 지연을 실현했습니다. ASIO 입력 및 출력 장치를 사용하면 끝에서 끝까지 90ms의 지연을 달성할 수 있지만, 이는 하드웨어 드라이버 지원에 매우 의존적입니다.</td>
</tr>
</table>
## 소개
본 Repo는 다음과 같은 특징을 가지고 있습니다:
- top1 검색을 이용하여 입력 음색 특징을 훈련 세트 음색 특징으로 대체하여 음색의 누출을 방지
- 상대적으로 낮은 성능의 GPU에서도 빠른 훈련 가능
- 적은 양의 데이터로 훈련해도 좋은 결과를 얻을 수 있음 (최소 10분 이상의 저잡음 음성 데이터를 사용하는 것을 권장)
- 모델 융합을 통한 음색의 변조 가능 (ckpt 처리 탭->ckpt 병합 선택)
- 사용하기 쉬운 WebUI (웹 인터페이스)
- UVR5 모델을 이용하여 목소리와 배경음악의 빠른 분리;
- 최첨단 [음성 피치 추출 알고리즘 InterSpeech2023-RMVPE](#参考项目)을 사용하여 무성음 문제를 해결합니다. 효과는 최고(압도적)이며 crepe_full보다 더 빠르고 리소스 사용이 적음
- A카드와 I카드 가속을 지원
해당 프로젝트의 [데모 비디오](https://www.bilibili.com/video/BV1pm4y1z7Gm/)를 확인해보세요!
## 환경 설정
다음 명령은 Python 버전이 3.8 이상인 환경에서 실행해야 합니다.
### Windows/Linux/MacOS 등 플랫폼 공통 방법
아래 방법 중 하나를 선택하세요.
#### 1. pip를 통한 의존성 설치
1. Pytorch 및 의존성 모듈 설치, 이미 설치되어 있으면 생략. 참조: https://pytorch.org/get-started/locally/
```bash
pip install torch torchvision torchaudio
```
2. win 시스템 + Nvidia Ampere 아키텍처(RTX30xx) 사용 시, #21의 사례에 따라 pytorch에 해당하는 cuda 버전을 지정
```bash
pip install torch torchvision torchaudio --index-url https://download.pytorch.org/whl/cu117
```
3. 자신의 그래픽 카드에 맞는 의존성 설치
- N카드
```bash
pip install -r requirements.txt
```
- A카드/I카드
```bash
pip install -r requirements-dml.txt
```
- A카드ROCM(Linux)
```bash
pip install -r requirements-amd.txt
```
- I카드IPEX(Linux)
```bash
pip install -r requirements-ipex.txt
```
#### 2. poetry를 통한 의존성 설치
Poetry 의존성 관리 도구 설치, 이미 설치된 경우 생략. 참조: https://python-poetry.org/docs/#installation
```bash
curl -sSL https://install.python-poetry.org | python3 -
```
poetry를 통한 의존성 설치
```bash
poetry install
```
### MacOS
`run.sh`를 통해 의존성 설치 가능
```bash
sh ./run.sh
```
## 기타 사전 훈련된 모델 준비
RVC는 추론과 훈련을 위해 다른 일부 사전 훈련된 모델이 필요합니다.
이러한 모델은 저희의 [Hugging Face space](https://huggingface.co/lj1995/VoiceConversionWebUI/tree/main/)에서 다운로드할 수 있습니다.
### 1. assets 다운로드
다음은 RVC에 필요한 모든 사전 훈련된 모델과 기타 파일의 목록입니다. `tools` 폴더에서 이들을 다운로드하는 스크립트를 찾을 수 있습니다.
- ./assets/hubert/hubert_base.pt
- ./assets/pretrained
- ./assets/uvr5_weights
v2 버전 모델을 사용하려면 추가로 다음을 다운로드해야 합니다.
- ./assets/pretrained_v2
### 2. ffmpeg 설치
ffmpeg와 ffprobe가 이미 설치되어 있다면 건너뜁니다.
#### Ubuntu/Debian 사용자
```bash
sudo apt install ffmpeg
```
#### MacOS 사용자
```bash
brew install ffmpeg
```
#### Windows 사용자
다운로드 후 루트 디렉토리에 배치.
- [ffmpeg.exe 다운로드](https://huggingface.co/lj1995/VoiceConversionWebUI/blob/main/ffmpeg.exe)
- [ffprobe.exe 다운로드](https://huggingface.co/lj1995/VoiceConversionWebUI/blob/main/ffprobe.exe)
### 3. RMVPE 인간 음성 피치 추출 알고리즘에 필요한 파일 다운로드
최신 RMVPE 인간 음성 피치 추출 알고리즘을 사용하려면 음피치 추출 모델 매개변수를 다운로드하고 RVC 루트 디렉토리에 배치해야 합니다.
- [rmvpe.pt 다운로드](https://huggingface.co/lj1995/VoiceConversionWebUI/blob/main/rmvpe.pt)
#### dml 환경의 RMVPE 다운로드(선택사항, A카드/I카드 사용자)
- [rmvpe.onnx 다운로드](https://huggingface.co/lj1995/VoiceConversionWebUI/blob/main/rmvpe.onnx)
### 4. AMD 그래픽 카드 Rocm(선택사항, Linux만 해당)
Linux 시스템에서 AMD의 Rocm 기술을 기반으로 RVC를 실행하려면 [여기](https://rocm.docs.amd.com/en/latest/deploy/linux/os-native/install.html)에서 필요한 드라이버를 먼저 설치하세요.
Arch Linux를 사용하는 경우 pacman을 사용하여 필요한 드라이버를 설치할 수 있습니다.
```
pacman -S rocm-hip-sdk rocm-opencl-sdk
```
일부 모델의 그래픽 카드(예: RX6700XT)의 경우, 다음과 같은 환경 변수를 추가로 설정해야 할 수 있습니다.
```
export ROCM_PATH=/opt/rocm
export HSA_OVERRIDE_GFX_VERSION=10.3.0
```
동시에 현재 사용자가 `render``video` 사용자 그룹에 속해 있는지 확인하세요.
```
sudo usermod -aG render $USERNAME
sudo usermod -aG video $USERNAME
```
## 시작하기
### 직접 시작
다음 명령어로 WebUI를 시작하세요
```bash
python infer-web.py
```
### 통합 패키지 사용
`RVC-beta.7z`를 다운로드하고 압축 해제
#### Windows 사용자
`go-web.bat` 더블 클릭
#### MacOS 사용자
```bash
sh ./run.sh
```
### IPEX 기술이 필요한 I카드 사용자를 위한 지침(Linux만 해당)
```bash
source /opt/intel/oneapi/setvars.sh
```
## 참조 프로젝트
- [ContentVec](https://github.com/auspicious3000/contentvec/)
- [VITS](https://github.com/jaywalnut310/vits)
- [HIFIGAN](https://github.com/jik876/hifi-gan)
- [Gradio](https://github.com/gradio-app/gradio)
- [FFmpeg](https://github.com/FFmpeg/FFmpeg)
- [Ultimate Vocal Remover](https://github.com/Anjok07/ultimatevocalremovergui)
- [audio-slicer](https://github.com/openvpi/audio-slicer)
- [Vocal pitch extraction:RMVPE](https://github.com/Dream-High/RMVPE)
- 사전 훈련된 모델은 [yxlllc](https://github.com/yxlllc/RMVPE)와 [RVC-Boss](https://github.com/RVC-Boss)에 의해 훈련되고 테스트되었습니다.
## 모든 기여자들의 노력에 감사드립니다
<a href="https://github.com/RVC-Project/Retrieval-based-Voice-Conversion-WebUI/graphs/contributors" target="_blank">
<img src="https://contrib.rocks/image?repo=RVC-Project/Retrieval-based-Voice-Conversion-WebUI" />
</a>

130
docs/kr/faq_ko.md Normal file
View File

@ -0,0 +1,130 @@
## Q1:ffmpeg 오류/utf8 오류
대부분의 경우 ffmpeg 문제가 아니라 오디오 경로 문제입니다. <br>
ffmpeg가 공백, () 등의 특수 문자가 포함된 경로를 읽을 때 ffmpeg 오류가 발생할 수 있습니다. 트레이닝 세트 오디오가 중문 경로일 때 filelist.txt에 쓸 때 utf8 오류가 발생할 수 있습니다. <br>
## Q2:일괄 트레이닝이 끝나고 인덱스가 없음
"Training is done. The program is closed."라고 표시되면 모델 트레이닝이 성공한 것이며, 이어지는 오류는 가짜입니다. <br>
일괄 트레이닝이 끝나고 'added'로 시작하는 인덱스 파일이 없으면 트레이닝 세트가 너무 커서 인덱스 추가 단계에서 멈췄을 수 있습니다. 메모리에 대한 인덱스 추가 요구 사항이 너무 큰 문제를 배치 처리 add 인덱스로 해결했습니다. 임시로 "트레이닝 인덱스" 버튼을 다시 클릭해 보세요. <br>
## Q3:트레이닝이 끝나고 트레이닝 세트의 음색을 추론에서 보지 못함
'음색 새로고침'을 클릭해 보세요. 여전히 없다면 트레이닝에 오류가 있는지, 콘솔 및 webui의 스크린샷, logs/실험명 아래의 로그를 개발자에게 보내 확인해 보세요. <br>
## Q4:모델 공유 방법
rvc_root/logs/실험명 아래에 저장된 pth는 추론에 사용하기 위한 것이 아니라 실험 상태를 저장하고 복원하며, 트레이닝을 계속하기 위한 것입니다. 공유에 사용되는 모델은 weights 폴더 아래 60MB 이상인 pth 파일입니다. <br>
<br/>
향후에는 weights/exp_name.pth와 logs/exp_name/added_xxx.index를 결합하여 weights/exp_name.zip으로 만들어 index 입력 단계를 생략할 예정입니다. 그러면 zip 파일을 공유하고 pth 파일은 공유하지 마세요. 단지 다른 기계에서 트레이닝을 계속하려는 경우에만 공유하세요. <br>
<br/>
logs 폴더 아래 수백 MB의 pth 파일을 weights 폴더에 복사/공유하여 강제로 추론에 사용하면 f0, tgt_sr 등의 키가 없다는 오류가 발생할 수 있습니다. ckpt 탭 아래에서 수동 또는 자동(로컬 logs에서 관련 정보를 찾을 수 있는 경우 자동)으로 음성, 대상 오디오 샘플링률 옵션을 선택한 후 ckpt 소형 모델을 추출해야 합니다(입력 경로에 G로 시작하는 경로를 입력). 추출 후 weights 폴더에 60MB 이상의 pth 파일이 생성되며, 음색 새로고침 후 사용할 수 있습니다. <br>
## Q5:연결 오류
아마도 컨트롤 콘솔(검은 창)을 닫았을 것입니다. <br>
## Q6:WebUI에서 "Expecting value: line 1 column 1 (char 0)" 오류가 발생함
시스템 로컬 네트워크 프록시/글로벌 프록시를 닫으세요. <br>
이는 클라이언트의 프록시뿐만 아니라 서버 측의 프록시도 포함합니다(예: autodl로 http_proxy 및 https_proxy를 설정한 경우 사용 시 unset으로 끄세요). <br>
## Q7:WebUI 없이 명령으로 트레이닝 및 추론하는 방법
트레이닝 스크립트: <br>
먼저 WebUI를 실행하여 데이터 세트 처리 및 트레이닝에 사용되는 명령줄을 메시지 창에서 확인할 수 있습니다. <br>
추론 스크립트: <br>
https://huggingface.co/lj1995/VoiceConversionWebUI/blob/main/myinfer.py <br>
예제: <br>
runtime\python.exe myinfer.py 0 "E:\codes\py39\RVC-beta\todo-songs\1111.wav" "E:\codes\py39\logs\mi-test\added_IVF677_Flat_nprobe_7.index" harvest "test.wav" "weights/mi-test.pth" 0.6 cuda:0 True <br>
f0up_key=sys.argv[1] <br>
input_path=sys.argv[2] <br>
index_path=sys.argv[3] <br>
f0method=sys.argv[4]#harvest 또는 pm <br>
opt_path=sys.argv[5] <br>
model_path=sys.argv[6] <br>
index_rate=float(sys.argv[7]) <br>
device=sys.argv[8] <br>
is_half=bool(sys.argv[9]) <br>
## Q8:Cuda 오류/Cuda 메모리 부족
아마도 cuda 설정 문제이거나 장치가 지원되지 않을 수 있습니다. 대부분의 경우 메모리가 부족합니다(out of memory). <br>
트레이닝의 경우 batch size를 줄이세요(1로 줄여도 부족하다면 다른 그래픽 카드로 트레이닝을 해야 합니다). 추론의 경우 config.py 파일 끝에 있는 x_pad, x_query, x_center, x_max를 적절히 줄이세요. 4GB 미만의 메모리(예: 1060(3GB) 및 여러 2GB 그래픽 카드)를 가진 경우는 포기하세요. 4GB 메모리 그래픽 카드는 아직 구할 수 있습니다. <br>
## Q9:total_epoch를 몇으로 설정하는 것이 좋을까요
트레이닝 세트의 오디오 품질이 낮고 배경 소음이 많으면 20~30이면 충분합니다. 너무 높게 설정하면 바닥 모델의 오디오 품질이 낮은 트레이닝 세트를 높일 수 없습니다. <br>
트레이닝 세트의 오디오 품질이 높고 배경 소음이 적고 길이가 길 경우 높게 설정할 수 있습니다. 200도 괜찮습니다(트레이닝 속도가 빠르므로, 고품질 트레이닝 세트를 준비할 수 있는 조건이 있다면, 그래픽 카드도 좋을 것이므로, 조금 더 긴 트레이닝 시간에 대해 걱정하지 않을 것입니다). <br>
## Q10: 트레이닝 세트는 얼마나 길어야 하나요
10분에서 50분을 추천합니다.
<br/>
음질이 좋고 백그라운드 노이즈가 낮은 상태에서, 개인적인 특색 있는 음색이라면 더 많으면 더 좋습니다.
<br/>
고품질의 트레이닝 세트(정교하게 준비된 + 특색 있는 음색)라면, 5분에서 10분도 괜찮습니다. 저장소의 저자도 종종 이렇게 합니다.
<br/>
1분에서 2분의 데이터로 트레이닝에 성공한 사람도 있지만, 그러한 성공 사례는 다른 사람이 재현하기 어려우며 참고 가치가 크지 않습니다. 이는 트레이닝 세트의 음색이 매우 뚜렷해야 하며(예: 높은 주파수의 명확한 목소리나 소녀음) 음질이 좋아야 합니다.
<br/>
1분 미만의 데이터로 트레이닝을 시도(성공)한 사례는 아직 보지 못했습니다. 이런 시도는 권장하지 않습니다.
## Q11: index rate는 무엇이며, 어떻게 조정하나요? (과학적 설명)
만약 베이스 모델과 추론 소스의 음질이 트레이닝 세트보다 높다면, 그들은 추론 결과의 음질을 높일 수 있지만, 음색이 베이스 모델/추론 소스의 음색으로 기울어질 수 있습니다. 이 현상을 "음색 유출"이라고 합니다.
<br/>
index rate는 음색 유출 문제를 줄이거나 해결하는 데 사용됩니다. 1로 조정하면 이론적으로 추론 소스의 음색 유출 문제가 없지만, 음질은 트레이닝 세트에 더 가깝게 됩니다. 만약 트레이닝 세트의 음질이 추론 소스보다 낮다면, index rate를 높이면 음질이 낮아질 수 있습니다. 0으로 조정하면 검색 혼합을 이용하여 트레이닝 세트의 음색을 보호하는 효과가 없습니다.
<br/>
트레이닝 세트가 고품질이고 길이가 길 경우, total_epoch를 높일 수 있으며, 이 경우 모델 자체가 추론 소스와 베이스 모델의 음색을 거의 참조하지 않아 "음색 유출" 문제가 거의 발생하지 않습니다. 이때 index rate는 중요하지 않으며, 심지어 index 색인 파일을 생성하거나 공유하지 않아도 됩니다.
## Q11: 추론시 GPU를 어떻게 선택하나요?
config.py 파일에서 device cuda: 다음에 카드 번호를 선택합니다.
카드 번호와 그래픽 카드의 매핑 관계는 트레이닝 탭의 그래픽 카드 정보란에서 볼 수 있습니다.
## Q12: 트레이닝 중간에 저장된 pth를 어떻게 추론하나요?
ckpt 탭 하단에서 소형 모델을 추출합니다.
## Q13: 트레이닝을 어떻게 중단하고 계속할 수 있나요?
현재 단계에서는 WebUI 콘솔을 닫고 go-web.bat을 더블 클릭하여 프로그램을 다시 시작해야 합니다. 웹 페이지 매개변수도 새로 고쳐서 다시 입력해야 합니다.
트레이닝을 계속하려면: 같은 웹 페이지 매개변수로 트레이닝 모델을 클릭하면 이전 체크포인트에서 트레이닝을 계속합니다.
## Q14: 트레이닝 중 파일 페이지/메모리 오류가 발생하면 어떻게 해야 하나요?
프로세스가 너무 많이 열려 메모리가 폭발했습니다. 다음과 같은 방법으로 해결할 수 있습니다.
1. "음높이 추출 및 데이터 처리에 사용되는 CPU 프로세스 수"를 적당히 낮춥니다.
2. 트레이닝 세트 오디오를 수동으로 잘라 너무 길지 않게 합니다.
## Q15: 트레이닝 도중 데이터를 어떻게 추가하나요?
1. 모든 데이터에 새로운 실험 이름을 만듭니다.
2. 이전에 가장 최신의 G와 D 파일(또는 어떤 중간 ckpt를 기반으로 트레이닝하고 싶다면 중간 것을 복사할 수도 있음)을 새 실험 이름으로 복사합니다.
3. 새 실험 이름으로 원클릭 트레이닝을 시작하면 이전의 최신 진행 상황에서 계속 트레이닝합니다.
## Q16: llvmlite.dll에 관한 오류
```bash
OSError: Could not load shared object file: llvmlite.dll
FileNotFoundError: Could not find module lib\site-packages\llvmlite\binding\llvmlite.dll (or one of its dependencies). Try using the full path with constructor syntax.
```
Windows 플랫폼에서 이 오류가 발생하면 https://aka.ms/vs/17/release/vc_redist.x64.exe를 설치하고 WebUI를 다시 시작하면 해결됩니다.
## Q17: RuntimeError: 텐서의 확장된 크기(17280)는 비 단일 항목 차원 1에서 기존 크기(0)와 일치해야 합니다. 대상 크기: [1, 17280]. 텐서 크기: [0]
wavs16k 폴더 아래에서 다른 파일들보다 크기가 현저히 작은 일부 오디오 파일을 찾아 삭제하고, 트레이닝 모델을 클릭하면 오류가 발생하지 않습니다. 하지만 원클릭 프로세스가 중단되었기 때문에 모델 트레이닝이 완료된 후에는 인덱스 트레이닝을 클릭해야 합니다.
## Q18: RuntimeError: 텐서 a의 크기(24)가 비 단일 항목 차원 2에서 텐서 b(16)의 크기와 일치해야 합니다.
트레이닝 도중에 샘플링 레이트를 변경해서는 안 됩니다. 변경해야 한다면 실험 이름을 변경하고 처음부터 트레이닝해야 합니다. 물론, 이전에 추출한 음높이와 특징(0/1/2/2b 폴더)을 복사하여 트레이닝 프로세스를 가속화할 수도 있습니다.

105
docs/pt/Changelog_pt.md Normal file
View File

@ -0,0 +1,105 @@
### 2023-10-06
- Criamos uma GUI para alteração de voz em tempo real: go-realtime-gui.bat/gui_v1.py (observe que você deve escolher o mesmo tipo de dispositivo de entrada e saída, por exemplo, MME e MME).
- Treinamos um modelo RMVPE de extração de pitch melhor.
- Otimizar o layout da GUI de inferência.
### 2023-08-13
1-Correção de bug regular
- Alterar o número total mínimo de épocas para 1 e alterar o número total mínimo de epoch para 2
- Correção de erros de treinamento por não usar modelos de pré-treinamento
- Após a separação dos vocais de acompanhamento, limpe a memória dos gráficos
- Alterar o caminho absoluto do faiss save para o caminho relativo
- Suporte a caminhos com espaços (tanto o caminho do conjunto de treinamento quanto o nome do experimento são suportados, e os erros não serão mais relatados)
- A lista de arquivos cancela a codificação utf8 obrigatória
- Resolver o problema de consumo de CPU causado pela busca do faiss durante alterações de voz em tempo real
Atualizações do 2-Key
- Treine o modelo de extração de pitch vocal de código aberto mais forte do momento, o RMVPE, e use-o para treinamento de RVC, inferência off-line/em tempo real, com suporte a PyTorch/Onnx/DirectML
- Suporte para placas gráficas AMD e Intel por meio do Pytorch_DML
(1) Mudança de voz em tempo real (2) Inferência (3) Separação do acompanhamento vocal (4) Não há suporte para treinamento no momento, mudaremos para treinamento de CPU; há suporte para inferência RMVPE de gpu por Onnx_Dml
### 2023-06-18
- Novos modelos v2 pré-treinados: 32k e 48k
- Correção de erros de inferência de modelo não-f0
- Para conjuntos de treinamento que excedam 1 hora, faça minibatch-kmeans automáticos para reduzir a forma dos recursos, de modo que o treinamento, a adição e a pesquisa do Index sejam muito mais rápidos.
- Fornecer um espaço de brinquedo vocal2guitar huggingface
- Exclusão automática de áudios de conjunto de treinamento de atalhos discrepantes
- Guia de exportação Onnx
Experimentos com falha:
- ~~Recuperação de recurso: adicionar recuperação de recurso temporal: não eficaz~~
- ~~Recuperação de recursos: adicionar redução de dimensionalidade PCAR: a busca é ainda mais lenta~~
- ~~Aumento de dados aleatórios durante o treinamento: não é eficaz~~
Lista de tarefas
- ~~Vocos-RVC (vocoder minúsculo): não é eficaz~~
- ~~Suporte de crepe para treinamento: substituído pelo RMVPE~~
- ~~Inferência de crepe de meia precisãosubstituída pelo RMVPE. E difícil de conseguir.~~
- Suporte ao editor de F0
### 2023-05-28
- Adicionar notebook jupyter v2, changelog em coreano, corrigir alguns requisitos de ambiente
- Adicionar consoante sem voz e modo de proteção de respiração
- Suporte à detecção de pitch crepe-full
- Separação vocal UVR5: suporte a modelos dereverb e modelos de-echo
- Adicionar nome e versão do experimento no nome do Index
- Suporte aos usuários para selecionar manualmente o formato de exportação dos áudios de saída durante o processamento de conversão de voz em lote e a separação vocal UVR5
- Não há mais suporte para o treinamento do modelo v1 32k
### 2023-05-13
- Limpar os códigos redundantes na versão antiga do tempo de execução no pacote de um clique: lib.infer_pack e uvr5_pack
- Correção do bug de pseudo multiprocessamento no pré-processamento do conjunto de treinamento
- Adição do ajuste do raio de filtragem mediana para o algoritmo de reconhecimento de inclinação da extração
- Suporte à reamostragem de pós-processamento para exportação de áudio
- A configuração "n_cpu" de multiprocessamento para treinamento foi alterada de "extração de f0" para "pré-processamento de dados e extração de f0"
- Detectar automaticamente os caminhos de Index na pasta de registros e fornecer uma função de lista suspensa
- Adicionar "Perguntas e respostas frequentes" na página da guia (você também pode consultar o wiki do RVC no github)
- Durante a inferência, o pitch da colheita é armazenado em cache quando se usa o mesmo caminho de áudio de entrada (finalidade: usando a extração do pitch da colheita, todo o pipeline passará por um processo longo e repetitivo de extração do pitch. Se o armazenamento em cache não for usado, os usuários que experimentarem diferentes configurações de raio de filtragem de timbre, Index e mediana de pitch terão um processo de espera muito doloroso após a primeira inferência)
### 2023-05-14
- Use o envelope de volume da entrada para misturar ou substituir o envelope de volume da saída (pode aliviar o problema de "muting de entrada e ruído de pequena amplitude de saída"). Se o ruído de fundo do áudio de entrada for alto, não é recomendável ativá-lo, e ele não é ativado por padrão (1 pode ser considerado como não ativado)
- Suporte ao salvamento de modelos pequenos extraídos em uma frequência especificada (se você quiser ver o desempenho em épocas diferentes, mas não quiser salvar todos os pontos de verificação grandes e extrair manualmente modelos pequenos pelo processamento ckpt todas as vezes, esse recurso será muito prático)
- Resolver o problema de "erros de conexão" causados pelo proxy global do servidor, definindo variáveis de ambiente
- Oferece suporte a modelos v2 pré-treinados (atualmente, apenas as versões 40k estão disponíveis publicamente para teste e as outras duas taxas de amostragem ainda não foram totalmente treinadas)
- Limita o volume excessivo que excede 1 antes da inferência
- Ajustou ligeiramente as configurações do pré-processamento do conjunto de treinamento
#######################
Histórico de registros de alterações:
### 2023-04-09
- Parâmetros de treinamento corrigidos para melhorar a taxa de utilização da GPU: A100 aumentou de 25% para cerca de 90%, V100: 50% para cerca de 90%, 2060S: 60% para cerca de 85%, P40: 25% para cerca de 95%; melhorou significativamente a velocidade de treinamento
- Parâmetro alterado: total batch_size agora é por GPU batch_size
- Total_epoch alterado: limite máximo aumentado de 100 para 1000; padrão aumentado de 10 para 20
- Corrigido o problema da extração de ckpt que reconhecia o pitch incorretamente, causando inferência anormal
- Corrigido o problema do treinamento distribuído que salvava o ckpt para cada classificação
- Aplicada a filtragem de recursos nan para extração de recursos
- Corrigido o problema com a entrada/saída silenciosa que produzia consoantes aleatórias ou ruído (os modelos antigos precisavam ser treinados novamente com um novo conjunto de dados)
### Atualização 2023-04-16
- Adicionada uma mini-GUI de alteração de voz local em tempo real, iniciada com um clique duplo em go-realtime-gui.bat
- Filtragem aplicada para bandas de frequência abaixo de 50 Hz durante o treinamento e a inferência
- Diminuição da extração mínima de tom do pyworld do padrão 80 para 50 para treinamento e inferência, permitindo que vozes masculinas de tom baixo entre 50-80 Hz não sejam silenciadas
- A WebUI suporta a alteração de idiomas de acordo com a localidade do sistema (atualmente suporta en_US, ja_JP, zh_CN, zh_HK, zh_SG, zh_TW; o padrão é en_US se não for suportado)
- Correção do reconhecimento de algumas GPUs (por exemplo, falha no reconhecimento da V100-16G, falha no reconhecimento da P4)
### Atualização de 2023-04-28
- Atualizadas as configurações do Index faiss para maior velocidade e qualidade
- Removida a dependência do total_npy; o futuro compartilhamento de modelos não exigirá a entrada do total_npy
- Restrições desbloqueadas para as GPUs da série 16, fornecendo configurações de inferência de 4 GB para GPUs com VRAM de 4 GB
- Corrigido o erro na separação do acompanhamento vocal do UVR5 para determinados formatos de áudio
- A mini-GUI de alteração de voz em tempo real agora suporta modelos de pitch não 40k e que não são lentos
### Planos futuros:
Recursos:
- Opção de adição: extrair modelos pequenos para cada epoch salvo
- Adicionar opção: exportar mp3 adicional para o caminho especificado durante a inferência
- Suporte à guia de treinamento para várias pessoas (até 4 pessoas)
Modelo básico:
- Coletar arquivos wav de respiração para adicionar ao conjunto de dados de treinamento para corrigir o problema de sons de respiração distorcidos
- No momento, estamos treinando um modelo básico com um conjunto de dados de canto estendido, que será lançado no futuro

193
docs/pt/README.pt.md Normal file
View File

@ -0,0 +1,193 @@
<div align="center">
<h1>Retrieval-based-Voice-Conversion-WebUI</h1>
Uma estrutura de conversão de voz fácil de usar baseada em VITS.<br><br>
[![madewithlove](https://img.shields.io/badge/made_with-%E2%9D%A4-red?style=for-the-badge&labelColor=orange
)](https://github.com/RVC-Project/Retrieval-based-Voice-Conversion-WebUI)
<img src="https://counter.seku.su/cmoe?name=rvc&theme=r34" /><br>
[![Open In Colab](https://img.shields.io/badge/Colab-F9AB00?style=for-the-badge&logo=googlecolab&color=525252)](https://colab.research.google.com/github/RVC-Project/Retrieval-based-Voice-Conversion-WebUI/blob/main/Retrieval_based_Voice_Conversion_WebUI.ipynb)
[![Licence](https://img.shields.io/github/license/RVC-Project/Retrieval-based-Voice-Conversion-WebUI?style=for-the-badge)](https://github.com/RVC-Project/Retrieval-based-Voice-Conversion-WebUI/blob/main/LICENSE)
[![Huggingface](https://img.shields.io/badge/🤗%20-Spaces-yellow.svg?style=for-the-badge)](https://huggingface.co/lj1995/VoiceConversionWebUI/tree/main/)
[![Discord](https://img.shields.io/badge/RVC%20Developers-Discord-7289DA?style=for-the-badge&logo=discord&logoColor=white)](https://discord.gg/HcsmBBGyVk)
</div>
------
[**Changelog**](https://github.com/RVC-Project/Retrieval-based-Voice-Conversion-WebUI/blob/main/docs/Changelog_EN.md) | [**FAQ (Frequently Asked Questions)**](https://github.com/RVC-Project/Retrieval-based-Voice-Conversion-WebUI/wiki/FAQ-(Frequently-Asked-Questions))
[**English**](../en/README.en.md) | [**中文简体**](../../README.md) | [**日本語**](../jp/README.ja.md) | [**한국어**](../kr/README.ko.md) ([**韓國語**](../kr/README.ko.han.md)) | [**Türkçe**](../tr/README.tr.md) | [**Português**](../pt/README.pt.md)
Confira nosso [Vídeo de demonstração](https://www.bilibili.com/video/BV1pm4y1z7Gm/) aqui!
Treinamento/Inferência WebUIgo-web.bat
![Traduzido](https://github.com/RafaelGodoyEbert/Retrieval-based-Voice-Conversion-WebUI/assets/78083427/0b894d87-565a-432c-8b5b-45e4a65d5d17)
GUI de conversão de voz em tempo realgo-realtime-gui.bat
![image](https://github.com/RafaelGodoyEbert/Retrieval-based-Voice-Conversion-WebUI/assets/78083427/d172e3e5-35f4-4876-9530-c28246919e9e)
> O dataset para o modelo de pré-treinamento usa quase 50 horas de conjunto de dados de código aberto VCTK de alta qualidade.
> Dataset de músicas licenciadas de alta qualidade serão adicionados ao conjunto de treinamento, um após o outro, para seu uso, sem se preocupar com violação de direitos autorais.
> Aguarde o modelo básico pré-treinado do RVCv3, que possui parâmetros maiores, mais dados de treinamento, melhores resultados, velocidade de inferência inalterada e requer menos dados de treinamento para treinamento.
## Resumo
Este repositório possui os seguintes recursos:
+ Reduza o vazamento de tom substituindo o recurso de origem pelo recurso de conjunto de treinamento usando a recuperação top1;
+ Treinamento fácil e rápido, mesmo em placas gráficas relativamente ruins;
+ Treinar com uma pequena quantidade de dados também obtém resultados relativamente bons (>=10min de áudio com baixo ruído recomendado);
+ Suporta fusão de modelos para alterar timbres (usando guia de processamento ckpt-> mesclagem ckpt);
+ Interface Webui fácil de usar;
+ Use o modelo UVR5 para separar rapidamente vocais e instrumentos.
+ Use o mais poderoso algoritmo de extração de voz de alta frequência [InterSpeech2023-RMVPE](#Credits) para evitar o problema de som mudo. Fornece os melhores resultados (significativamente) e é mais rápido, com consumo de recursos ainda menor que o Crepe_full.
+ Suporta aceleração de placas gráficas AMD/Intel.
+ Aceleração de placas gráficas Intel ARC com suporte para IPEX.
## Preparando o ambiente
Os comandos a seguir precisam ser executados no ambiente Python versão 3.8 ou superior.
(Windows/Linux)
Primeiro instale as dependências principais através do pip:
```bash
# Instale as dependências principais relacionadas ao PyTorch, pule se instaladas
# Referência: https://pytorch.org/get-started/locally/
pip install torch torchvision torchaudio
#Para arquitetura Windows + Nvidia Ampere (RTX30xx), você precisa especificar a versão cuda correspondente ao pytorch de acordo com a experiência de https://github.com/RVC-Project/Retrieval-based-Voice-Conversion-WebUI/issues/ 21
#pip instalar tocha torchvision torchaudio --index-url https://download.pytorch.org/whl/cu117
#Para placas Linux + AMD, você precisa usar as seguintes versões do pytorch:
#pip instalar tocha torchvision torchaudio --index-url https://download.pytorch.org/whl/rocm5.4.2
```
Então pode usar poesia para instalar as outras dependências:
```bash
# Instale a ferramenta de gerenciamento de dependências Poetry, pule se instalada
# Referência: https://python-poetry.org/docs/#installation
curl -sSL https://install.python-poetry.org | python3 -
#Instale as dependências do projeto
poetry install
```
Você também pode usar pip para instalá-los:
```bash
for Nvidia graphics cards
pip install -r requirements.txt
for AMD/Intel graphics cards on Windows (DirectML)
pip install -r requirements-dml.txt
for Intel ARC graphics cards on Linux / WSL using Python 3.10:
pip install -r requirements-ipex.txt
for AMD graphics cards on Linux (ROCm):
pip install -r requirements-amd.txt
```
------
Usuários de Mac podem instalar dependências via `run.sh`:
```bash
sh ./run.sh
```
## Preparação de outros Pré-modelos
RVC requer outros pré-modelos para inferir e treinar.
```bash
#Baixe todos os modelos necessários em https://huggingface.co/lj1995/VoiceConversionWebUI/tree/main/
python tools/download_models.py
```
Ou apenas baixe-os você mesmo em nosso [Huggingface space](https://huggingface.co/lj1995/VoiceConversionWebUI/tree/main/).
Aqui está uma lista de pré-modelos e outros arquivos que o RVC precisa:
```bash
./assets/hubert/hubert_base.pt
./assets/pretrained
./assets/uvr5_weights
Downloads adicionais são necessários se você quiser testar a versão v2 do modelo.
./assets/pretrained_v2
Se você deseja testar o modelo da versão v2 (o modelo da versão v2 alterou a entrada do recurso dimensional 256 do Hubert + final_proj de 9 camadas para o recurso dimensional 768 do Hubert de 12 camadas e adicionou 3 discriminadores de período), você precisará baixar recursos adicionais
./assets/pretrained_v2
#Se você estiver usando Windows, também pode precisar desses dois arquivos, pule se FFmpeg e FFprobe estiverem instalados
ffmpeg.exe
https://huggingface.co/lj1995/VoiceConversionWebUI/blob/main/ffmpeg.exe
ffprobe.exe
https://huggingface.co/lj1995/VoiceConversionWebUI/blob/main/ffprobe.exe
Se quiser usar o algoritmo de extração de tom vocal SOTA RMVPE mais recente, você precisa baixar os pesos RMVPE e colocá-los no diretório raiz RVC
https://huggingface.co/lj1995/VoiceConversionWebUI/blob/main/rmvpe.pt
Para usuários de placas gráficas AMD/Intel, você precisa baixar:
https://huggingface.co/lj1995/VoiceConversionWebUI/blob/main/rmvpe.onnx
```
Os usuários de placas gráficas Intel ARC precisam executar o comando `source /opt/intel/oneapi/setvars.sh` antes de iniciar o Webui.
Em seguida, use este comando para iniciar o Webui:
```bash
python infer-web.py
```
Se estiver usando Windows ou macOS, você pode baixar e extrair `RVC-beta.7z` para usar RVC diretamente usando `go-web.bat` no Windows ou `sh ./run.sh` no macOS para iniciar o Webui.
## Suporte ROCm para placas gráficas AMD (somente Linux)
Para usar o ROCm no Linux, instale todos os drivers necessários conforme descrito [aqui](https://rocm.docs.amd.com/en/latest/deploy/linux/os-native/install.html).
No Arch use pacman para instalar o driver:
````
pacman -S rocm-hip-sdk rocm-opencl-sdk
````
Talvez você também precise definir estas variáveis de ambiente (por exemplo, em um RX6700XT):
````
export ROCM_PATH=/opt/rocm
export HSA_OVERRIDE_GFX_VERSION=10.3.0
````
Verifique também se seu usuário faz parte do grupo `render` e `video`:
````
sudo usermod -aG render $USERNAME
sudo usermod -aG video $USERNAME
````
Depois disso, você pode executar o WebUI:
```bash
python infer-web.py
```
## Credits
+ [ContentVec](https://github.com/auspicious3000/contentvec/)
+ [VITS](https://github.com/jaywalnut310/vits)
+ [HIFIGAN](https://github.com/jik876/hifi-gan)
+ [Gradio](https://github.com/gradio-app/gradio)
+ [FFmpeg](https://github.com/FFmpeg/FFmpeg)
+ [Ultimate Vocal Remover](https://github.com/Anjok07/ultimatevocalremovergui)
+ [audio-slicer](https://github.com/openvpi/audio-slicer)
+ [Vocal pitch extraction:RMVPE](https://github.com/Dream-High/RMVPE)
+ The pretrained model is trained and tested by [yxlllc](https://github.com/yxlllc/RMVPE) and [RVC-Boss](https://github.com/RVC-Boss).
## Thanks to all contributors for their efforts
<a href="https://github.com/RVC-Project/Retrieval-based-Voice-Conversion-WebUI/graphs/contributors" target="_blank">
<img src="https://contrib.rocks/image?repo=RVC-Project/Retrieval-based-Voice-Conversion-WebUI" />
</a>

102
docs/pt/faiss_tips_pt.md Normal file
View File

@ -0,0 +1,102 @@
pONTAS de afinação FAISS
==================
# sobre faiss
faiss é uma biblioteca de pesquisas de vetores densos na área, desenvolvida pela pesquisa do facebook, que implementa com eficiência muitos métodos de pesquisa de área aproximada.
A Pesquisa Aproximada de área encontra vetores semelhantes rapidamente, sacrificando alguma precisão.
## faiss em RVC
No RVC, para a incorporação de recursos convertidos pelo HuBERT, buscamos incorporações semelhantes à incorporação gerada a partir dos dados de treinamento e as misturamos para obter uma conversão mais próxima do discurso original. No entanto, como essa pesquisa leva tempo se realizada de forma ingênua, a conversão de alta velocidade é realizada usando a pesquisa aproximada de área.
# visão geral da implementação
Em '/logs/nome-do-seu-modelo/3_feature256', onde o modelo está localizado, os recursos extraídos pelo HuBERT de cada dado de voz estão localizados.
A partir daqui, lemos os arquivos npy ordenados por nome de arquivo e concatenamos os vetores para criar big_npy. (Este vetor tem a forma [N, 256].)
Depois de salvar big_npy as /logs/nome-do-seu-modelo/total_fea.npy, treine-o com faiss.
Neste artigo, explicarei o significado desses parâmetros.
# Explicação do método
## Fábrica de Index
Uma fábrica de Index é uma notação faiss exclusiva que expressa um pipeline que conecta vários métodos de pesquisa de área aproximados como uma string.
Isso permite que você experimente vários métodos aproximados de pesquisa de área simplesmente alterando a cadeia de caracteres de fábrica do Index.
No RVC é usado assim:
```python
index = faiss.index_factory(256, "IVF%s,Flat" % n_ivf)
```
Entre os argumentos de index_factory, o primeiro é o número de dimensões do vetor, o segundo é a string de fábrica do Index e o terceiro é a distância a ser usada.
Para uma notação mais detalhada
https://github.com/facebookresearch/faiss/wiki/The-index-factory
## Construção de Index
Existem dois Indexs típicos usados como similaridade de incorporação da seguinte forma.
- Distância euclidiana (MÉTRICA_L2)
- Produto interno (METRIC_INNER_PRODUCT)
A distância euclidiana toma a diferença quadrática em cada dimensão, soma as diferenças em todas as dimensões e, em seguida, toma a raiz quadrada. Isso é o mesmo que a distância em 2D e 3D que usamos diariamente.
O produto interno não é usado como um Index de similaridade como é, e a similaridade de cosseno que leva o produto interno depois de ser normalizado pela norma L2 é geralmente usada.
O que é melhor depende do caso, mas a similaridade de cosseno é frequentemente usada na incorporação obtida pelo word2vec e modelos de recuperação de imagem semelhantes aprendidos pelo ArcFace. Se você quiser fazer a normalização l2 no vetor X com numpy, você pode fazê-lo com o seguinte código com eps pequeno o suficiente para evitar a divisão 0.
```python
X_normed = X / np.maximum(eps, np.linalg.norm(X, ord=2, axis=-1, keepdims=True))
```
Além disso, para a Construção de Index, você pode alterar o Index de distância usado para cálculo escolhendo o valor a ser passado como o terceiro argumento.
```python
index = faiss.index_factory(dimention, text, faiss.METRIC_INNER_PRODUCT)
```
## FI
IVF (Inverted file indexes) é um algoritmo semelhante ao Index invertido na pesquisa de texto completo.
Durante o aprendizado, o destino da pesquisa é agrupado com kmeans e o particionamento Voronoi é realizado usando o centro de cluster. A cada ponto de dados é atribuído um cluster, por isso criamos um dicionário que procura os pontos de dados dos clusters.
Por exemplo, se os clusters forem atribuídos da seguinte forma
|index|Cluster|
|-----|-------|
|1|A|
|2|B|
|3|A|
|4|C|
|5|B|
O Index invertido resultante se parece com isso:
| cluster | Index |
|-------|-----|
| A | 1, 3 |
| B | 2 5 |
| C | 4 |
Ao pesquisar, primeiro pesquisamos n_probe clusters dos clusters e, em seguida, calculamos as distâncias para os pontos de dados pertencentes a cada cluster.
# Parâmetro de recomendação
Existem diretrizes oficiais sobre como escolher um Index, então vou explicar de
acordo. https://github.com/facebookresearch/faiss/wiki/Guidelines-to-choose-an-index
Para conjuntos de dados abaixo de 1M, o 4bit-PQ é o método mais eficiente disponível no faiss em abril de 2023.
Combinando isso com a fertilização in vitro, estreitando os candidatos com 4bit-PQ e, finalmente, recalcular a distância com um Index preciso pode ser descrito usando a seguinte fábrica de Indexs.
```python
index = faiss.index_factory(256, "IVF1024,PQ128x4fs,RFlat")
```
## Parâmetros recomendados para FIV
Considere o caso de muitas FIVs. Por exemplo, se a quantização grosseira por FIV for realizada para o número de dados, isso é o mesmo que uma pesquisa exaustiva ingênua e é ineficiente.
Para 1M ou menos, os valores de FIV são recomendados entre 4*sqrt(N) ~ 16*sqrt(N) para N número de pontos de dados.
Como o tempo de cálculo aumenta proporcionalmente ao número de n_sondas, consulte a precisão e escolha adequadamente. Pessoalmente, não acho que o RVC precise de tanta precisão, então n_probe = 1 está bem.
## FastScan
O FastScan é um método que permite a aproximação de alta velocidade de distâncias por quantização de produto cartesiano, realizando-as em registros.
A quantização cartesiana do produto executa o agrupamento independentemente para cada dimensão d (geralmente d = 2) durante o aprendizado, calcula a distância entre os agrupamentos com antecedência e cria uma tabela de pesquisa. No momento da previsão, a distância de cada dimensão pode ser calculada em O(1) olhando para a tabela de pesquisa.
Portanto, o número que você especifica após PQ geralmente especifica metade da dimensão do vetor.
Para uma descrição mais detalhada do FastScan, consulte a documentação oficial.
https://github.com/facebookresearch/faiss/wiki/Fast-accumulation-of-PQ-and-AQ-codes-(FastScan)
## RFlat
RFlat é uma instrução para recalcular a distância aproximada calculada pelo FastScan com a distância exata especificada pelo terceiro argumento da Construção de Index.
Ao obter áreas k, os pontos k*k_factor são recalculados.

224
docs/pt/faq_pt.md Normal file
View File

@ -0,0 +1,224 @@
# <b>FAQ AI HUB BRASIL</b>
## <span style="color: #337dff;">O que é epoch, quantos utilizar, quanto de dataset utilizar e qual à configuração interessante?</span>
Epochs basicamente quantas vezes o seu dataset foi treinado.
Recomendado ler Q8 e Q9 no final dessa página pra entender mais sobre dataset e epochs
__**Não é uma regra, mas opinião:**__
### **Mangio-Crepe Hop Length**
- 64 pra cantores e dubladores
- 128(padrão) para os demais (editado)
### **Epochs e dataset**
600epoch para cantores - --dataset entre 10 e 50 min desnecessario mais que 50 minutos--
300epoch para os demais - --dataset entre 10 e 50 min desnecessario mais que 50 minutos--
### **Tom**
magio-crepe se for audios extraído de alguma musica
harvest se for de estúdio<hr>
## <span style="color: #337dff;">O que é index?</span>
Basicamente o que define o sotaque. Quanto maior o numero, mas próximo o sotaque fica do original. Porém, quando o modelo é bem, não é necessário um index.<hr>
## <span style="color: #337dff;">O que significa cada sigla (pm, harvest, crepe, magio-crepe, RMVPE)?</span>
- pm = extração mais rápida, mas discurso de qualidade inferior;
- harvest = graves melhores, mas extremamente lentos;
- dio = conversão rápida mas pitch ruim;
- crepe = melhor qualidade, mas intensivo em GPU;
- crepe-tiny = mesma coisa que o crepe, só que com a qualidade um pouco inferior;
- **mangio-crepe = melhor qualidade, mais otimizado; (MELHOR OPÇÃO)**
- mangio-crepe-tiny = mesma coisa que o mangio-crepe, só que com a qualidade um pouco inferior;
- RMVPE: um modelo robusto para estimativa de afinação vocal em música polifônica;<hr>
## <span style="color: #337dff;">Pra rodar localmente, quais os requisitos minimos?</span>
Já tivemos relatos de pessoas com GTX 1050 rodando inferencia, se for treinar numa 1050 vai demorar muito mesmo e inferior a isso, normalmente da tela azul
O mais importante é placa de vídeo, vram na verdade
Se você tiver 4GB ou mais, você tem uma chance.
**NOS DOIS CASOS NÃO É RECOMENDADO UTILIZAR O PC ENQUANTO ESTÁ UTILIZNDO, CHANCE DE TELA AZUL É ALTA**
### Inference
Não é algo oficial para requisitos minimos
- Placa de vídeo: nvidia de 4gb
- Memoria ram: 8gb
- CPU: ?
- Armanezamento: 20gb (sem modelos)
### Treinamento de voz
Não é algo oficial para requisitos minimos
- Placa de vídeo: nvidia de 6gb
- Memoria ram: 16gb
- CPU: ?
- Armanezamento: 20gb (sem modelos)<hr>
## <span style="color: #337dff;">Limite de GPU no Google Colab excedido, apenas CPU o que fazer?</span>
Recomendamos esperar outro dia pra liberar mais 15gb ou 12 horas pra você. Ou você pode contribuir com o Google pagando algum dos planos, ai aumenta seu limite.<br>
Utilizar apenas CPU no Google Colab demora DEMAIS.<hr>
## <span style="color: #337dff;">Google Colab desconectando com muita frequencia, o que fazer?</span>
Neste caso realmente não tem muito o que fazer. Apenas aguardar o proprietário do código corrigir ou a gente do AI HUB Brasil achar alguma solução. Isso acontece por diversos motivos, um incluindo a Google barrando o treinamento de voz.<hr>
## <span style="color: #337dff;">O que é Batch Size/Tamanho de lote e qual numero utilizar?</span>
Batch Size/Tamanho do lote é basicamente quantos epoch faz ao mesmo tempo. Se por 20, ele fazer 20 epoch ao mesmo tempo e isso faz pesar mais na máquina e etc.<br>
No Google Colab você pode utilizar até 20 de boa.<br>
Se rodando localmente, depende da sua placa de vídeo, começa por baixo (6) e vai testando.<hr>
## <span style="color: #337dff;">Sobre backup na hora do treinamento</span>
Backup vai de cada um. Eu quando uso a ``easierGUI`` utilizo a cada 100 epoch (meu caso isolado).
No colab, se instavel, coloque a cada 10 epoch
Recomendo utilizarem entre 25 e 50 pra garantir.
Lembrando que cada arquivo geral é por volta de 50mb, então tenha muito cuidado quanto você coloca. Pois assim pode acabar lotando seu Google Drive ou seu PC.
Depois de finalizado, da pra apagar os epoch de backup.<hr>
## <span style="color: #337dff;">Como continuar da onde parou pra fazer mais epochs?</span>
Primeira coisa que gostaria de lembrar, não necessariamente quanto mais epochs melhor. Se fizer epochs demais vai dar **overtraining** o que pode ser ruim.
### GUI NORMAL
- Inicie normalmente a GUI novamente.
- Na aba de treino utilize o MESMO nome que estava treinando, assim vai continuar o treino onde parou o ultimo backup.
- Ignore as opções ``Processar o Conjunto de dados`` e ``Extrair Tom``
- Antes de clicar pra treinar, arrume os epoch, bakcup e afins.
- Obviamente tem que ser um numero maior do qu estava em epoch.
- Backup você pode aumentar ou diminuir
- Agora você vai ver a opção ``Carregue o caminho G do modelo base pré-treinado:`` e ``Carregue o caminho D do modelo base pré-treinado:``
-Aqui você vai por o caminho dos modelos que estão em ``./logs/minha-voz``
- Vai ficar algo parecido com isso ``e:/RVC/logs/minha-voz/G_0000.pth`` e ``e:/RVC/logs/minha-voz/D_0000.pth``
-Coloque pra treinar
**Lembrando que a pasta logs tem que ter todos os arquivos e não somente o arquivo ``G`` e ``D``**
### EasierGUI
- Inicie normalmente a easierGUI novamente.
- Na aba de treino utilize o MESMO nome que estava treinando, assim vai continuar o treino onde parou o ultimo backup.
- Selecione 'Treinar modelo', pode pular os 2 primeiros passos já que vamos continuar o treino.<hr><br>
# <b>FAQ Original traduzido</b>
## <b><span style="color: #337dff;">Q1: erro ffmpeg/erro utf8.</span></b>
Provavelmente não é um problema do FFmpeg, mas sim um problema de caminho de áudio;
O FFmpeg pode encontrar um erro ao ler caminhos contendo caracteres especiais como spaces e (), o que pode causar um erro FFmpeg; e quando o áudio do conjunto de treinamento contém caminhos chineses, gravá-lo em filelist.txt pode causar um erro utf8.<hr>
## <b><span style="color: #337dff;">Q2:Não é possível encontrar o arquivo de Index após "Treinamento com um clique".</span></b>
Se exibir "O treinamento está concluído. O programa é fechado ", então o modelo foi treinado com sucesso e os erros subsequentes são falsos;
A falta de um arquivo de index 'adicionado' após o treinamento com um clique pode ser devido ao conjunto de treinamento ser muito grande, fazendo com que a adição do index fique presa; isso foi resolvido usando o processamento em lote para adicionar o index, o que resolve o problema de sobrecarga de memória ao adicionar o index. Como solução temporária, tente clicar no botão "Treinar Index" novamente.<hr>
## <b><span style="color: #337dff;">Q3:Não é possível encontrar o modelo em “Modelo de voz” após o treinamento</span></b>
Clique em "Atualizar lista de voz" ou "Atualizar na EasyGUI e verifique novamente; se ainda não estiver visível, verifique se há erros durante o treinamento e envie capturas de tela do console, da interface do usuário da Web e dos ``logs/experiment_name/*.log`` para os desenvolvedores para análise posterior.<hr>
## <b><span style="color: #337dff;">Q4:Como compartilhar um modelo/Como usar os modelos dos outros?</span></b>
Os arquivos ``.pth`` armazenados em ``*/logs/minha-voz`` não são destinados para compartilhamento ou inference, mas para armazenar os checkpoits do experimento para reprodutibilidade e treinamento adicional. O modelo a ser compartilhado deve ser o arquivo ``.pth`` de 60+MB na pasta **weights**;
No futuro, ``weights/minha-voz.pth`` e ``logs/minha-voz/added_xxx.index`` serão mesclados em um único arquivo de ``weights/minha-voz.zip`` para eliminar a necessidade de entrada manual de index; portanto, compartilhe o arquivo zip, não somente o arquivo .pth, a menos que você queira continuar treinando em uma máquina diferente;
Copiar/compartilhar os vários arquivos .pth de centenas de MB da pasta de logs para a pasta de weights para inference forçada pode resultar em erros como falta de f0, tgt_sr ou outras chaves. Você precisa usar a guia ckpt na parte inferior para manualmente ou automaticamente (se as informações forem encontradas nos ``logs/minha-voz``), selecione se deseja incluir informações de tom e opções de taxa de amostragem de áudio de destino e, em seguida, extrair o modelo menor. Após a extração, haverá um arquivo pth de 60+ MB na pasta de weights, e você pode atualizar as vozes para usá-lo.<hr>
## <b><span style="color: #337dff;">Q5 Erro de conexão:</span></b>
Para sermos otimistas, aperte F5/recarregue a página, pode ter sido apenas um bug da GUI
Se não...
Você pode ter fechado o console (janela de linha de comando preta).
Ou o Google Colab, no caso do Colab, as vezes pode simplesmente fechar<hr>
## <b><span style="color: #337dff;">Q6: Pop-up WebUI 'Valor esperado: linha 1 coluna 1 (caractere 0)'.</span></b>
Desative o proxy LAN do sistema/proxy global e atualize.<hr>
## <b><span style="color: #337dff;">Q7:Como treinar e inferir sem a WebUI?</span></b>
Script de treinamento:
<br>Você pode executar o treinamento em WebUI primeiro, e as versões de linha de comando do pré-processamento e treinamento do conjunto de dados serão exibidas na janela de mensagens.<br>
Script de inference:
<br>https://huggingface.co/lj1995/VoiceConversionWebUI/blob/main/myinfer.py<br>
por exemplo<br>
``runtime\python.exe myinfer.py 0 "E:\audios\1111.wav" "E:\RVC\logs\minha-voz\added_IVF677_Flat_nprobe_7.index" harvest "test.wav" "weights/mi-test.pth" 0.6 cuda:0 True``<br>
f0up_key=sys.argv[1]<br>
input_path=sys.argv[2]<br>
index_path=sys.argv[3]<br>
f0method=sys.argv[4]#harvest or pm<br>
opt_path=sys.argv[5]<br>
model_path=sys.argv[6]<br>
index_rate=float(sys.argv[7])<br>
device=sys.argv[8]<br>
is_half=bool(sys.argv[9])<hr>
## <b><span style="color: #337dff;">Q8: Erro Cuda/Cuda sem memória.</span></b>
Há uma pequena chance de que haja um problema com a configuração do CUDA ou o dispositivo não seja suportado; mais provavelmente, não há memória suficiente (falta de memória).<br>
Para treinamento, reduza o (batch size) tamanho do lote (se reduzir para 1 ainda não for suficiente, talvez seja necessário alterar a placa gráfica); para inference, ajuste as configurações x_pad, x_query, x_center e x_max no arquivo config.py conforme necessário. Cartões de memória 4G ou inferiores (por exemplo, 1060(3G) e várias placas 2G) podem ser abandonados, enquanto os placas de vídeo com memória 4G ainda têm uma chance.<hr>
## <b><span style="color: #337dff;">Q9:Quantos total_epoch são ótimos?</span></b>
Se a qualidade de áudio do conjunto de dados de treinamento for ruim e o nível de ruído for alto, **20-30 epochs** são suficientes. Defini-lo muito alto não melhorará a qualidade de áudio do seu conjunto de treinamento de baixa qualidade.<br>
Se a qualidade de áudio do conjunto de treinamento for alta, o nível de ruído for baixo e houver duração suficiente, você poderá aumentá-lo. **200 é aceitável** (uma vez que o treinamento é rápido e, se você puder preparar um conjunto de treinamento de alta qualidade, sua GPU provavelmente poderá lidar com uma duração de treinamento mais longa sem problemas).<hr>
## <b><span style="color: #337dff;">Q10:Quanto tempo de treinamento é necessário?</span></b>
**Recomenda-se um conjunto de dados de cerca de 10 min a 50 min.**<br>
Com garantia de alta qualidade de som e baixo ruído de fundo, mais pode ser adicionado se o timbre do conjunto de dados for uniforme.<br>
Para um conjunto de treinamento de alto nível (limpo + distintivo), 5min a 10min é bom.<br>
Há algumas pessoas que treinaram com sucesso com dados de 1 a 2 minutos, mas o sucesso não é reproduzível por outros e não é muito informativo. <br>Isso requer que o conjunto de treinamento tenha um timbre muito distinto (por exemplo, um som de menina de anime arejado de alta frequência) e a qualidade do áudio seja alta;
Dados com menos de 1 minuto, já obtivemo sucesso. Mas não é recomendado.<hr>
## <b><span style="color: #337dff;">Q11:Qual é a taxa do index e como ajustá-la?</span></b>
Se a qualidade do tom do modelo pré-treinado e da fonte de inference for maior do que a do conjunto de treinamento, eles podem trazer a qualidade do tom do resultado do inference, mas ao custo de um possível viés de tom em direção ao tom do modelo subjacente/fonte de inference, em vez do tom do conjunto de treinamento, que é geralmente referido como "vazamento de tom".<br>
A taxa de index é usada para reduzir/resolver o problema de vazamento de timbre. Se a taxa do index for definida como 1, teoricamente não há vazamento de timbre da fonte de inference e a qualidade do timbre é mais tendenciosa em relação ao conjunto de treinamento. Se o conjunto de treinamento tiver uma qualidade de som mais baixa do que a fonte de inference, uma taxa de index mais alta poderá reduzir a qualidade do som. Reduzi-lo a 0 não tem o efeito de usar a mistura de recuperação para proteger os tons definidos de treinamento.<br>
Se o conjunto de treinamento tiver boa qualidade de áudio e longa duração, aumente o total_epoch, quando o modelo em si é menos propenso a se referir à fonte inferida e ao modelo subjacente pré-treinado, e há pouco "vazamento de tom", o index_rate não é importante e você pode até não criar/compartilhar o arquivo de index.<hr>
## <b><span style="color: #337dff;">Q12:Como escolher o GPU ao inferir?</span></b>
No arquivo ``config.py``, selecione o número da placa em "device cuda:".<br>
O mapeamento entre o número da placa e a placa gráfica pode ser visto na seção de informações da placa gráfica da guia de treinamento.<hr>
## <b><span style="color: #337dff;">Q13:Como usar o modelo salvo no meio do treinamento?</span></b>
Salvar via extração de modelo na parte inferior da guia de processamento do ckpt.<hr>
## <b><span style="color: #337dff;">Q14: Erro de arquivo/memória (durante o treinamento)?</span></b>
Muitos processos e sua memória não é suficiente. Você pode corrigi-lo por:
1. Diminuir a entrada no campo "Threads da CPU".
2. Diminuir o tamanho do conjunto de dados.
## Q15: Como continuar treinando usando mais dados
passo 1: coloque todos os dados wav no path2.
etapa 2: exp_name2 + path2 -> processar conjunto de dados e extrair recurso.
passo 3: copie o arquivo G e D mais recente de exp_name1 (seu experimento anterior) para a pasta exp_name2.
passo 4: clique em "treinar o modelo" e ele continuará treinando desde o início da época anterior do modelo exp.
## Q16: erro sobre llvmlite.dll
OSError: Não foi possível carregar o arquivo de objeto compartilhado: llvmlite.dll
FileNotFoundError: Não foi possível encontrar o módulo lib\site-packages\llvmlite\binding\llvmlite.dll (ou uma de suas dependências). Tente usar o caminho completo com sintaxe de construtor.
O problema acontecerá no Windows, instale https://aka.ms/vs/17/release/vc_redist.x64.exe e será corrigido.
## Q17: RuntimeError: O tamanho expandido do tensor (17280) deve corresponder ao tamanho existente (0) na dimensão 1 não singleton. Tamanhos de destino: [1, 17280]. Tamanhos de tensor: [0]
Exclua os arquivos wav cujo tamanho seja significativamente menor que outros e isso não acontecerá novamente. Em seguida, clique em "treinar o modelo" e "treinar o índice".
## Q18: RuntimeError: O tamanho do tensor a (24) deve corresponder ao tamanho do tensor b (16) na dimensão não singleton 2
Não altere a taxa de amostragem e continue o treinamento. Caso seja necessário alterar, o nome do exp deverá ser alterado e o modelo será treinado do zero. Você também pode copiar o pitch e os recursos (pastas 0/1/2/2b) extraídos da última vez para acelerar o processo de treinamento.

View File

@ -0,0 +1,65 @@
Instruções e dicas para treinamento RVC
======================================
Estas DICAS explicam como o treinamento de dados é feito.
# Fluxo de treinamento
Explicarei ao longo das etapas na guia de treinamento da GUI.
## Passo 1
Defina o nome do experimento aqui.
Você também pode definir aqui se o modelo deve levar em consideração o pitch.
Se o modelo não considerar o tom, o modelo será mais leve, mas não será adequado para cantar.
Os dados de cada experimento são colocados em `/logs/nome-do-seu-modelo/`.
## Passo 2a
Carrega e pré-processa áudio.
### Carregar áudio
Se você especificar uma pasta com áudio, os arquivos de áudio dessa pasta serão lidos automaticamente.
Por exemplo, se você especificar `C:Users\hoge\voices`, `C:Users\hoge\voices\voice.mp3` será carregado, mas `C:Users\hoge\voices\dir\voice.mp3` será Não carregado.
Como o ffmpeg é usado internamente para leitura de áudio, se a extensão for suportada pelo ffmpeg, ela será lida automaticamente.
Após converter para int16 com ffmpeg, converta para float32 e normalize entre -1 e 1.
### Eliminar ruído
O áudio é suavizado pelo filtfilt do scipy.
### Divisão de áudio
Primeiro, o áudio de entrada é dividido pela detecção de partes de silêncio que duram mais que um determinado período (max_sil_kept=5 segundos?). Após dividir o áudio no silêncio, divida o áudio a cada 4 segundos com uma sobreposição de 0,3 segundos. Para áudio separado em 4 segundos, após normalizar o volume, converta o arquivo wav para `/logs/nome-do-seu-modelo/0_gt_wavs` e, em seguida, converta-o para taxa de amostragem de 16k para `/logs/nome-do-seu-modelo/1_16k_wavs ` como um arquivo wav.
## Passo 2b
### Extrair pitch
Extraia informações de pitch de arquivos wav. Extraia as informações de pitch (=f0) usando o método incorporado em Parselmouth ou pyworld e salve-as em `/logs/nome-do-seu-modelo/2a_f0`. Em seguida, converta logaritmicamente as informações de pitch para um número inteiro entre 1 e 255 e salve-as em `/logs/nome-do-seu-modelo/2b-f0nsf`.
### Extrair feature_print
Converta o arquivo wav para incorporação antecipadamente usando HuBERT. Leia o arquivo wav salvo em `/logs/nome-do-seu-modelo/1_16k_wavs`, converta o arquivo wav em recursos de 256 dimensões com HuBERT e salve no formato npy em `/logs/nome-do-seu-modelo/3_feature256`.
## Passo 3
treinar o modelo.
### Glossário para iniciantes
No aprendizado profundo, o conjunto de dados é dividido e o aprendizado avança aos poucos. Em uma atualização do modelo (etapa), os dados batch_size são recuperados e previsões e correções de erros são realizadas. Fazer isso uma vez para um conjunto de dados conta como um epoch.
Portanto, o tempo de aprendizagem é o tempo de aprendizagem por etapa x (o número de dados no conjunto de dados/tamanho do lote) x o número de epoch. Em geral, quanto maior o tamanho do lote, mais estável se torna o aprendizado (tempo de aprendizado por etapa ÷ tamanho do lote) fica menor, mas usa mais memória GPU. A RAM da GPU pode ser verificada com o comando nvidia-smi. O aprendizado pode ser feito em pouco tempo aumentando o tamanho do lote tanto quanto possível de acordo com a máquina do ambiente de execução.
### Especifique o modelo pré-treinado
O RVC começa a treinar o modelo a partir de pesos pré-treinados em vez de 0, para que possa ser treinado com um pequeno conjunto de dados.
Por padrão
- Se você considerar o pitch, ele carrega `rvc-location/pretrained/f0G40k.pth` e `rvc-location/pretrained/f0D40k.pth`.
- Se você não considerar o pitch, ele carrega `rvc-location/pretrained/f0G40k.pth` e `rvc-location/pretrained/f0D40k.pth`.
Ao aprender, os parâmetros do modelo são salvos em `logs/nome-do-seu-modelo/G_{}.pth` e `logs/nome-do-seu-modelo/D_{}.pth` para cada save_every_epoch, mas especificando nesse caminho, você pode começar a aprender. Você pode reiniciar ou iniciar o treinamento a partir de weights de modelo aprendidos em um experimento diferente.
### Index de aprendizado
O RVC salva os valores de recursos do HuBERT usados durante o treinamento e, durante a inferência, procura valores de recursos que sejam semelhantes aos valores de recursos usados durante o aprendizado para realizar a inferência. Para realizar esta busca em alta velocidade, o index é aprendido previamente.
Para aprendizagem de index, usamos a biblioteca de pesquisa de associação de áreas aproximadas faiss. Leia o valor do recurso `logs/nome-do-seu-modelo/3_feature256` e use-o para aprender o index, e salve-o como `logs/nome-do-seu-modelo/add_XXX.index`.
(A partir da versão 20230428update, ele é lido do index e não é mais necessário salvar/especificar.)
### Descrição do botão
- Treinar modelo: Após executar o passo 2b, pressione este botão para treinar o modelo.
- Treinar índice de recursos: após treinar o modelo, execute o aprendizado do index.
- Treinamento com um clique: etapa 2b, treinamento de modelo e treinamento de index de recursos, tudo de uma vez.

97
docs/tr/Changelog_TR.md Normal file
View File

@ -0,0 +1,97 @@
### 2023-08-13
1- Düzenli hata düzeltmeleri
- Minimum toplam epoch sayısını 1 olarak değiştirin ve minimum toplam epoch sayısını 2 olarak değiştirin
- Ön eğitim modellerini kullanmama nedeniyle oluşan eğitim hatalarını düzeltin
- Eşlik eden vokallerin ayrılmasından sonra grafik belleğini temizleyin
- Faiss kaydetme yolu mutlak yoldan göreli yola değiştirilmiştir
- Boşluk içeren yolu destekleyin (hem eğitim kümesi yolu hem de deney adı desteklenir ve artık hata rapor edilmez)
- Filelist, zorunlu utf8 kodlamasını iptal eder
- Gerçek zamanlı ses değişikliği sırasında faiss aramasından kaynaklanan CPU tüketim sorununu çözün
2- Temel güncellemeler
- Geçerli en güçlü açık kaynak vokal ton çıkarma modeli RMVPE'yi eğitin ve RVC eğitimi, çevrimdışı/gerçek zamanlı çıkarım için kullanın, PyTorch/Onnx/DirectML destekler
- Pytorch_DML aracılığıyla AMD ve Intel grafik kartları için destek ekleyin
(1) Gerçek zamanlı ses değişimi (2) Çıkarım (3) Vokal eşlik ayrımı (4) Şu anda desteklenmeyen eğitim, CPU eğitimine geçiş yapacaktır; Onnx_Dml ile gpu için RMVPE çıkarımını destekler
### 2023-06-18
- Yeni ön eğitilmiş v2 modeller: 32k ve 48k
- F0 modeli çıkarım hatalarını düzeltme
- Eğitim kümesi 1 saati aşarsa, özelliği şekil açısından küçültmek için otomatik minibatch-kmeans yapın, böylece indeks eğitimi, eklemesi ve araması çok daha hızlı olur.
- Bir oyunca vokal2guitar huggingface alanı sağlama
- Aykırı kısa kesim eğitim kümesi seslerini otomatik olarak silme
- Onnx dışa aktarma sekmesi
Başarısız deneyler:
- ~~Özellik çıkarımı: zamansal özellik çıkarımı ekleme: etkili değil~~
- ~~Özellik çıkarımı: PCAR boyut azaltma ekleme: arama daha yavaş~~
- ~~Eğitim sırasında rastgele veri artırma: etkili değil~~
Yapılacaklar listesi:
- ~~Vocos-RVC (küçük vokoder): etkili değil~~
- ~~Eğitim için Crepe desteği: RMVPE ile değiştirildi~~
- ~~Yarı hassas Crepe çıkarımı: RMVPE ile değiştirildi. Ve zor gerçekleştirilebilir.~~
- F0 düzenleyici desteği
### 2023-05-28
- v2 jupyter notebook, korece değişiklik günlüğü, bazı çevre gereksinimlerini düzeltme
- Sesli olmayan ünsüz ve nefes koruma modu ekleme
- Crepe-full ton algılama desteği ekleme
- UVR5 vokal ayrımı: yankı kaldırma modelleri ve yankı kaldırma modelleri destekleme
- İndeks adında deney adı ve sürüm ekleme
- Toplu ses dönüşüm işleme ve UVR5 vokal ayrımı sırasında çıkış seslerinin ihracat formatını kullanıcıların manuel olarak seçmelerine olanak tanıma
- v1 32k model eğitimi artık desteklenmiyor
### 2023-05-13
- Tek tıklamayla paketin eski sürümündeki çalışma zamanındaki gereksiz kodları temizleme: lib.infer_pack ve uvr5_pack
- Eğitim seti ön işleme içindeki sahte çoklu işlem hatasını düzeltme
- Harvest ton tanıma algoritması için ortanca filtre yarıçap ayarı ekleme
- Çıkış sesi için örnek alma örneği için yeniden örnekleme desteği ekleme
- Eğitim için "n_cpu" çoklu işlem ayarı, "f0 çıkarma" yerine "veri ön işleme ve f0 çıkarma" için değiştirildi
- Günlükler klasörü altındaki indeks yollarını otomatik olarak tespit etme ve bir açılır liste işlevi sağlama
- Sekme sayfasına "Sıkça Sorulan Sorular ve Cevaplar"ı ekleme (ayrıca github RVC wiki'ye de bakabilirsiniz)
- Çıkarım sırasında aynı giriş sesi yolunu kullanırken harvest tonunu önbelleğe alma (amaç: harvest ton çıkarımı kullanırken, tüm işlem hattı uzun ve tekrarlayan bir ton çıkarım işlemi geçirecektir. Önbellekleme kullanılmazsa, farklı timbre, indeks ve ton ortanca filtreleme yarıçapı ayarlarıyla deney yapan kullanıcılar, ilk çıkarım sonrası çok acı verici bir bekleme süreci yaşayacaktır)
### 2023-05-14
- Girişin hacim zarfını çıktının hacim zarfıyla karıştırmak veya değiştirmek için girişin hacim zarfını kullanma (problemi "giriş sessizleştirme ve çıktı küçük
amplitüdlü gürültü" sorununu hafifletebilir. Giriş sesi arka plan gürültüsü yüksekse, açık olması önerilmez ve varsayılan olarak açık değildir (1 varsayılan olarak kapalı olarak kabul edilir)
- Belirli bir frekansta filtreleme uygulama eğitim ve çıkarım için 50Hz'nin altındaki frekans bantları için
- Pyworld'un varsayılan 80'den 50'ye minimum ton çıkarma sınırlamasını eğitim ve çıkarım için düşürme, 50-80Hz arasındaki erkek alçak seslerin sessizleştirilmemesine izin verme
- WebUI, sistem yereli diline göre dil değiştirme (şu anda en_US, ja_JP, zh_CN, zh_HK, zh_SG, zh_TW'yi destekliyor; desteklenmeyen durumda varsayılan olarak en_US'ye geçer)
- Belirli bir giriş sesi yolunu kullanırken harvest tonunu önbelleğe alma (amaç: harvest ton çıkarma kullanırken, tüm işlem hattı uzun ve tekrarlayan bir ton çıkarma süreci geçirecektir. Önbellekleme kullanılmazsa, farklı timbre, indeks ve ton ortanca filtreleme yarıçapı ayarlarıyla deney yapan kullanıcılar, ilk çıkarım sonrası çok acı verici bir bekleme süreci yaşayacaktır)
### 2023-04-09 Güncellemesi
- GPU kullanım oranını artırmak için eğitim parametrelerini düzeltme: A100, %25'ten yaklaşık %90'a, V100: %50'den yaklaşık %90'a, 2060S: %60'tan yaklaşık %85'e, P40: %25'ten yaklaşık %95'e; eğitim hızını önemli ölçüde artırma
- Parametre değişti: toplam_batch_size artık GPU başına batch_size
- Toplam_epoch değişti: maksimum sınırı 1000'e yükseltildi; varsayılan 10'dan 20'ye yükseltildi
- ckpt çıkarımı ile çalma tanıma hatasını düzeltme, anormal çıkarım oluşturan
- Dağıtılmış eğitimde her sıra için ckpt kaydetme sorununu düzeltme
- Özellik çıkarımı için NaN özellik filtrelemesi uygulama
- Sessiz giriş/çıkışın rastgele ünsüzler veya gürültü üretme sorununu düzeltme (eski modeller yeni bir veri kümesiyle tekrar eğitilmelidir)
### 2023-04-16 Güncellemesi
- Yerel gerçek zamanlı ses değiştirme mini-GUI'si ekleme, çift tıklayarak go-realtime-gui.bat ile başlayın
- Eğitim ve çıkarım sırasında 50Hz'nin altındaki frekans bantlarını filtreleme uygulama
- Pyworld'deki varsayılan 80'den 50'ye minimum ton çıkarma sınırlamasını eğitim ve çıkarım için düşürme, 50-80Hz arasındaki erkek alçak seslerin sessizleştirilmemesine izin verme
- WebUI, sistem yereli diline göre dil değiştirme (şu anda en_US, ja_JP, zh_CN, zh_HK, zh_SG, zh_TW'yi destekliyor; desteklenmeyen durumda varsayılan olarak en_US'ye geçer)
- Bazı GPU'ların tanınmasını düzeltme (örneğin, V100-16G tanınmama sorunu, P4 tanınmama sorunu)
### 2023-04-28 Güncellemesi
- Daha hızlı hız ve daha yüksek kalite için faiss indeks ayarlarını yükseltme
- Toplam_npy bağımlılığını kaldırma; gelecekteki model paylaşımları için total_npy girdisi gerekmeyecek
- 16-serisi GPU'lar için kısıtlamaları açma, 4GB VRAM GPU'lar için 4GB çıkarım ayarları sağlama
- Belirli ses biçimlerine yönelik UVR5 vokal eşlik ayrımındaki hata düzeltme
- Gerçek zamanlı ses değiştirme mini-GUI şimdi 40k dışı ve tembel ton modellerini destekler
### Gelecekteki Planlar:
Özellikler:
- Her epoch kaydetmek için küçük modeller çıkar seçeneğini ekleme
- Çıkarım sırasında çıkış seslerini belirtilen yolda ekstra mp3 olarak kaydetme seçeneğini ekleme
- Birden fazla kişinin eğitim sekmesini destekleme (en fazla 4 kişiye kadar)
Temel model:
- Bozuk nefes seslerinin sorununu düzeltmek için nefes alma wav dosyalarını eğitim veri kümesine eklemek
- Şu anda genişletilmiş bir şarkı veri kümesiyle temel model eğitimi yapıyoruz ve gelecekte yayınlanacak

154
docs/tr/README.tr.md Normal file
View File

@ -0,0 +1,154 @@
<div align="center">
<h1>Çekme Temelli Ses Dönüşümü Web Arayüzü</h1>
VITS'e dayalı kullanımı kolay bir Ses Dönüşümü çerçevesi.<br><br>
[![madewithlove](https://img.shields.io/badge/made_with-%E2%9D%A4-red?style=for-the-badge&labelColor=orange
)](https://github.com/RVC-Project/Retrieval-based-Voice-Conversion-WebUI)
<img src="https://counter.seku.su/cmoe?name=rvc&theme=r34" /><br>
[![Open In Colab](https://img.shields.io/badge/Colab-F9AB00?style=for-the-badge&logo=googlecolab&color=525252)](https://colab.research.google.com/github/RVC-Project/Retrieval-based-Voice-Conversion-WebUI/blob/main/Retrieval_based_Voice_Conversion_WebUI.ipynb)
[![Lisans](https://img.shields.io/github/license/RVC-Project/Retrieval-based-Voice-Conversion-WebUI?style=for-the-badge)](https://github.com/RVC-Project/Retrieval-based-Voice-Conversion-WebUI/blob/main/LICENSE)
[![Huggingface](https://img.shields.io/badge/🤗%20-Spaces-yellow.svg?style=for-the-badge)](https://huggingface.co/lj1995/VoiceConversionWebUI/tree/main/)
[![Discord](https://img.shields.io/badge/RVC%20Geliştiricileri-Discord-7289DA?style=for-the-badge&logo=discord&logoColor=white)](https://discord.gg/HcsmBBGyVk)
</div>
------
[**Değişiklik Geçmişi**](https://github.com/RVC-Project/Retrieval-based-Voice-Conversion-WebUI/blob/main/docs/Changelog_TR.md) | [**SSS (Sıkça Sorulan Sorular)**](https://github.com/RVC-Project/Retrieval-based-Voice-Conversion-WebUI/wiki/SSS-(Sıkça-Sorulan-Sorular))
[**İngilizce**](../en/README.en.md) | [**中文简体**](../../README.md) | [**日本語**](../jp/README.ja.md) | [**한국어**](../kr/README.ko.md) ([**韓國語**](../kr/README.ko.han.md)) | [**Français**](../fr/README.fr.md) | [**Türkçe**](../tr/README.tr.md) | [**Português**](../pt/README.pt.md)
Burada [Demo Video'muzu](https://www.bilibili.com/video/BV1pm4y1z7Gm/) izleyebilirsiniz!
RVC Kullanarak Gerçek Zamanlı Ses Dönüşüm Yazılımı: [w-okada/voice-changer](https://github.com/w-okada/voice-changer)
> Ön eğitim modeli için veri kümesi neredeyse 50 saatlik yüksek kaliteli VCTK açık kaynak veri kümesini kullanır.
> Yüksek kaliteli lisanslı şarkı veri setleri telif hakkı ihlali olmadan kullanımınız için eklenecektir.
> Lütfen daha büyük parametrelere, daha fazla eğitim verisine sahip RVCv3'ün ön eğitimli temel modeline göz atın; daha iyi sonuçlar, değişmeyen çıkarsama hızı ve daha az eğitim verisi gerektirir.
## Özet
Bu depo aşağıdaki özelliklere sahiptir:
+ Ton sızıntısını en aza indirmek için kaynak özelliğini en iyi çıkarımı kullanarak eğitim kümesi özelliği ile değiştirme;
+ Kolay ve hızlı eğitim, hatta nispeten zayıf grafik kartlarında bile;
+ Az miktarda veriyle bile nispeten iyi sonuçlar alın (>=10 dakika düşük gürültülü konuşma önerilir);
+ Timbraları değiştirmek için model birleştirmeyi destekleme (ckpt işleme sekmesi-> ckpt birleştir);
+ Kullanımı kolay Web arayüzü;
+ UVR5 modelini kullanarak hızla vokalleri ve enstrümanları ayırma.
+ En güçlü Yüksek tiz Ses Çıkarma Algoritması [InterSpeech2023-RMVPE](#Krediler) sessiz ses sorununu önlemek için kullanılır. En iyi sonuçları (önemli ölçüde) sağlar ve Crepe_full'den daha hızlı çalışır, hatta daha düşük kaynak tüketimi sağlar.
+ AMD/Intel grafik kartları hızlandırması desteklenir.
+ Intel ARC grafik kartları hızlandırması IPEX ile desteklenir.
## Ortamın Hazırlanması
Aşağıdaki komutlar, Python sürümü 3.8 veya daha yüksek olan bir ortamda çalıştırılmalıdır.
(Windows/Linux)
İlk olarak ana bağımlılıkları pip aracılığıyla kurun:
```bash
# PyTorch ile ilgili temel bağımlılıkları kurun, zaten kuruluysa atlayın
# Referans: https://pytorch.org/get-started/locally/
pip install torch torchvision torchaudio
# Windows + Nvidia Ampere Mimarisi(RTX30xx) için, https://github.com/RVC-Project/Retrieval-based-Voice-Conversion-WebUI/issues/21 deneyime göre pytorch'a karşılık gelen cuda sürümünü belirtmeniz gerekebilir
#pip install torch torchvision torchaudio --index-url https://download.pytorch.org/whl/cu117
```
Sonra poetry kullanarak diğer bağımlılıkları kurabilirsiniz:
```bash
# Poetry bağımlılık yönetim aracını kurun, zaten kuruluysa atlayın
# Referans: https://python-poetry.org/docs/#installation
curl -sSL https://install.python-poetry.org | python3 -
# Projeyi bağımlılıkları kurun
poetry install
```
Ayrıca bunları pip kullanarak da kurabilirsiniz:
```bash
Nvidia grafik kartları için
pip install -r requirements.txt
AMD/Intel grafik kartları için
pip install -r requirements-dml.txt
Intel ARC grafik kartları için Linux / WSL ile Python 3.10 kullanarak:
pip install -r requirements-ipex.txt
```
------
Mac kullanıcıları `run.sh` aracılığıyla bağımlılıkları kurabilir:
```bash
sh ./run.sh
```
## Diğer Ön Modellerin Hazırlanması
RVC'nin çıkarım ve eğitim yapması için diğer ön modellere ihtiyacı vardır.
Bu ön modelleri [Huggingface alanımızdan](https://huggingface.co/lj1995/VoiceConversionWebUI/tree/main/) indirmeniz gerekecektir.
İşte RVC'nin ihtiyaç duyduğu diğer ön modellerin ve dosyaların bir listesi:
```bash
./assets/hubert/hubert_base.pt
./assets/pretrained
./assets/uvr5_weights
V2 sürümü modelini test etmek isterseniz, ek özellikler indirmeniz gerekecektir.
./assets/pretrained_v2
V2 sürüm modelini test etmek isterseniz (v2 sürüm modeli, 9 katmanlı Hubert+final_proj'ün 256 boyutlu özelliğini 12 katmanlı Hubert'ün 768 boyutlu özelliğiyle değiştirmiştir ve 3 periyot ayırıcı eklemiştir), ek özellikleri indirmeniz gerekecektir.
./assets/pretrained_v2
Eğer Windows kullanıyorsanız, FFmpeg ve FFprobe kurulu değilse bu iki dosyayı da indirmeniz gerekebilir.
ffmpeg.exe
https://huggingface.co/lj1995/VoiceConversionWebUI/blob/main/ffmpeg.exe
ffprobe.exe
https://huggingface.co/lj1995/VoiceConversionWebUI/blob/main/ffprobe.exe
En son SOTA RMVPE vokal ton çıkarma algoritmasını kullanmak istiyorsanız, RMVPE ağırlıklarını indirip RVC kök dizinine koymalısınız.
https://huggingface.co/lj1995/VoiceConversionWebUI/blob/main/rmvpe.pt
AMD/Intel grafik kartları kullanıcıları için indirmeniz gereken:
https://huggingface.co/lj1995/VoiceConversionWebUI/blob/main/rmvpe.onnx
```
Intel ARC grafik kartları kullanıcıları Webui'yi başlatmadan önce `source /opt/intel/oneapi/setvars.sh` komutunu çalıştırmalı.
Daha sonra bu komutu kullanarak Webui'yi başlatabilirsiniz:
```bash
python infer-web.py
```
Windows veya macOS kullanıyorsanız, `RVC-beta.7z` dosyasını indirip çıkararak `go-web.bat`i kullanarak veya macOS'ta `sh ./run.sh` kullanarak doğrudan RVC'yi kullanabilirsiniz.
## Krediler
+ [ContentVec](https://github.com/auspicious3000/contentvec/)
+ [VITS](https://github.com/jaywalnut310/vits)
+ [HIFIGAN](https://github.com/jik876/hifi-gan)
+ [Gradio](https://github.com/gradio-app/gradio)
+ [FFmpeg](https://github.com/FFmpeg/FFmpeg)
+ [Ultimate Vocal Remover](https://github.com/Anjok07/ultimatevocalremovergui)
+ [audio-slicer](https://github.com/openvpi/audio-slicer)
+ [Vokal ton çıkarma:RMVPE](https://github.com/Dream-High/RMVPE)
+ Ön eğitimli model [yxlllc](https://github.com/yxlllc/RMVPE) ve [RVC-Boss](https://github.com/RVC-Boss) tarafından eğitilip test edilmiştir.
## Katkıda Bulunan Herkese Teşekkürler
<a href="https://github.com/RVC-Project/Retrieval-based-Voice-Conversion-WebUI/graphs/contributors" target="_blank">
<img src="https://contrib.rocks/image?repo=RVC-Project/Retrieval-based-Voice-Conversion-WebUI" />
</a>
```

104
docs/tr/faiss_tips_tr.md Normal file
View File

@ -0,0 +1,104 @@
# faiss Ayar İpuçları
==================
# faiss Hakkında
faiss, yoğun vektörler için komşuluk aramalarının bir kütüphanesidir ve birçok yaklaşık komşuluk arama yöntemini verimli bir şekilde uygular. Facebook araştırma tarafından geliştirilen faiss, benzer vektörleri hızlı bir şekilde bulurken bazı doğruluğu feda eder.
## RVC'de faiss Kullanımı
RVC'de, HuBERT tarafından dönüştürülen özelliklerin gömülmesi için eğitim verisinden oluşturulan gömme ile benzer gömlemeleri ararız ve bunları karıştırarak orijinal konuşmaya daha yakın bir dönüşüm elde ederiz. Ancak bu arama basitçe yapıldığında zaman alır, bu nedenle yaklaşık komşuluk araması kullanarak yüksek hızlı dönüşüm sağlanır.
# Uygulama Genel Bakış
Modelin bulunduğu '/logs/your-experiment/3_feature256' dizininde, her ses verisinden HuBERT tarafından çıkarılan özellikler bulunur.
Buradan, dosya adına göre sıralanmış npy dosyalarını okuyarak vektörleri birleştirip büyük_npy'yi oluştururuz. (Bu vektörün şekli [N, 256] şeklindedir.)
Büyük_npy'yi /logs/your-experiment/total_fea.npy olarak kaydettikten sonra, onu faiss ile eğitiriz.
Bu makalede, bu parametrelerin anlamınııklayacağım.
# Yöntemin Açıklaması
## İndeks Fabrikası
Bir indeks fabrikası, birden fazla yaklaşık komşuluk arama yöntemini bir dizi olarak bağlayan benzersiz bir faiss gösterimidir. Bu, indeks fabrikası dizesini değiştirerek basitçe çeşitli yaklaşık komşuluk arama yöntemlerini denemenizi sağlar.
RVC'de bunu şu şekilde kullanırız:
```python
index = faiss.index_factory(256, "IVF%s,Flat" % n_ivf)
```
index_factory'nin argümanları arasında ilk vektör boyutu, ikinci indeks fabrikası dizesi ve üçüncü kullanılacak mesafe yer alır.
Daha ayrıntılı gösterim için
https://github.com/facebookresearch/faiss/wiki/The-index-factory
## Mesafe İçin İndeks
Aşağıdaki gibi gömme benzerliği olarak kullanılan iki tipik indeks bulunur.
- Öklidyen mesafe (METRIC_L2)
- iç çarpım (METRIC_INNER_PRODUCT)
Öklidyen mesafe, her boyutta karesel farkı alır, tüm boyutlardaki farkları toplar ve ardından karekök alır. Bu, günlük hayatta kullandığımız 2D ve 3D'deki mesafeye benzer.
İç çarpım, çoğunlukla L2 norm ile normalize edildikten sonra iç çarpımı alan ve genellikle kosinüs benzerliği olarak kullanılan bir benzerlik göstergesi olarak kullanılır.
Hangisinin daha iyi olduğu duruma bağlıdır, ancak kosinüs benzerliği genellikle word2vec tarafından elde edilen gömme ve ArcFace tarafından öğrenilen benzer görüntü alım modellerinde kullanılır. Vektör X'i numpy ile l2 normalize yapmak isterseniz, 0 bölme hatasından kaçınmak için yeterince küçük bir eps ile şu kodu kullanabilirsiniz:
```python
X_normed = X / np.maximum(eps, np.linalg.norm(X, ord=2, axis=-1, keepdims=True))
```
Ayrıca, indeks fabrikası için üçüncü argüman olarak geçirilecek değeri seçerek hesaplamada kullanılan mesafe indeksini değiştirebilirsiniz.
```python
index = faiss.index_factory(dimention, text, faiss.METRIC_INNER_PRODUCT)
```
## IVF
IVF (Ters dosya indeksleri), tam metin aramasındaki ters indeksle benzer bir algoritmadır.
Öğrenme sırasında, arama hedefi kmeans ile kümelendirilir ve küme merkezi kullanılarak Voronoi bölütleme gerçekleştirilir. Her veri noktasına bir küme atanır, bu nedenle veri noktalarını kümeden arayan bir sözlük oluştururuz.
Örneğin, kümelere aşağıdaki gibi atanmışsa
|index|Cluster|
|-----|-------|
|1|A|
|2|B|
|3|A|
|4|C|
|5|B|
Elde edilen ters indeks şu şekildedir:
|cluster|index|
|-------|-----|
|A|1, 3|
|B|2, 5|
|C|4|
Arama yaparken, önce kümeden n_probe küme ararız ve ardından her küme için ait veri noktalarının mesafelerini hesaplarız.
# Tavsiye Edilen Parametreler
Resmi olarak nasıl bir indeks seçileceği konusunda rehberler bulunmaktadır, bu nedenle buna uygun olarak açıklayacağım.
https://github.com/facebookresearch/faiss/wiki/Guidelines-to-choose-an-index
1M'den düşük veri kümeleri için, N sayısı için 4bit-PQ, Nisan 2023 itibariyle faiss'de mevcut en verimli yöntemdir.
Bunu IVF ile birleştirerek adayları 4bit-PQ ile daraltmak ve nihayet doğru bir indeksle mesafeyi yeniden hesaplamak, aşağıdaki indeks fabrikas
ını kullanarak açıklanabilir.
```python
index = faiss.index_factory(256, "IVF1024,PQ128x4fs,RFlat")
```
## IVF İçin Tavsiye Edilen Parametreler
Çok sayıda IVF durumunu düşünün. Örneğin, veri sayısı için IVF tarafından kabaca nicelleme yapılırsa, bu basit bir tükenmez arama ile aynıdır ve verimsizdir.
1M veya daha az için IVF değerleri, N veri noktaları için 4*sqrt(N) ~ 16*sqrt(N) arasında tavsiye edilir.
Hesaplama süresi n_probes sayısına orantılı olarak arttığından, doğrulukla danışmanlık yapın ve uygun şekilde seçin. Kişisel olarak, RVC'nin bu kadar doğruluk gerektirmediğini düşünüyorum, bu nedenle n_probe = 1 uygundur.
## FastScan
FastScan, bunları kaydedicilerde gerçekleştirerek onları Kartez ürünü nicelleme ile hızlı yaklaşık mesafe sağlayan bir yöntemdir.
Kartez ürünü nicelleme öğrenme sırasında her d boyut için (genellikle d = 2) kümeleme yapar, küme merkezlerini önceden hesaplar ve küme merkezleri arasındaki mesafeyi hesaplar ve bir arama tablosu oluşturur. Tahmin yaparken, her boyutun mesafesi arama tablosuna bakarak O(1) hesaplanabilir.
PQ sonrası belirttiğiniz sayı genellikle vektörün yarısı olan boyutu belirtir.
FastScan hakkında daha ayrıntılııklama için lütfen resmi belgelere başvurun.
https://github.com/facebookresearch/faiss/wiki/Fast-accumulation-of-PQ-and-AQ-codes-(FastScan)
## RFlat
RFlat, FastScan ile hesaplanan kesirli mesafeyi indeks fabrikasının üçüncü argümanı tarafından belirtilen doğru mesafe ile yeniden hesaplamak için bir talimattır.
k komşuları alırken, k*k_factor nokta yeniden hesaplanır.

103
docs/tr/faq_tr.md Normal file
View File

@ -0,0 +1,103 @@
## Q1: FFmpeg Hatası/UTF8 Hatası
Büyük olasılıkla bu bir FFmpeg sorunu değil, daha çok ses dosyası yolunda bir sorun;
FFmpeg, boşluklar ve () gibi özel karakterler içeren yolları okurken bir hata ile karşılaşabilir; ve eğitim setinin ses dosyaları Çin karakterleri içeriyorsa, bunlar filelist.txt'ye yazıldığında utf8 hatasına neden olabilir.<br>
## Q2: "Tek Tıklamayla Eğitim" Sonrası İndeks Dosyası Bulunamıyor
Eğer "Eğitim tamamlandı. Program kapatıldı." mesajını görüyorsa, model başarıyla eğitilmiş demektir ve sonraki hatalar sahte;
"Added" dizini oluşturulduğu halde "Tek Tıklamayla Eğitim" sonrası indeks dosyası bulunamıyorsa, bu genellikle eğitim setinin çok büyük olmasından kaynaklanabilir ve indeksin eklenmesi sıkışabilir. Bu sorun indeks eklerken bellek yükünü azaltmak için toplu işlem yaparak çözülmüştür. Geçici bir çözüm olarak, "Eğitim İndeksini Eğit" düğmesine tekrar tıklamayı deneyin.<br>
## Q3: Eğitim Sonrası "Tonlama İnceleniyor" Bölümünde Model Bulunamıyor
"Lanetleme İstemi Listesini Yenile" düğmesine tıklayarak tekrar kontrol edin; hala görünmüyorsa, eğitim sırasında herhangi bir hata olup olmadığını kontrol edin ve geliştiricilere daha fazla analiz için konsol, web arayüzü ve logs/experiment_name/*.log ekran görüntülerini gönderin.<br>
## Q4: Bir Model Nasıl Paylaşılır/Başkalarının Modelleri Nasıl Kullanılır?
rvc_root/logs/experiment_name dizininde saklanan pth dosyaları paylaşım veya çıkarım için değildir, bunlar deney checkpoint'larıdır ve çoğaltılabilirlik ve daha fazla eğitim için saklanır. Paylaşılacak olan model, weights klasöründeki 60+MB'lık pth dosyası olmalıdır;
Gelecekte, weights/exp_name.pth ve logs/exp_name/added_xxx.index birleştirilerek tek bir weights/exp_name.zip dosyasına dönüştürülecek ve manuel indeks girişi gereksinimini ortadan kaldıracaktır; bu nedenle pth dosyasını değil, farklı bir makinede eğitime devam etmek istemezseniz zip dosyasını paylaşın;
Çıkarılmış modelleri zorlama çıkarım için logs klasöründen weights klasörüne birkaç yüz MB'lık pth dosyalarını kopyalamak/paylaşmak, eksik f0, tgt_sr veya diğer anahtarlar gibi hatalara neden olabilir. Smaller modeli manuel veya otomatik olarak çıkarmak için alttaki ckpt sekmesini kullanmanız gerekmektedir (eğer bilgi logs/exp_name içinde bulunuyorsa), pitch bilgisini ve hedef ses örnekleme oranı seçeneklerini seçmeli ve ardından daha küçük modele çıkarmalısınız. Çıkardıktan sonra weights klasöründe 60+ MB'lık bir pth dosyası olacaktır ve sesleri yeniden güncelleyebilirsiniz.<br>
## Q5: Bağlantı Hatası
Büyük ihtimalle konsolu (siyah komut satırı penceresi) kapatmış olabilirsiniz.<br>
## Q6: Web Arayüzünde 'Beklenen Değer: Satır 1 Sütun 1 (Karakter 0)' Hatası
Lütfen sistem LAN proxy/global proxy'sini devre dışı bırakın ve ardından sayfayı yenileyin.<br>
## Q7: WebUI Olmadan Nasıl Eğitim Yapılır ve Tahmin Yapılır?
Eğitim komut dosyası:<br>
Önce WebUI'de eğitimi çalıştırabilirsiniz, ardından veri seti önişleme ve eğitiminin komut satırı sürümleri mesaj penceresinde görüntülenecektir.<br>
Tahmin komut dosyası:<br>
https://huggingface.co/lj1995/VoiceConversionWebUI/blob/main/myinfer.py<br>
örn:<br>
runtime\python.exe myinfer.py 0 "E:\codes\py39\RVC-beta\todo-songs\1111.wav" "E:\codes\py39\logs\mi-test\added_IVF677_Flat_nprobe_7.index" harvest "test.wav" "weights/mi-test.pth" 0.6 cuda:0 True<br>
f0up_key=sys.argv[1]<br>
input_path=sys.argv[2]<br>
index_path=sys.argv[3]<br>
f0method=sys.argv[4]#harvest or pm<br>
opt_path=sys.argv[5]<br>
model_path=sys.argv[6]<br>
index_rate=float(sys.argv[7])<br>
device=sys.argv[8]<br>
is_half=bool(sys.argv[9])<br>
## Q8: Cuda Hatası/Cuda Bellek Yetersizliği
Küçük bir ihtimalle CUDA konfigürasyonunda bir problem olabilir veya cihaz desteklenmiyor olabilir; daha muhtemel olarak yetersiz bellek olabilir (bellek yetersizliği).<br>
Eğitim için toplu işlem boyutunu azaltın (1'e indirgemek yeterli değilse, grafik kartını değiştirmeniz gerekebilir); çıkarım için ise config.py dosyasındaki x_pad, x_query, x_center ve x_max ayarlarını ihtiyaca göre düzenleyin. 4GB veya daha düşük bellekli kartlar (örneğin 1060(3G) ve çeşit
li 2GB kartlar) terk edilebilir, 4GB bellekli kartlar hala bir şansı vardır.<br>
## Q9: Optimal Olarak Kaç total_epoch Gerekli?
Eğitim veri setinin ses kalitesi düşük ve gürültü seviyesi yüksekse, 20-30 dönem yeterlidir. Fazla yüksek bir değer belirlemek, düşük kaliteli eğitim setinizin ses kalitesini artırmaz.<br>
Eğitim setinin ses kalitesi yüksek, gürültü seviyesi düşük ve yeterli süre varsa, bu değeri artırabilirsiniz. 200 kabul edilebilir bir değerdir (çünkü eğitim hızlıdır ve yüksek kaliteli bir eğitim seti hazırlayabiliyorsanız, GPU'nuz muhtemelen uzun bir eğitim süresini sorunsuz bir şekilde yönetebilir).<br>
## Q10: Kaç Dakika Eğitim Verisi Süresi Gerekli?
10 ila 50 dakika arası bir veri seti önerilir.<br>
Garantili yüksek ses kalitesi ve düşük arka plan gürültüsü varsa, veri setinin tonlaması homojen ise daha fazlası eklenebilir.<br>
Yüksek seviyede bir eğitim seti (zarif ve belirgin tonlama), 5 ila 10 dakika arası uygundur.<br>
1 ila 2 dakika veri ile başarılı bir şekilde eğitim yapan bazı insanlar olsa da, başarı diğerleri tarafından tekrarlanabilir değil ve çok bilgilendirici değil. Bu, eğitim setinin çok belirgin bir tonlamaya sahip olmasını (örneğin yüksek frekansta havadar bir anime kız sesi gibi) ve ses kalitesinin yüksek olmasını gerektirir; 1 dakikadan daha kısa süreli veri denenmemiştir ve önerilmez.<br>
## Q11: İndeks Oranı Nedir ve Nasıl Ayarlanır?
Eğer önceden eğitilmiş model ve tahmin kaynağının ton kalitesi, eğitim setinden daha yüksekse, tahmin sonucunun ton kalitesini yükseltebilirler, ancak altta yatan modelin/tahmin kaynağının tonu yerine eğitim setinin tonuna yönelik olası bir ton önyargısıyla sonuçlanır, bu genellikle "ton sızıntısı" olarak adlandırılır.<br>
İndeks oranı, ton sızıntı sorununu azaltmak/çözmek için kullanılır. İndeks oranı 1 olarak ayarlandığında, teorik olarak tahmin kaynağından ton sızıntısı olmaz ve ton kalitesi daha çok eğitim setine yönelik olur. Eğer eğitim seti, tahmin kaynağından daha düşük ses kalitesine sahipse, daha yüksek bir indeks oranı ses kalitesini azaltabilir. Oranı 0'a düşürmek, eğitim seti tonlarını korumak için getirme karıştırmasını kullanmanın etkisine sahip değildir.<br>
Eğer eğitim seti iyi ses kalitesine ve uzun süreye sahipse, total_epoch'u artırın. Model, tahmin kaynağına ve önceden eğitilmiş alt modeline daha az başvurduğunda ve "ton sızıntısı" daha az olduğunda, indeks oranı önemli değil ve hatta indeks dosyası oluşturmak/paylaşmak gerekli değildir.<br>
## Q12: Tahmin Yaparken Hangi GPU'yu Seçmeli?
config.py dosyasında "device cuda:" ardından kart numarasını seçin.<br>
Kart numarası ile grafik kartı arasındaki eşleme, eğitim sekmesinin grafik kartı bilgileri bölümünde görülebilir.<br>
## Q13: Eğitimin Ortasında Kaydedilen Model Nasıl Kullanılır?
Kaydetme işlemini ckpt işleme sekmesinin altında yer alan model çıkarımı ile yapabilirsiniz.
## Q14: Dosya/Bellek Hatası (Eğitim Sırasında)?
Çok fazla işlem ve yetersiz bellek olabilir. Bu sorunu düzeltebilirsiniz:
1. "CPU İş Parçacıkları" alanındaki girişi azaltarak.
2. Eğitim verisini daha kısa ses dosyalarına önceden keserek.
## Q15: Daha Fazla Veri Kullanarak Eğitime Nasıl Devam Edilir?
Adım 1: Tüm wav verilerini path2 dizinine yerleştirin.
Adım 2: exp_name2+path2 -> veri setini önişleme ve özellik çıkarma.
Adım 3: exp_name1 (önceki deneyinizin) en son G ve D dosyalarını exp_name2 klasörüne kopyalayın.
Adım 4: "modeli eğit" düğmesine tıklayın ve önceki deneyinizin model döneminden başlayarak eğitime devam edecektir.

View File

@ -0,0 +1,67 @@
## RVC Eğitimi için Talimatlar ve İpuçları
======================================
Bu TALİMAT, veri eğitiminin nasıl yapıldığınııklamaktadır.
# Eğitim Akışı
Eğitim sekmesindeki adımları takip ederek açıklayacağım.
## Adım 1
Deney adını burada belirleyin.
Ayrıca burada modelin pitch'i dikkate alıp almayacağını da belirleyebilirsiniz.
Eğer model pitch'i dikkate almazsa, model daha hafif olacak, ancak şarkı söyleme için uygun olmayacaktır.
Her deney için veriler `/logs/your-experiment-name/` dizinine yerleştirilir.
## Adım 2a
Ses yüklenir ve ön işleme yapılır.
### Ses Yükleme
Ses içeren bir klasör belirtirseniz, bu klasördeki ses dosyaları otomatik olarak okunur.
Örneğin, `C:Users\hoge\voices` belirtirseniz, `C:Users\hoge\voices\voice.mp3` yüklenecek, ancak `C:Users\hoge\voices\dir\voice.mp3` yüklenmeyecektir.
Ses okumak için dahili olarak ffmpeg kullanıldığından, uzantı ffmpeg tarafından destekleniyorsa otomatik olarak okunacaktır.
ffmpeg ile int16'ya dönüştürüldükten sonra float32'ye dönüştürülüp -1 ile 1 arasında normalize edilir.
### Gürültü Temizleme
Ses scipy'nin filtfilt işlevi ile yumuşatılır.
### Ses Ayırma
İlk olarak, giriş sesi belirli bir süreden (max_sil_kept=5 saniye?) daha uzun süren sessiz kısımları tespit ederek böler. Sessizlik üzerinde ses bölündükten sonra sesi 4 saniyede bir 0.3 saniyelik bir örtüşme ile böler. 4 saniye içinde ayrılan sesler için ses normalleştirildikten sonra wav dosyası olarak `/logs/your-experiment-name/0_gt_wavs`'a, ardından 16 kHz örnekleme hızına dönüştürülerek `/logs/your-experiment-name/1_16k_wavs` olarak kaydedilir.
## Adım 2b
### Pitch Çıkarımı
Wav dosyalarından pitch bilgisi çıkarılır. ParSelMouth veya PyWorld'e dahili olarak yerleştirilmiş yöntemi kullanarak pitch bilgisi (=f0) çıkarılır ve `/logs/your-experiment-name/2a_f0` dizinine kaydedilir. Ardından pitch bilgisi logaritmik olarak 1 ile 255 arasında bir tamsayıya dönüştürülüp `/logs/your-experiment-name/2b-f0nsf` dizinine kaydedilir.
### Özellik Çıkarımı
HuBERT'i kullanarak önceden gömme olarak wav dosyasını çıkarır. `/logs/your-experiment-name/1_16k_wavs`'a kaydedilen wav dosyasını okuyarak, wav dosyasını 256 boyutlu HuBERT özelliklerine dönüştürür ve npy formatında `/logs/your-experiment-name/3_feature256` dizinine kaydeder.
## Adım 3
Modeli eğit.
### Başlangıç Seviyesi Sözlüğü
Derin öğrenmede, veri kümesi bölmeye ve öğrenmeye adım adım devam eder. Bir model güncellemesinde (adım), batch_size veri alınır ve tahminler ve hata düzeltmeleri yapılır. Bunun bir defa bir veri kümesi için yapılması bir dönem olarak sayılır.
Bu nedenle, öğrenme zamanı adım başına öğrenme zamanı x (veri kümesindeki veri sayısı / batch boyutu) x dönem sayısıdır. Genel olarak, batch boyutu ne kadar büyükse, öğrenme daha istikrarlı hale gelir (adım başına öğrenme süresi ÷ batch boyutu) küçülür, ancak daha fazla GPU belleği kullanır. GPU RAM'ı nvidia-smi komutu ile kontrol edilebilir. Çalışma ortamının makinesine göre batch boyutunu mümkün olduğunca artırarak öğrenme süresini kısa sürede yapabilirsiniz.
### Önceden Eğitilmiş Modeli Belirtme
RVC, modeli 0'dan değil önceden eğitilmiş ağırlıklardan başlatarak eğitir, bu nedenle küçük bir veri kümesi ile eğitilebilir.
Varsayılan olarak
- Eğer pitch'i dikkate alıyorsanız, `rvc-location/pretrained/f0G40k.pth` ve `rvc-location/pretrained/f0D40k.pth` yüklenir.
- Eğer pitch'i dikkate almıyorsanız, yine `rvc-location/pretrained/f0G40k.pth` ve `rvc-location/pretrained/f0D40k.pth` yüklenir.
Öğrenirken model parametreleri her save_every_epoch için `logs/your-experiment-name/G_{}.pth` ve `logs/your-experiment-name/D_{}.pth` olarak kaydedilir, ancak bu yolu belirterek öğrenmeye başlayabilirsiniz. Farklı bir deneyde öğrenilen model ağırlıklarından öğrenmeye yeniden başlayabilir veya eğitimi başlatabilirsiniz.
### Öğrenme İndeksi
RVC, eğitim sırasında kullanılan HuBERT özellik değerlerini kaydeder ve çıkarım sırasında, öğrenme sırasında kullanılan özellik değerlerine benzer özellik değerlerini arayarak çıkarım yapar. Bu aramayı yüksek hızda gerçekleştirebilmek için indeks öğrenilir.
İndeks öğrenimi için yaklaş
ık komşuluk arama kütüphanesi faiss kullanılır. `/logs/your-experiment-name/3_feature256`'daki özellik değerini okur ve indeksi öğrenmek için kullanır, `logs/your-experiment-name/add_XXX.index` olarak kaydedilir.
(20230428 güncelleme sürümünden itibaren indeks okunur ve kaydetmek/belirtmek artık gerekli değildir.)
### Düğme Açıklaması
- Modeli Eğit: Adım 2b'yi çalıştırdıktan sonra, modeli eğitmek için bu düğmeye basın.
- Özellik İndeksini Eğit: Modeli eğittikten sonra, indeks öğrenme işlemi yapın.
- Tek Tıklamayla Eğitim: Adım 2b, model eğitimi ve özellik indeks eğitimini bir arada yapar.

View File

@ -1,230 +0,0 @@
@echo off && chcp 65001
echo working dir is %cd%
echo downloading requirement aria2 check.
echo=
dir /a:d/b | findstr "aria2" > flag.txt
findstr "aria2" flag.txt >nul
if %errorlevel% ==0 (
echo aria2 checked.
echo=
) else (
echo failed. please downloading aria2 from webpage!
echo unzip it and put in this directory!
timeout /T 5
start https://github.com/aria2/aria2/releases/tag/release-1.36.0
echo=
goto end
)
echo envfiles checking start.
echo=
for /f %%x in ('findstr /i /c:"aria2" "flag.txt"') do (set aria2=%%x)&goto endSch
:endSch
set d32=f0D32k.pth
set d40=f0D40k.pth
set d48=f0D48k.pth
set g32=f0G32k.pth
set g40=f0G40k.pth
set g48=f0G48k.pth
set dld32=https://huggingface.co/lj1995/VoiceConversionWebUI/resolve/main/pretrained/f0D32k.pth
set dld40=https://huggingface.co/lj1995/VoiceConversionWebUI/resolve/main/pretrained/f0D40k.pth
set dld48=https://huggingface.co/lj1995/VoiceConversionWebUI/resolve/main/pretrained/f0D48k.pth
set dlg32=https://huggingface.co/lj1995/VoiceConversionWebUI/resolve/main/pretrained/f0G32k.pth
set dlg40=https://huggingface.co/lj1995/VoiceConversionWebUI/resolve/main/pretrained/f0G40k.pth
set dlg48=https://huggingface.co/lj1995/VoiceConversionWebUI/resolve/main/pretrained/f0G48k.pth
set hp2=HP2-人声vocals+非人声instrumentals.pth
set hp5=HP5-主旋律人声vocals+其他instrumentals.pth
set dlhp2=https://huggingface.co/lj1995/VoiceConversionWebUI/resolve/main/uvr5_weights/HP2-人声vocals+非人声instrumentals.pth
set dlhp5=https://huggingface.co/lj1995/VoiceConversionWebUI/resolve/main/uvr5_weights/HP5-主旋律人声vocals+其他instrumentals.pth
set hb=hubert_base.pt
set dlhb=https://huggingface.co/lj1995/VoiceConversionWebUI/resolve/main/hubert_base.pt
echo dir check start.
echo=
if exist "%~dp0pretrained" (
echo dir .\pretrained checked.
) else (
echo failed. generating dir .\pretrained.
mkdir pretrained
)
if exist "%~dp0uvr5_weights" (
echo dir .\uvr5_weights checked.
) else (
echo failed. generating dir .\uvr5_weights.
mkdir uvr5_weights
)
echo=
echo dir check finished.
echo=
echo required files check start.
echo checking D32k.pth
if exist "%~dp0pretrained\D32k.pth" (
echo D32k.pth in .\pretrained checked.
echo=
) else (
echo failed. starting download from huggingface.
%~dp0%aria2%\aria2c --console-log-level=error -c -x 16 -s 16 -k 1M https://huggingface.co/lj1995/VoiceConversionWebUI/resolve/main/pretrained/D32k.pth -d %~dp0pretrained -o D32k.pth
if exist "%~dp0pretrained\D32k.pth" (echo download successful.) else (echo please try again!
echo=)
)
echo checking D40k.pth
if exist "%~dp0pretrained\D40k.pth" (
echo D40k.pth in .\pretrained checked.
echo=
) else (
echo failed. starting download from huggingface.
%~dp0%aria2%\aria2c --console-log-level=error -c -x 16 -s 16 -k 1M https://huggingface.co/lj1995/VoiceConversionWebUI/resolve/main/pretrained/D40k.pth -d %~dp0pretrained -o D40k.pth
if exist "%~dp0pretrained\D40k.pth" (echo download successful.) else (echo please try again!
echo=)
)
echo checking D48k.pth
if exist "%~dp0pretrained\D48k.pth" (
echo D48k.pth in .\pretrained checked.
echo=
) else (
echo failed. starting download from huggingface.
%~dp0%aria2%\aria2c --console-log-level=error -c -x 16 -s 16 -k 1M https://huggingface.co/lj1995/VoiceConversionWebUI/resolve/main/pretrained/D48k.pth -d %~dp0pretrained -o D48k.pth
if exist "%~dp0pretrained\D48k.pth" (echo download successful.) else (echo please try again!
echo=)
)
echo checking G32k.pth
if exist "%~dp0pretrained\G32k.pth" (
echo G32k.pth in .\pretrained checked.
echo=
) else (
echo failed. starting download from huggingface.
%~dp0%aria2%\aria2c --console-log-level=error -c -x 16 -s 16 -k 1M https://huggingface.co/lj1995/VoiceConversionWebUI/resolve/main/pretrained/G32k.pth -d %~dp0pretrained -o G32k.pth
if exist "%~dp0pretrained\G32k.pth" (echo download successful.) else (echo please try again!
echo=)
)
echo checking G40k.pth
if exist "%~dp0pretrained\G40k.pth" (
echo G40k.pth in .\pretrained checked.
echo=
) else (
echo failed. starting download from huggingface.
%~dp0%aria2%\aria2c --console-log-level=error -c -x 16 -s 16 -k 1M https://huggingface.co/lj1995/VoiceConversionWebUI/resolve/main/pretrained/G40k.pth -d %~dp0pretrained -o G40k.pth
if exist "%~dp0pretrained\G40k.pth" (echo download successful.) else (echo please try again!
echo=)
)
echo checking G48k.pth
if exist "%~dp0pretrained\G48k.pth" (
echo G48k.pth in .\pretrained checked.
echo=
) else (
echo failed. starting download from huggingface.
%~dp0%aria2%\aria2c --console-log-level=error -c -x 16 -s 16 -k 1M https://huggingface.co/lj1995/VoiceConversionWebUI/resolve/main/pretrained/G48k.pth -d %~dp0pretrained -o G48k.pth
if exist "%~dp0pretrained\G48k.pth" (echo download successful.) else (echo please try again!
echo=)
)
echo checking %d32%
if exist "%~dp0pretrained\%d32%" (
echo %d32% in .\pretrained checked.
echo=
) else (
echo failed. starting download from huggingface.
%~dp0%aria2%\aria2c --console-log-level=error -c -x 16 -s 16 -k 1M %dld32% -d %~dp0pretrained -o %d32%
if exist "%~dp0pretrained\%d32%" (echo download successful.) else (echo please try again!
echo=)
)
echo checking %d40%
if exist "%~dp0pretrained\%d40%" (
echo %d40% in .\pretrained checked.
echo=
) else (
echo failed. starting download from huggingface.
%~dp0%aria2%\aria2c --console-log-level=error -c -x 16 -s 16 -k 1M %dld40% -d %~dp0pretrained -o %d40%
if exist "%~dp0pretrained\%d40%" (echo download successful.) else (echo please try again!
echo=)
)
echo checking %d48%
if exist "%~dp0pretrained\%d48%" (
echo %d48% in .\pretrained checked.
echo=
) else (
echo failed. starting download from huggingface.
%~dp0%aria2%\aria2c --console-log-level=error -c -x 16 -s 16 -k 1M %dld48% -d %~dp0pretrained -o %d48%
if exist "%~dp0pretrained\%d48%" (echo download successful.) else (echo please try again!
echo=)
)
echo checking %g32%
if exist "%~dp0pretrained\%g32%" (
echo %g32% in .\pretrained checked.
echo=
) else (
echo failed. starting download from huggingface.
%~dp0%aria2%\aria2c --console-log-level=error -c -x 16 -s 16 -k 1M %dlg32% -d %~dp0pretrained -o %g32%
if exist "%~dp0pretrained\%g32%" (echo download successful.) else (echo please try again!
echo=)
)
echo checking %g40%
if exist "%~dp0pretrained\%g40%" (
echo %g40% in .\pretrained checked.
echo=
) else (
echo failed. starting download from huggingface.
%~dp0%aria2%\aria2c --console-log-level=error -c -x 16 -s 16 -k 1M %dlg40% -d %~dp0pretrained -o %g40%
if exist "%~dp0pretrained\%g40%" (echo download successful.) else (echo please try again!
echo=)
)
echo checking %g48%
if exist "%~dp0pretrained\%g48%" (
echo %g48% in .\pretrained checked.
echo=
) else (
echo failed. starting download from huggingface.
%~dp0%aria2%\aria2c --console-log-level=error -c -x 16 -s 16 -k 1M %dlg48% -d %~dp0\pretrained -o %g48%
if exist "%~dp0pretrained\%g48%" (echo download successful.) else (echo please try again!
echo=)
)
echo checking %hp2%
if exist "%~dp0uvr5_weights\%hp2%" (
echo %hp2% in .\uvr5_weights checked.
echo=
) else (
echo failed. starting download from huggingface.
%~dp0%aria2%\aria2c --console-log-level=error -c -x 16 -s 16 -k 1M %dlhp2% -d %~dp0\uvr5_weights -o %hp2%
if exist "%~dp0uvr5_weights\%hp2%" (echo download successful.) else (echo please try again!
echo=)
)
echo checking %hp5%
if exist "%~dp0uvr5_weights\%hp5%" (
echo %hp5% in .\uvr5_weights checked.
echo=
) else (
echo failed. starting download from huggingface.
%~dp0%aria2%\aria2c --console-log-level=error -c -x 16 -s 16 -k 1M %dlhp5% -d %~dp0\uvr5_weights -o %HP5%
if exist "%~dp0uvr5_weights\%hp5%" (echo download successful.) else (echo please try again!
echo=)
)
echo checking %hb%
if exist "%~dp0%hb%" (
echo %hb% in .\pretrained checked.
echo=
) else (
echo failed. starting download from huggingface.
%~dp0%aria2%\aria2c --console-log-level=error -c -x 16 -s 16 -k 1M %dlhb% -d %~dp0 -o %hb%
if exist "%~dp0%hb%" (echo download successful.) else (echo please try again!
echo=)
)
echo required files check finished.
echo envfiles check complete.
pause
:end
del flag.txt

186
environment_dml.yaml Normal file
View File

@ -0,0 +1,186 @@
name: pydml
channels:
- pytorch
- https://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/main
- https://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/main/
- https://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/free/
- https://mirrors.tuna.tsinghua.edu.cn/anaconda/cloud/conda-forge/
- defaults
- https://mirrors.tuna.tsinghua.edu.cn/anaconda/cloud/fastai/
- https://mirrors.tuna.tsinghua.edu.cn/anaconda/cloud/pytorch/
- https://mirrors.tuna.tsinghua.edu.cn/anaconda/cloud/bioconda/
dependencies:
- abseil-cpp=20211102.0=hd77b12b_0
- absl-py=1.3.0=py310haa95532_0
- aiohttp=3.8.3=py310h2bbff1b_0
- aiosignal=1.2.0=pyhd3eb1b0_0
- async-timeout=4.0.2=py310haa95532_0
- attrs=22.1.0=py310haa95532_0
- blas=1.0=mkl
- blinker=1.4=py310haa95532_0
- bottleneck=1.3.5=py310h9128911_0
- brotli=1.0.9=h2bbff1b_7
- brotli-bin=1.0.9=h2bbff1b_7
- brotlipy=0.7.0=py310h2bbff1b_1002
- bzip2=1.0.8=he774522_0
- c-ares=1.19.0=h2bbff1b_0
- ca-certificates=2023.05.30=haa95532_0
- cachetools=4.2.2=pyhd3eb1b0_0
- certifi=2023.5.7=py310haa95532_0
- cffi=1.15.1=py310h2bbff1b_3
- charset-normalizer=2.0.4=pyhd3eb1b0_0
- click=8.0.4=py310haa95532_0
- colorama=0.4.6=py310haa95532_0
- contourpy=1.0.5=py310h59b6b97_0
- cryptography=39.0.1=py310h21b164f_0
- cycler=0.11.0=pyhd3eb1b0_0
- fonttools=4.25.0=pyhd3eb1b0_0
- freetype=2.12.1=ha860e81_0
- frozenlist=1.3.3=py310h2bbff1b_0
- giflib=5.2.1=h8cc25b3_3
- glib=2.69.1=h5dc1a3c_2
- google-auth=2.6.0=pyhd3eb1b0_0
- google-auth-oauthlib=0.4.4=pyhd3eb1b0_0
- grpc-cpp=1.48.2=hf108199_0
- grpcio=1.48.2=py310hf108199_0
- gst-plugins-base=1.18.5=h9e645db_0
- gstreamer=1.18.5=hd78058f_0
- icu=58.2=ha925a31_3
- idna=3.4=py310haa95532_0
- intel-openmp=2023.1.0=h59b6b97_46319
- jpeg=9e=h2bbff1b_1
- kiwisolver=1.4.4=py310hd77b12b_0
- krb5=1.19.4=h5b6d351_0
- lerc=3.0=hd77b12b_0
- libbrotlicommon=1.0.9=h2bbff1b_7
- libbrotlidec=1.0.9=h2bbff1b_7
- libbrotlienc=1.0.9=h2bbff1b_7
- libclang=14.0.6=default_hb5a9fac_1
- libclang13=14.0.6=default_h8e68704_1
- libdeflate=1.17=h2bbff1b_0
- libffi=3.4.4=hd77b12b_0
- libiconv=1.16=h2bbff1b_2
- libogg=1.3.5=h2bbff1b_1
- libpng=1.6.39=h8cc25b3_0
- libprotobuf=3.20.3=h23ce68f_0
- libtiff=4.5.0=h6c2663c_2
- libuv=1.44.2=h2bbff1b_0
- libvorbis=1.3.7=he774522_0
- libwebp=1.2.4=hbc33d0d_1
- libwebp-base=1.2.4=h2bbff1b_1
- libxml2=2.10.3=h0ad7f3c_0
- libxslt=1.1.37=h2bbff1b_0
- lz4-c=1.9.4=h2bbff1b_0
- markdown=3.4.1=py310haa95532_0
- markupsafe=2.1.1=py310h2bbff1b_0
- matplotlib=3.7.1=py310haa95532_1
- matplotlib-base=3.7.1=py310h4ed8f06_1
- mkl=2023.1.0=h8bd8f75_46356
- mkl-service=2.4.0=py310h2bbff1b_1
- mkl_fft=1.3.6=py310h4ed8f06_1
- mkl_random=1.2.2=py310h4ed8f06_1
- multidict=6.0.2=py310h2bbff1b_0
- munkres=1.1.4=py_0
- numexpr=2.8.4=py310h2cd9be0_1
- numpy=1.24.3=py310h055cbcc_1
- numpy-base=1.24.3=py310h65a83cf_1
- oauthlib=3.2.2=py310haa95532_0
- openssl=1.1.1t=h2bbff1b_0
- packaging=23.0=py310haa95532_0
- pandas=1.5.3=py310h4ed8f06_0
- pcre=8.45=hd77b12b_0
- pillow=9.4.0=py310hd77b12b_0
- pip=23.0.1=py310haa95532_0
- ply=3.11=py310haa95532_0
- protobuf=3.20.3=py310hd77b12b_0
- pyasn1=0.4.8=pyhd3eb1b0_0
- pyasn1-modules=0.2.8=py_0
- pycparser=2.21=pyhd3eb1b0_0
- pyjwt=2.4.0=py310haa95532_0
- pyopenssl=23.0.0=py310haa95532_0
- pyparsing=3.0.9=py310haa95532_0
- pyqt=5.15.7=py310hd77b12b_0
- pyqt5-sip=12.11.0=py310hd77b12b_0
- pysocks=1.7.1=py310haa95532_0
- python=3.10.11=h966fe2a_2
- python-dateutil=2.8.2=pyhd3eb1b0_0
- pytorch-mutex=1.0=cpu
- pytz=2022.7=py310haa95532_0
- pyyaml=6.0=py310h2bbff1b_1
- qt-main=5.15.2=he8e5bd7_8
- qt-webengine=5.15.9=hb9a9bb5_5
- qtwebkit=5.212=h2bbfb41_5
- re2=2022.04.01=hd77b12b_0
- requests=2.29.0=py310haa95532_0
- requests-oauthlib=1.3.0=py_0
- rsa=4.7.2=pyhd3eb1b0_1
- setuptools=67.8.0=py310haa95532_0
- sip=6.6.2=py310hd77b12b_0
- six=1.16.0=pyhd3eb1b0_1
- sqlite=3.41.2=h2bbff1b_0
- tbb=2021.8.0=h59b6b97_0
- tensorboard=2.10.0=py310haa95532_0
- tensorboard-data-server=0.6.1=py310haa95532_0
- tensorboard-plugin-wit=1.8.1=py310haa95532_0
- tk=8.6.12=h2bbff1b_0
- toml=0.10.2=pyhd3eb1b0_0
- tornado=6.2=py310h2bbff1b_0
- tqdm=4.65.0=py310h9909e9c_0
- typing_extensions=4.5.0=py310haa95532_0
- tzdata=2023c=h04d1e81_0
- urllib3=1.26.16=py310haa95532_0
- vc=14.2=h21ff451_1
- vs2015_runtime=14.27.29016=h5e58377_2
- werkzeug=2.2.3=py310haa95532_0
- wheel=0.38.4=py310haa95532_0
- win_inet_pton=1.1.0=py310haa95532_0
- xz=5.4.2=h8cc25b3_0
- yaml=0.2.5=he774522_0
- yarl=1.8.1=py310h2bbff1b_0
- zlib=1.2.13=h8cc25b3_0
- zstd=1.5.5=hd43e919_0
- pip:
- antlr4-python3-runtime==4.8
- appdirs==1.4.4
- audioread==3.0.0
- bitarray==2.7.4
- cython==0.29.35
- decorator==5.1.1
- fairseq==0.12.2
- faiss-cpu==1.7.4
- filelock==3.12.0
- hydra-core==1.0.7
- jinja2==3.1.2
- joblib==1.2.0
- lazy-loader==0.2
- librosa==0.10.0.post2
- llvmlite==0.40.0
- lxml==4.9.2
- mpmath==1.3.0
- msgpack==1.0.5
- networkx==3.1
- noisereduce==2.0.1
- numba==0.57.0
- omegaconf==2.0.6
- opencv-python==4.7.0.72
- pooch==1.6.0
- portalocker==2.7.0
- pysimplegui==4.60.5
- pywin32==306
- pyworld==0.3.3
- regex==2023.5.5
- sacrebleu==2.3.1
- scikit-learn==1.2.2
- scipy==1.10.1
- sounddevice==0.4.6
- soundfile==0.12.1
- soxr==0.3.5
- sympy==1.12
- tabulate==0.9.0
- threadpoolctl==3.1.0
- torch==2.0.0
- torch-directml==0.2.0.dev230426
- torchaudio==2.0.1
- torchvision==0.15.1
- wget==3.2
prefix: D:\ProgramData\anaconda3_\envs\pydml

View File

@ -1,85 +0,0 @@
from infer_pack.models_onnx_moess import SynthesizerTrnMs256NSFsidM
from infer_pack.models_onnx import SynthesizerTrnMs256NSFsidO
import torch
if __name__ == "__main__":
MoeVS = True # 模型是否为MoeVoiceStudio原MoeSS使用
ModelPath = "Shiroha/shiroha.pth" # 模型路径
ExportedPath = "model.onnx" # 输出路径
hidden_channels = 256 # hidden_channels为768Vec做准备
cpt = torch.load(ModelPath, map_location="cpu")
cpt["config"][-3] = cpt["weight"]["emb_g.weight"].shape[0] # n_spk
print(*cpt["config"])
test_phone = torch.rand(1, 200, hidden_channels) # hidden unit
test_phone_lengths = torch.tensor([200]).long() # hidden unit 长度(貌似没啥用)
test_pitch = torch.randint(size=(1, 200), low=5, high=255) # 基频(单位赫兹)
test_pitchf = torch.rand(1, 200) # nsf基频
test_ds = torch.LongTensor([0]) # 说话人ID
test_rnd = torch.rand(1, 192, 200) # 噪声(加入随机因子)
device = "cpu" # 导出时设备(不影响使用模型)
if MoeVS:
net_g = SynthesizerTrnMs256NSFsidM(
*cpt["config"], is_half=False
) # fp32导出C++要支持fp16必须手动将内存重新排列所以暂时不用fp16
net_g.load_state_dict(cpt["weight"], strict=False)
input_names = ["phone", "phone_lengths", "pitch", "pitchf", "ds", "rnd"]
output_names = [
"audio",
]
torch.onnx.export(
net_g,
(
test_phone.to(device),
test_phone_lengths.to(device),
test_pitch.to(device),
test_pitchf.to(device),
test_ds.to(device),
test_rnd.to(device),
),
ExportedPath,
dynamic_axes={
"phone": [1],
"pitch": [1],
"pitchf": [1],
"rnd": [2],
},
do_constant_folding=False,
opset_version=16,
verbose=False,
input_names=input_names,
output_names=output_names,
)
else:
net_g = SynthesizerTrnMs256NSFsidO(
*cpt["config"], is_half=False
) # fp32导出C++要支持fp16必须手动将内存重新排列所以暂时不用fp16
net_g.load_state_dict(cpt["weight"], strict=False)
input_names = ["phone", "phone_lengths", "pitch", "pitchf", "ds"]
output_names = [
"audio",
]
torch.onnx.export(
net_g,
(
test_phone.to(device),
test_phone_lengths.to(device),
test_pitch.to(device),
test_pitchf.to(device),
test_ds.to(device),
),
ExportedPath,
dynamic_axes={
"phone": [1],
"pitch": [1],
"pitchf": [1],
},
do_constant_folding=False,
opset_version=16,
verbose=False,
input_names=input_names,
output_names=output_names,
)

View File

@ -1,47 +0,0 @@
from infer_pack.models_onnx_moess import SynthesizerTrnMs256NSFsidM
import torch
person = "Shiroha/shiroha.pth"
exported_path = "model.onnx"
cpt = torch.load(person, map_location="cpu")
cpt["config"][-3] = cpt["weight"]["emb_g.weight"].shape[0] # n_spk
print(*cpt["config"])
net_g = SynthesizerTrnMs256NSFsidM(*cpt["config"], is_half=False)
net_g.load_state_dict(cpt["weight"], strict=False)
test_phone = torch.rand(1, 200, 256)
test_phone_lengths = torch.tensor([200]).long()
test_pitch = torch.randint(size=(1, 200), low=5, high=255)
test_pitchf = torch.rand(1, 200)
test_ds = torch.LongTensor([0])
test_rnd = torch.rand(1, 192, 200)
input_names = ["phone", "phone_lengths", "pitch", "pitchf", "ds", "rnd"]
output_names = [
"audio",
]
device = "cpu"
torch.onnx.export(
net_g,
(
test_phone.to(device),
test_phone_lengths.to(device),
test_pitch.to(device),
test_pitchf.to(device),
test_ds.to(device),
test_rnd.to(device),
),
exported_path,
dynamic_axes={
"phone": [1],
"pitch": [1],
"pitchf": [1],
"rnd": [2],
},
do_constant_folding=False,
opset_version=16,
verbose=False,
input_names=input_names,
output_names=output_names,
)

View File

@ -1,31 +0,0 @@
import json
import re
# Define regular expression patterns
pattern = r"""i18n\([\s\n\t]*(["'][^"']+["'])[\s\n\t]*\)"""
# Initialize the dictionary to store key-value pairs
data = {}
def process(fn: str):
global data
with open(fn, "r", encoding="utf-8") as f:
contents = f.read()
matches = re.findall(pattern, contents)
for key in matches:
key = eval(key)
print("extract:", key)
data[key] = key
print("processing infer-web.py")
process("infer-web.py")
print("processing gui.py")
process("gui.py")
# Save as a JSON file
with open("./i18n/zh_CN.json", "w", encoding="utf-8") as f:
json.dump(data, f, ensure_ascii=False, indent=4)
f.write("\n")

2
go-realtime-gui-dml.bat Normal file
View File

@ -0,0 +1,2 @@
runtime\python.exe gui_v1.py --pycmd runtime\python.exe --dml
pause

View File

@ -1,2 +1,2 @@
runtime\python.exe gui.py
runtime\python.exe gui_v1.py
pause

2
go-web-dml.bat Normal file
View File

@ -0,0 +1,2 @@
runtime\python.exe infer-web.py --pycmd runtime\python.exe --port 7897 --dml
pause

562
gui.py
View File

@ -1,562 +0,0 @@
import os, sys
now_dir = os.getcwd()
sys.path.append(now_dir)
import PySimpleGUI as sg
import sounddevice as sd
import noisereduce as nr
import numpy as np
from fairseq import checkpoint_utils
import librosa, torch, pyworld, faiss, time, threading
import torch.nn.functional as F
import torchaudio.transforms as tat
import scipy.signal as signal
# import matplotlib.pyplot as plt
from infer_pack.models import SynthesizerTrnMs256NSFsid, SynthesizerTrnMs256NSFsid_nono
from i18n import I18nAuto
i18n = I18nAuto()
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
class RVC:
def __init__(
self, key, hubert_path, pth_path, index_path, npy_path, index_rate
) -> None:
"""
初始化
"""
try:
self.f0_up_key = key
self.time_step = 160 / 16000 * 1000
self.f0_min = 50
self.f0_max = 1100
self.f0_mel_min = 1127 * np.log(1 + self.f0_min / 700)
self.f0_mel_max = 1127 * np.log(1 + self.f0_max / 700)
self.sr = 16000
self.window = 160
if index_rate != 0:
self.index = faiss.read_index(index_path)
self.big_npy = np.load(npy_path)
print("index search enabled")
self.index_rate = index_rate
model_path = hubert_path
print("load model(s) from {}".format(model_path))
models, saved_cfg, task = checkpoint_utils.load_model_ensemble_and_task(
[model_path],
suffix="",
)
self.model = models[0]
self.model = self.model.to(device)
self.model = self.model.half()
self.model.eval()
cpt = torch.load(pth_path, map_location="cpu")
self.tgt_sr = cpt["config"][-1]
cpt["config"][-3] = cpt["weight"]["emb_g.weight"].shape[0] # n_spk
self.if_f0 = cpt.get("f0", 1)
if self.if_f0 == 1:
self.net_g = SynthesizerTrnMs256NSFsid(*cpt["config"], is_half=True)
else:
self.net_g = SynthesizerTrnMs256NSFsid_nono(*cpt["config"])
del self.net_g.enc_q
print(self.net_g.load_state_dict(cpt["weight"], strict=False))
self.net_g.eval().to(device)
self.net_g.half()
except Exception as e:
print(e)
def get_f0(self, x, f0_up_key, inp_f0=None):
x_pad = 1
f0_min = 50
f0_max = 1100
f0_mel_min = 1127 * np.log(1 + f0_min / 700)
f0_mel_max = 1127 * np.log(1 + f0_max / 700)
f0, t = pyworld.harvest(
x.astype(np.double),
fs=self.sr,
f0_ceil=f0_max,
f0_floor=f0_min,
frame_period=10,
)
f0 = pyworld.stonemask(x.astype(np.double), f0, t, self.sr)
f0 = signal.medfilt(f0, 3)
f0 *= pow(2, f0_up_key / 12)
# with open("test.txt","w")as f:f.write("\n".join([str(i)for i in f0.tolist()]))
tf0 = self.sr // self.window # 每秒f0点数
if inp_f0 is not None:
delta_t = np.round(
(inp_f0[:, 0].max() - inp_f0[:, 0].min()) * tf0 + 1
).astype("int16")
replace_f0 = np.interp(
list(range(delta_t)), inp_f0[:, 0] * 100, inp_f0[:, 1]
)
shape = f0[x_pad * tf0 : x_pad * tf0 + len(replace_f0)].shape[0]
f0[x_pad * tf0 : x_pad * tf0 + len(replace_f0)] = replace_f0[:shape]
# with open("test_opt.txt","w")as f:f.write("\n".join([str(i)for i in f0.tolist()]))
f0bak = f0.copy()
f0_mel = 1127 * np.log(1 + f0 / 700)
f0_mel[f0_mel > 0] = (f0_mel[f0_mel > 0] - f0_mel_min) * 254 / (
f0_mel_max - f0_mel_min
) + 1
f0_mel[f0_mel <= 1] = 1
f0_mel[f0_mel > 255] = 255
f0_coarse = np.rint(f0_mel).astype(np.int)
return f0_coarse, f0bak # 1-0
def infer(self, feats: torch.Tensor) -> np.ndarray:
"""
推理函数
"""
audio = feats.clone().cpu().numpy()
assert feats.dim() == 1, feats.dim()
feats = feats.view(1, -1)
padding_mask = torch.BoolTensor(feats.shape).fill_(False)
inputs = {
"source": feats.half().to(device),
"padding_mask": padding_mask.to(device),
"output_layer": 9, # layer 9
}
torch.cuda.synchronize()
with torch.no_grad():
logits = self.model.extract_features(**inputs)
feats = self.model.final_proj(logits[0])
####索引优化
if hasattr(self, "index") and hasattr(self, "big_npy") and self.index_rate != 0:
npy = feats[0].cpu().numpy().astype("float32")
_, I = self.index.search(npy, 1)
npy = self.big_npy[I.squeeze()].astype("float16")
feats = (
torch.from_numpy(npy).unsqueeze(0).to(device) * self.index_rate
+ (1 - self.index_rate) * feats
)
else:
print("index search FAIL or disabled")
feats = F.interpolate(feats.permute(0, 2, 1), scale_factor=2).permute(0, 2, 1)
torch.cuda.synchronize()
print(feats.shape)
if self.if_f0 == 1:
pitch, pitchf = self.get_f0(audio, self.f0_up_key)
p_len = min(feats.shape[1], 13000, pitch.shape[0]) # 太大了爆显存
else:
pitch, pitchf = None, None
p_len = min(feats.shape[1], 13000) # 太大了爆显存
torch.cuda.synchronize()
# print(feats.shape,pitch.shape)
feats = feats[:, :p_len, :]
if self.if_f0 == 1:
pitch = pitch[:p_len]
pitchf = pitchf[:p_len]
pitch = torch.LongTensor(pitch).unsqueeze(0).to(device)
pitchf = torch.FloatTensor(pitchf).unsqueeze(0).to(device)
p_len = torch.LongTensor([p_len]).to(device)
ii = 0 # sid
sid = torch.LongTensor([ii]).to(device)
with torch.no_grad():
if self.if_f0 == 1:
infered_audio = (
self.net_g.infer(feats, p_len, pitch, pitchf, sid)[0][0, 0]
.data.cpu()
.float()
)
else:
infered_audio = (
self.net_g.infer(feats, p_len, sid)[0][0, 0].data.cpu().float()
)
torch.cuda.synchronize()
return infered_audio
class Config:
def __init__(self) -> None:
self.hubert_path: str = ""
self.pth_path: str = ""
self.index_path: str = ""
self.npy_path: str = ""
self.pitch: int = 12
self.samplerate: int = 44100
self.block_time: float = 1.0 # s
self.buffer_num: int = 1
self.threhold: int = -30
self.crossfade_time: float = 0.08
self.extra_time: float = 0.04
self.I_noise_reduce = False
self.O_noise_reduce = False
self.index_rate = 0.3
class GUI:
def __init__(self) -> None:
self.config = Config()
self.flag_vc = False
self.launcher()
def launcher(self):
sg.theme("LightBlue3")
input_devices, output_devices, _, _ = self.get_devices()
layout = [
[
sg.Frame(
title=i18n("加载模型"),
layout=[
[
sg.Input(
default_text="TEMP\\hubert_base.pt", key="hubert_path"
),
sg.FileBrowse(i18n("Hubert模型")),
],
[
sg.Input(default_text="TEMP\\atri.pth", key="pth_path"),
sg.FileBrowse(i18n("选择.pth文件")),
],
[
sg.Input(
default_text="TEMP\\added_IVF512_Flat_atri_baseline_src_feat.index",
key="index_path",
),
sg.FileBrowse(i18n("选择.index文件")),
],
[
sg.Input(
default_text="TEMP\\big_src_feature_atri.npy",
key="npy_path",
),
sg.FileBrowse(i18n("选择.npy文件")),
],
],
)
],
[
sg.Frame(
layout=[
[
sg.Text(i18n("输入设备")),
sg.Combo(
input_devices,
key="sg_input_device",
default_value=input_devices[sd.default.device[0]],
),
],
[
sg.Text(i18n("输出设备")),
sg.Combo(
output_devices,
key="sg_output_device",
default_value=output_devices[sd.default.device[1]],
),
],
],
title=i18n("音频设备(请使用同种类驱动)"),
)
],
[
sg.Frame(
layout=[
[
sg.Text(i18n("响应阈值")),
sg.Slider(
range=(-60, 0),
key="threhold",
resolution=1,
orientation="h",
default_value=-30,
),
],
[
sg.Text(i18n("音调设置")),
sg.Slider(
range=(-24, 24),
key="pitch",
resolution=1,
orientation="h",
default_value=12,
),
],
[
sg.Text(i18n("Index Rate")),
sg.Slider(
range=(0.0, 1.0),
key="index_rate",
resolution=0.01,
orientation="h",
default_value=0.5,
),
],
],
title=i18n("常规设置"),
),
sg.Frame(
layout=[
[
sg.Text(i18n("采样长度")),
sg.Slider(
range=(0.1, 3.0),
key="block_time",
resolution=0.1,
orientation="h",
default_value=1.0,
),
],
[
sg.Text(i18n("淡入淡出长度")),
sg.Slider(
range=(0.01, 0.15),
key="crossfade_length",
resolution=0.01,
orientation="h",
default_value=0.08,
),
],
[
sg.Text(i18n("额外推理时长")),
sg.Slider(
range=(0.05, 3.00),
key="extra_time",
resolution=0.01,
orientation="h",
default_value=0.05,
),
],
[
sg.Checkbox(i18n("输入降噪"), key="I_noise_reduce"),
sg.Checkbox(i18n("输出降噪"), key="O_noise_reduce"),
],
],
title=i18n("性能设置"),
),
],
[
sg.Button(i18n("开始音频转换"), key="start_vc"),
sg.Button(i18n("停止音频转换"), key="stop_vc"),
sg.Text(i18n("推理时间(ms):")),
sg.Text("0", key="infer_time"),
],
]
self.window = sg.Window("RVC - GUI", layout=layout)
self.event_handler()
def event_handler(self):
while True:
event, values = self.window.read()
if event == sg.WINDOW_CLOSED:
self.flag_vc = False
exit()
if event == "start_vc" and self.flag_vc == False:
self.set_values(values)
print(str(self.config.__dict__))
print("using_cuda:" + str(torch.cuda.is_available()))
self.start_vc()
if event == "stop_vc" and self.flag_vc == True:
self.flag_vc = False
def set_values(self, values):
self.set_devices(values["sg_input_device"], values["sg_output_device"])
self.config.hubert_path = values["hubert_path"]
self.config.pth_path = values["pth_path"]
self.config.index_path = values["index_path"]
self.config.npy_path = values["npy_path"]
self.config.threhold = values["threhold"]
self.config.pitch = values["pitch"]
self.config.block_time = values["block_time"]
self.config.crossfade_time = values["crossfade_length"]
self.config.extra_time = values["extra_time"]
self.config.I_noise_reduce = values["I_noise_reduce"]
self.config.O_noise_reduce = values["O_noise_reduce"]
self.config.index_rate = values["index_rate"]
def start_vc(self):
torch.cuda.empty_cache()
self.flag_vc = True
self.block_frame = int(self.config.block_time * self.config.samplerate)
self.crossfade_frame = int(self.config.crossfade_time * self.config.samplerate)
self.sola_search_frame = int(0.012 * self.config.samplerate)
self.delay_frame = int(0.01 * self.config.samplerate) # 往前预留0.02s
self.extra_frame = int(
self.config.extra_time * self.config.samplerate
)
self.rvc = None
self.rvc = RVC(
self.config.pitch,
self.config.hubert_path,
self.config.pth_path,
self.config.index_path,
self.config.npy_path,
self.config.index_rate,
)
self.input_wav: np.ndarray = np.zeros(
self.extra_frame
+ self.crossfade_frame
+ self.sola_search_frame
+ self.block_frame,
dtype="float32",
)
self.output_wav: torch.Tensor = torch.zeros(
self.block_frame, device=device, dtype=torch.float32
)
self.sola_buffer: torch.Tensor = torch.zeros(
self.crossfade_frame, device=device, dtype=torch.float32
)
self.fade_in_window: torch.Tensor = torch.linspace(
0.0, 1.0, steps=self.crossfade_frame, device=device, dtype=torch.float32
)
self.fade_out_window: torch.Tensor = 1 - self.fade_in_window
self.resampler1 = tat.Resample(
orig_freq=self.config.samplerate, new_freq=16000, dtype=torch.float32
)
self.resampler2 = tat.Resample(
orig_freq=self.rvc.tgt_sr, new_freq=self.config.samplerate, dtype=torch.float32
)
thread_vc = threading.Thread(target=self.soundinput)
thread_vc.start()
def soundinput(self):
"""
接受音频输入
"""
with sd.Stream(
callback=self.audio_callback,
blocksize=self.block_frame,
samplerate=self.config.samplerate,
dtype="float32",
):
while self.flag_vc:
time.sleep(self.config.block_time)
print("Audio block passed.")
print("ENDing VC")
def audio_callback(
self, indata: np.ndarray, outdata: np.ndarray, frames, times, status
):
"""
音频处理
"""
start_time = time.perf_counter()
indata = librosa.to_mono(indata.T)
if self.config.I_noise_reduce:
indata[:] = nr.reduce_noise(y=indata, sr=self.config.samplerate)
"""noise gate"""
frame_length = 2048
hop_length = 1024
rms = librosa.feature.rms(
y=indata, frame_length=frame_length, hop_length=hop_length
)
db_threhold = librosa.amplitude_to_db(rms, ref=1.0)[0] < self.config.threhold
# print(rms.shape,db.shape,db)
for i in range(db_threhold.shape[0]):
if db_threhold[i]:
indata[i * hop_length : (i + 1) * hop_length] = 0
self.input_wav[:] = np.append(self.input_wav[self.block_frame :], indata)
# infer
print("input_wav:" + str(self.input_wav.shape))
# print('infered_wav:'+str(infer_wav.shape))
infer_wav: torch.Tensor = self.resampler2(
self.rvc.infer(self.resampler1(torch.from_numpy(self.input_wav)))
)[-self.crossfade_frame - self.sola_search_frame - self.block_frame :].to(
device
)
print("infer_wav:" + str(infer_wav.shape))
# SOLA algorithm from https://github.com/yxlllc/DDSP-SVC
cor_nom = F.conv1d(
infer_wav[None, None, : self.crossfade_frame + self.sola_search_frame],
self.sola_buffer[None, None, :],
)
cor_den = torch.sqrt(
F.conv1d(
infer_wav[None, None, : self.crossfade_frame + self.sola_search_frame]
** 2,
torch.ones(1, 1, self.crossfade_frame, device=device),
)
+ 1e-8
)
sola_offset = torch.argmax(cor_nom[0, 0] / cor_den[0, 0])
print("sola offset: " + str(int(sola_offset)))
# crossfade
self.output_wav[:] = infer_wav[sola_offset : sola_offset + self.block_frame]
self.output_wav[: self.crossfade_frame] *= self.fade_in_window
self.output_wav[: self.crossfade_frame] += self.sola_buffer[:]
if sola_offset < self.sola_search_frame:
self.sola_buffer[:] = (
infer_wav[
-self.sola_search_frame
- self.crossfade_frame
+ sola_offset : -self.sola_search_frame
+ sola_offset
]
* self.fade_out_window
)
else:
self.sola_buffer[:] = (
infer_wav[-self.crossfade_frame :] * self.fade_out_window
)
if self.config.O_noise_reduce:
outdata[:] = np.tile(
nr.reduce_noise(
y=self.output_wav[:].cpu().numpy(), sr=self.config.samplerate
),
(2, 1),
).T
else:
outdata[:] = self.output_wav[:].repeat(2, 1).t().cpu().numpy()
total_time = time.perf_counter() - start_time
self.window["infer_time"].update(int(total_time * 1000))
print("infer time:" + str(total_time))
def get_devices(self, update: bool = True):
"""获取设备列表"""
if update:
sd._terminate()
sd._initialize()
devices = sd.query_devices()
hostapis = sd.query_hostapis()
for hostapi in hostapis:
for device_idx in hostapi["devices"]:
devices[device_idx]["hostapi_name"] = hostapi["name"]
input_devices = [
f"{d['name']} ({d['hostapi_name']})"
for d in devices
if d["max_input_channels"] > 0
]
output_devices = [
f"{d['name']} ({d['hostapi_name']})"
for d in devices
if d["max_output_channels"] > 0
]
input_devices_indices = [
d["index"] for d in devices if d["max_input_channels"] > 0
]
output_devices_indices = [
d["index"] for d in devices if d["max_output_channels"] > 0
]
return (
input_devices,
output_devices,
input_devices_indices,
output_devices_indices,
)
def set_devices(self, input_device, output_device):
"""设置输出设备"""
(
input_devices,
output_devices,
input_device_indices,
output_device_indices,
) = self.get_devices()
sd.default.device[0] = input_device_indices[input_devices.index(input_device)]
sd.default.device[1] = output_device_indices[
output_devices.index(output_device)
]
print("input device:" + str(sd.default.device[0]) + ":" + str(input_device))
print("output device:" + str(sd.default.device[1]) + ":" + str(output_device))
gui = GUI()

1070
gui_v1.py Normal file

File diff suppressed because it is too large Load Diff

View File

@ -1,104 +0,0 @@
{
"本软件以MIT协议开源, 作者不对软件具备任何控制力, 使用软件者、传播软件导出的声音者自负全责. <br>如不认可该条款, 则不能使用或引用软件包内任何代码和文件. 详见根目录<b>使用需遵守的协议-LICENSE.txt</b>.": "This software is open source under the MIT license, the author does not have any control over the software, and those who use the software and spread the sounds exported by the software are solely responsible. <br>If you do not agree with this clause, you cannot use or quote any codes and files in the software package . See root directory <b>Agreement-LICENSE.txt</b> for details.",
"模型推理": "Model inference",
"推理音色": "Inferencing timbre",
"刷新音色列表": "Refresh timbre list",
"卸载音色省显存": "Unload timbre to save GPU memory",
"请选择说话人id": "Please select a speaker id",
"男转女推荐+12key, 女转男推荐-12key, 如果音域爆炸导致音色失真也可以自己调整到合适音域. ": "It is recommended +12key for male to female conversion, and -12key for female to male conversion. If the sound range explodes and the timbre is distorted, you can also adjust it to the appropriate range by yourself. ",
"变调(整数, 半音数量, 升八度12降八度-12)": "transpose(integer, number of semitones, octave sharp 12 octave flat -12)",
"输入待处理音频文件路径(默认是正确格式示例)": "Enter the path of the audio file to be processed (the default is the correct format example)",
"选择音高提取算法,输入歌声可用pm提速,harvest低音好但巨慢无比": "Select the algorithm for pitch extraction. Use 'pm' to speed up for singing voices, or use 'harvest' for better low-pitched voices, but it is extremely slow.",
"特征检索库文件路径": "Feature search database file path",
"特征文件路径": "Feature file path",
"F0曲线文件, 可选, 一行一个音高, 代替默认F0及升降调": "F0 curve file, optional, one pitch per line, instead of the default F0 and ups and downs",
"转换": "Conversion",
"输出信息": "Output information",
"输出音频(右下角三个点,点了可以下载)": "Output audio (three dots in the lower right corner, click to download)",
"批量转换, 输入待转换音频文件夹, 或上传多个音频文件, 在指定文件夹(默认opt)下输出转换的音频. ": "For batch conversion, input the audio folder to be converted, or upload multiple audio files, and output the converted audio in the specified folder (opt by default). ",
"指定输出文件夹": "Specify output folder",
"检索特征占比": "Search feature ratio",
"输入待处理音频文件夹路径(去文件管理器地址栏拷就行了)": "Enter the path of the audio folder to be processed (just go to the address bar of the file manager and copy it)",
"也可批量输入音频文件, 二选一, 优先读文件夹": "You can also input audio files in batches, choose one of the two, and read the folder first",
"伴奏人声分离": "Accompaniment and vocal separation",
"人声伴奏分离批量处理, 使用UVR5模型. <br>不带和声用HP2, 带和声且提取的人声不需要和声用HP5<br>合格的文件夹路径格式举例: E:\\codes\\py39\\vits_vc_gpu\\白鹭霜华测试样例(去文件管理器地址栏拷就行了)": "Batch processing of vocal accompaniment separation, using UVR5 model. <br>Without harmony, use HP2, with harmony and extracted vocals do not need harmony, use HP5<br>Example of qualified folder path format: E:\\ codes\\py39\\vits_vc_gpu\\Egret Shuanghua test sample (just go to the address bar of the file manager and copy it)",
"输入待处理音频文件夹路径": "Input audio folder path",
"模型": "Model",
"指定输出人声文件夹": "Specify vocals output folder",
"指定输出乐器文件夹": "Specify instrumentals output folder",
"训练": "Train",
"step1: 填写实验配置. 实验数据放在logs下, 每个实验一个文件夹, 需手工输入实验名路径, 内含实验配置, 日志, 训练得到的模型文件. ": "step1: Fill in the experimental configuration. The experimental data is placed under logs, and each experiment has a folder. You need to manually enter the experimental name path, which contains the experimental configuration, logs, and model files obtained from training. ",
"输入实验名": "Input experiment name",
"目标采样率": "Target sample rate",
"模型是否带音高指导(唱歌一定要, 语音可以不要)": "Does the model have pitch guidance (singing must, voice can not.)",
"step2a: 自动遍历训练文件夹下所有可解码成音频的文件并进行切片归一化, 在实验目录下生成2个wav文件夹; 暂时只支持单人训练. ": "step2a: Automatically traverse all files that can be decoded into audio in the training folder and perform slice normalization, and generate 2 wav folders in the experiment directory; only single-person training is supported for the time being. ",
"输入训练文件夹路径": "Input training folder path",
"请指定说话人id": "Please specify speaker ID",
"处理数据": "Process data",
"step2b: 使用CPU提取音高(如果模型带音高), 使用GPU提取特征(选择卡号)": "step2b: Use CPU to extract pitch (if the model has pitch), use GPU to extract features (select card number)",
"以-分隔输入使用的卡号, 例如 0-1-2 使用卡0和卡1和卡2": "Enter the card numbers used separated by -, for example 0-1-2 use card 0 and card 1 and card 2",
"显卡信息": "GPU information",
"提取音高使用的CPU进程数": "Number of CPU threads to use for pitch extraction",
"选择音高提取算法:输入歌声可用pm提速,高质量语音但CPU差可用dio提速,harvest质量更好但慢": "Select pitch extraction algorithm: Use 'pm' for faster processing of singing voice, 'dio' for high-quality speech but slower processing, and 'harvest' for the best quality but slowest processing.",
"特征提取": "Feature extraction",
"step3: 填写训练设置, 开始训练模型和索引": "step3: Fill in the training settings, start training the model and index",
"保存频率save_every_epoch": "Save frequency (save_every_epoch)",
"总训练轮数total_epoch": "Total training epochs (total_epoch)",
"是否仅保存最新的ckpt文件以节省硬盘空间": "Whether to save only the latest ckpt file to save disk space",
"是否缓存所有训练集至显存. 10min以下小数据可缓存以加速训练, 大数据缓存会炸显存也加不了多少速": "Whether to cache all training sets to video memory. Small data under 10 minutes can be cached to speed up training, and large data cache will blow up video memory and not increase the speed much",
"加载预训练底模G路径": "Load pre-trained base model G path.",
"加载预训练底模D路径": "Load pre-trained base model D path.",
"训练模型": "Train model.",
"训练特征索引": "Train feature index.",
"一键训练": "One-click training.",
"ckpt处理": "ckpt processing.",
"模型融合, 可用于测试音色融合": "Model Fusion, which can be used to test sound fusion",
"A模型路径": "A model path.",
"B模型路径": "B model path.",
"A模型权重": "A model weight for model A.",
"模型是否带音高指导": "Whether the model has pitch guidance.",
"要置入的模型信息": "Model information to be placed.",
"保存的模型名不带后缀": "Saved model name without extension.",
"融合": "Fusion.",
"修改模型信息(仅支持weights文件夹下提取的小模型文件)": "Modify model information (only small model files extracted from the weights folder are supported)",
"模型路径": "Model path",
"要改的模型信息": "Model information to be modified",
"保存的文件名, 默认空为和源文件同名": "The saved file name, the default is empty and the same name as the source file",
"修改": "Modify",
"查看模型信息(仅支持weights文件夹下提取的小模型文件)": "View model information (only small model files extracted from the weights folder are supported)",
"查看": "View",
"模型提取(输入logs文件夹下大文件模型路径),适用于训一半不想训了模型没有自动提取保存小文件模型,或者想测试中间模型的情况": "Model extraction (enter the path of the large file model under the logs folder), which is suitable for half of the training and does not want to train the model without automatically extracting and saving the small file model, or if you want to test the intermediate model",
"保存名": "Save Name",
"模型是否带音高指导,1是0否": "Whether the model has pitch guidance, 1 for yes, 0 for no",
"提取": "Extract",
"Onnx导出": "Onnx",
"RVC模型路径": "RVC Path",
"Onnx输出路径": "Onnx Export Path",
"MoeVS模型": "MoeSS?",
"导出Onnx模型": "Export Onnx Model",
"招募音高曲线前端编辑器": "Recruit front-end editors for pitch curves",
"加开发群联系我xxxxx": "Add development group to contact me xxxxx",
"点击查看交流、问题反馈群号": "Click to view the communication and problem feedback group number",
"xxxxx": "xxxxx",
"加载模型": "load model",
"Hubert模型": "Hubert File",
"选择.pth文件": "Select the .pth file",
"选择.index文件": "Select the .index file",
"选择.npy文件": "Select the .npy file",
"输入设备": "input device",
"输出设备": "output device",
"音频设备(请使用同种类驱动)": "Audio device (please use the same type of driver)",
"响应阈值": "response threshold",
"音调设置": "tone setting",
"Index Rate": "Index Rate",
"常规设置": "general settings",
"采样长度": "Sample length",
"淡入淡出长度": "fade length",
"额外推理时长": "extra inference time",
"输入降噪": "Input Noisereduce",
"输出降噪": "Output Noisereduce",
"性能设置": "performance settings",
"开始音频转换": "start audio conversion",
"停止音频转换": "stop audio conversion",
"推理时间(ms):": "Infer Time(ms):"
}

View File

@ -1,104 +0,0 @@
{
"本软件以MIT协议开源, 作者不对软件具备任何控制力, 使用软件者、传播软件导出的声音者自负全责. <br>如不认可该条款, 则不能使用或引用软件包内任何代码和文件. 详见根目录<b>使用需遵守的协议-LICENSE.txt</b>.": "Este software es de código abierto bajo la licencia MIT, el autor no tiene ningún control sobre el software, y aquellos que usan el software y difunden los sonidos exportados por el software son los únicos responsables.<br>Si no está de acuerdo con esta cláusula , no puede utilizar ni citar ningún código ni archivo del paquete de software Consulte el directorio raíz <b>Agreement-LICENSE.txt</b> para obtener más información.",
"模型推理": "inferencia del modelo",
"推理音色": "inferencia de voz",
"刷新音色列表": "Actualizar lista de voces",
"卸载音色省显存": "Descargue la voz para ahorrar memoria GPU",
"请选择说话人id": "seleccione una identificación de altavoz",
"男转女推荐+12key, 女转男推荐-12key, 如果音域爆炸导致音色失真也可以自己调整到合适音域. ": "Tecla +12 recomendada para conversión de voz de hombre a mujer, tecla -12 para conversión de voz de mujer a hombre. Si el rango de tono es demasiado amplio y causa distorsión, ajústelo usted mismo a un rango adecuado.",
"变调(整数, 半音数量, 升八度12降八度-12)": "Cambio de tono (entero, número de semitonos, subir una octava +12 o bajar una octava -12)",
"输入待处理音频文件路径(默认是正确格式示例)": "Ingrese la ruta del archivo del audio que se procesará (el formato predeterminado es el ejemplo correcto)",
"选择音高提取算法,输入歌声可用pm提速,harvest低音好但巨慢无比": "Seleccione el algoritmo para la extracción de tono. Use 'pm' para acelerar las voces cantadas, o use 'harvest' para mejorar las voces bajas, pero es extremadamente lento.",
"特征检索库文件路径": "Ruta del archivo de la base de datos de búsqueda de características",
"特征文件路径": "Ruta del archivo de características",
"F0曲线文件, 可选, 一行一个音高, 代替默认F0及升降调": "Archivo de curva F0, opcional, un tono por línea, en lugar de F0 predeterminado y cambio de tono",
"转换": "Conversión",
"输出信息": "Información de salida",
"输出音频(右下角三个点,点了可以下载)": "Salida de audio (haga clic en los tres puntos en la esquina inferior derecha para descargar)",
"批量转换, 输入待转换音频文件夹, 或上传多个音频文件, 在指定文件夹(默认opt)下输出转换的音频. ": "Conversión por lotes, ingrese la carpeta que contiene los archivos de audio para convertir o cargue varios archivos de audio. El audio convertido se emitirá en la carpeta especificada (opción predeterminada).",
"指定输出文件夹": "Especificar carpeta de salida",
"检索特征占比": "Proporción de función de búsqueda",
"输入待处理音频文件夹路径(去文件管理器地址栏拷就行了)": "Ingrese la ruta a la carpeta de audio que se procesará (simplemente cópiela desde la barra de direcciones del administrador de archivos)",
"也可批量输入音频文件, 二选一, 优先读文件夹": "También se pueden ingresar múltiples archivos de audio, cualquiera de las dos opciones, con prioridad dada a la carpeta",
"伴奏人声分离": "Instrumental and vocal separation",
"人声伴奏分离批量处理, 使用UVR5模型. <br>不带和声用HP2, 带和声且提取的人声不需要和声用HP5<br>合格的文件夹路径格式举例: E:\\codes\\py39\\vits_vc_gpu\\白鹭霜华测试样例(去文件管理器地址栏拷就行了)": "Procesamiento por lotes de separación instrumental y vocal utilizando el modelo UVR5. <br>Utilice HP2 para la separación vocal sin armónicos, y utilice HP5 para la separación vocal con armónicos y las voces extraídas no necesitan tener armónicos. <br>Ejemplo de una ruta de carpeta calificada: E:\\codes\\py39\\vits_vc_gpu\\test_sample (simplemente cópielo desde la barra de direcciones del administrador de archivos)",
"输入待处理音频文件夹路径": "Ingrese la ruta a la carpeta de audio que se procesará",
"模型": "Modelo",
"指定输出人声文件夹": "Especificar la carpeta de salida de voces",
"指定输出乐器文件夹": "Especificar la carpeta de salida de instrumentales",
"训练": "Entrenamiento",
"step1: 填写实验配置. 实验数据放在logs下, 每个实验一个文件夹, 需手工输入实验名路径, 内含实验配置, 日志, 训练得到的模型文件. ": "paso 1: Complete la configuración del experimento. Los datos del experimento se almacenan en el directorio 'logs', con cada experimento en una carpeta separada. La ruta del nombre del experimento debe ingresarse manualmente y debe contener la configuración del experimento, los registros y los archivos del modelo entrenado.",
"输入实验名": "Ingrese el nombre del modelo",
"目标采样率": "Tasa de muestreo objetivo",
"模型是否带音高指导(唱歌一定要, 语音可以不要)": "Si el modelo tiene guía de tono (necesaria para cantar, pero no para hablar)",
"step2a: 自动遍历训练文件夹下所有可解码成音频的文件并进行切片归一化, 在实验目录下生成2个wav文件夹; 暂时只支持单人训练. ": "paso 2a: recorra automáticamente la carpeta de capacitación y corte y normalice todos los archivos de audio que se pueden decodificar en audio. Se generarán dos carpetas 'wav' en el directorio del experimento. Actualmente, solo se admite la capacitación de una sola persona.",
"输入训练文件夹路径": "Introduzca la ruta de la carpeta de entrenamiento",
"请指定说话人id": "Especifique el ID del hablante",
"处理数据": "Procesar datos",
"step2b: 使用CPU提取音高(如果模型带音高), 使用GPU提取特征(选择卡号)": "paso 2b: use la CPU para extraer el tono (si el modelo tiene guía de tono) y la GPU para extraer características (seleccione el número de tarjeta).",
"以-分隔输入使用的卡号, 例如 0-1-2 使用卡0和卡1和卡2": "Separe los números de identificación de la GPU con '-' al ingresarlos. Por ejemplo, '0-1-2' significa usar GPU 0, GPU 1 y GPU 2.",
"显卡信息": "información de la GPU",
"提取音高使用的CPU进程数": "Número de subprocesos de CPU que se utilizarán para la extracción de tono",
"选择音高提取算法:输入歌声可用pm提速,高质量语音但CPU差可用dio提速,harvest质量更好但慢": "Seleccione el algoritmo de extracción de tono: utilice 'pm' para un procesamiento más rápido de la voz cantada, 'dio' para un discurso de alta calidad pero un procesamiento más lento y 'cosecha' para obtener la mejor calidad pero un procesamiento más lento.",
"特征提取": "Extracción de características",
"step3: 填写训练设置, 开始训练模型和索引": "Paso 3: complete la configuración de entrenamiento y comience a entrenar el modelo y el índice.",
"保存频率save_every_epoch": "Frecuencia de guardado (save_every_epoch)",
"总训练轮数total_epoch": "Total de épocas de entrenamiento (total_epoch)",
"是否仅保存最新的ckpt文件以节省硬盘空间": "Si guardar solo el archivo ckpt más reciente para ahorrar espacio en disco",
"是否缓存所有训练集至显存. 10min以下小数据可缓存以加速训练, 大数据缓存会炸显存也加不了多少速": "Si almacenar en caché todos los conjuntos de entrenamiento en la memoria de la GPU. Los conjuntos de datos pequeños (menos de 10 minutos) se pueden almacenar en caché para acelerar el entrenamiento, pero el almacenamiento en caché de conjuntos de datos grandes puede causar errores de memoria en la GPU y no aumenta la velocidad de manera significativa.",
"加载预训练底模G路径": "Cargue la ruta G del modelo base preentrenada.",
"加载预训练底模D路径": "Cargue la ruta del modelo D base preentrenada.",
"训练模型": "Entrenar Modelo",
"训练特征索引": "Índice de características del Entrenamiento",
"一键训练": "Entrenamiento con un clic.",
"ckpt处理": "Procesamiento de recibos",
"模型融合, 可用于测试音色融合": "Fusión de modelos, se puede utilizar para fusionar diferentes voces",
"A模型路径": "Modelo A ruta.",
"B模型路径": "Modelo B ruta.",
"A模型权重": "Un peso modelo para el modelo A.",
"模型是否带音高指导": "Si el modelo tiene guía de tono.",
"要置入的模型信息": "Información del modelo a colocar.",
"保存的模型名不带后缀": "Nombre del modelo guardado sin extensión.",
"融合": "Fusión.",
"修改模型信息(仅支持weights文件夹下提取的小模型文件)": "Modificar la información del modelo (solo admite archivos de modelos pequeños extraídos en la carpeta de pesos).",
"模型路径": "Ruta del modelo",
"要改的模型信息": "Información del modelo a modificar",
"保存的文件名, 默认空为和源文件同名": "Nombre del archivo que se guardará, el valor predeterminado es el mismo que el nombre del archivo de origen",
"修改": "Modificar",
"查看模型信息(仅支持weights文件夹下提取的小模型文件)": "Ver información del modelo (solo aplicable a archivos de modelos pequeños extraídos de la carpeta 'pesos')",
"查看": "Ver",
"模型提取(输入logs文件夹下大文件模型路径),适用于训一半不想训了模型没有自动提取保存小文件模型,或者想测试中间模型的情况": "Extracción de modelo (ingrese la ruta de un archivo de modelo grande en la carpeta 'logs'), aplicable cuando desea extraer un archivo de modelo pequeño después de entrenar a mitad de camino y no se guardó automáticamente, o cuando desea probar un modelo intermedio",
"保存名": "Guardar nombre",
"模型是否带音高指导,1是0否": "Si el modelo tiene guía de tono, 1 para sí, 0 para no",
"提取": "Extracter",
"Onnx导出": "Onnx导出",
"RVC模型路径": "RVC模型路径",
"Onnx输出路径": "Onnx输出路径",
"MoeVS模型": "MoeVS模型",
"导出Onnx模型": "导出Onnx模型",
"招募音高曲线前端编辑器": "Reclutar editores front-end para curvas de tono",
"加开发群联系我xxxxx": "Únase al grupo de desarrollo para contactarme en xxxxx",
"点击查看交流、问题反馈群号": "Haga clic para ver el número de grupo de comunicación y comentarios sobre problemas",
"xxxxx": "xxxxx",
"加载模型": "Cargar modelo",
"Hubert模型": "Modelo de Hubert ",
"选择.pth文件": "Seleccionar archivo .pth",
"选择.index文件": "Select .index file",
"选择.npy文件": "Seleccionar archivo .npy",
"输入设备": "Dispositivo de entrada",
"输出设备": "Dispositivo de salida",
"音频设备(请使用同种类驱动)": "Dispositivo de audio (utilice el mismo tipo de controlador)",
"响应阈值": "Umbral de respuesta",
"音调设置": "Ajuste de tono",
"Index Rate": "Tasa de índice",
"常规设置": "Configuración general",
"采样长度": "Longitud de muestreo",
"淡入淡出长度": "Duración del fundido de entrada/salida",
"额外推理时长": "Tiempo de inferencia adicional",
"输入降噪": "Reducción de ruido de entrada",
"输出降噪": "Reducción de ruido de salida",
"性能设置": "Configuración de rendimiento",
"开始音频转换": "Iniciar conversión de audio",
"停止音频转换": "Detener la conversión de audio",
"推理时间(ms):": "Inferir tiempo (ms):"
}

View File

@ -1,10 +1,10 @@
import locale
import json
import locale
import os
def load_language_list(language):
with open(f"./i18n/{language}.json", "r", encoding="utf-8") as f:
with open(f"./i18n/locale/{language}.json", "r", encoding="utf-8") as f:
language_list = json.load(f)
return language_list
@ -15,11 +15,13 @@ class I18nAuto:
language = locale.getdefaultlocale()[
0
] # getlocale can't identify the system's language ((None, None))
if not os.path.exists(f"./i18n/{language}.json"):
if not os.path.exists(f"./i18n/locale/{language}.json"):
language = "en_US"
self.language = language
print("Use Language:", language)
self.language_map = load_language_list(language)
def __call__(self, key):
return self.language_map[key]
return self.language_map.get(key, key)
def __repr__(self):
return "Use Language: " + self.language

View File

@ -1,104 +0,0 @@
{
"本软件以MIT协议开源, 作者不对软件具备任何控制力, 使用软件者、传播软件导出的声音者自负全责. <br>如不认可该条款, 则不能使用或引用软件包内任何代码和文件. 详见根目录<b>使用需遵守的协议-LICENSE.txt</b>.": "本软件以MIT协议开源, 作者不对软件具备任何控制力, 使用软件者、传播软件导出的声音者自负全责. <br>如不认可该条款, 则不能使用或引用软件包内任何代码和文件. 详见根目录<b>使用需遵守的协议-LICENSE.txt</b>.",
"模型推理": "モデル推論",
"推理音色": "音源推論",
"刷新音色列表": "音源リストを更新",
"卸载音色省显存": "音源を削除してメモリを節約",
"请选择说话人id": "話者IDを選択してください",
"男转女推荐+12key, 女转男推荐-12key, 如果音域爆炸导致音色失真也可以自己调整到合适音域. ": "男性から女性へは+12キーをお勧めします。女性から男性へは-12キーをお勧めします。音域が広すぎて音質が劣化した場合は、適切な音域に自分で調整することもできます。",
"变调(整数, 半音数量, 升八度12降八度-12)": "ピッチ変更(整数、半音数、上下オクターブ12-12)",
"输入待处理音频文件路径(默认是正确格式示例)": "処理対象音声ファイルのパスを入力してください(デフォルトは正しいフォーマットの例です)",
"选择音高提取算法,输入歌声可用pm提速,harvest低音好但巨慢无比": "ピッチ抽出アルゴリズムを選択してください。歌声の場合は、pmを使用して速度を上げることができます。低音が重要な場合は、harvestを使用できますが、非常に遅くなります。",
"特征检索库文件路径": "特徴量検索データベースのファイルパス",
"特征文件路径": "特徴量ファイルのパス",
"F0曲线文件, 可选, 一行一个音高, 代替默认F0及升降调": "F0(最低共振周波数)カーブファイル(オプション、1行に1ピッチ、デフォルトのF0(最低共振周波数)とエレベーションを置き換えます。)",
"转换": "変換",
"输出信息": "出力情報",
"输出音频(右下角三个点,点了可以下载)": "出力音声(右下の三点をクリックしてダウンロードできます)",
"批量转换, 输入待转换音频文件夹, 或上传多个音频文件, 在指定文件夹(默认opt)下输出转换的音频. ": "一括変換、変換する音声フォルダを入力、または複数の音声ファイルをアップロードし、指定したフォルダ(デフォルトのopt)に変換した音声を出力します。",
"指定输出文件夹": "出力フォルダを指定してください",
"检索特征占比": "検索特徴率",
"输入待处理音频文件夹路径(去文件管理器地址栏拷就行了)": "処理対象音声フォルダーのパスを入力してください(ファイルマネージャのアドレスバーからコピーしてください)",
"也可批量输入音频文件, 二选一, 优先读文件夹": "複数の音声ファイルを一括で入力することもできますが、フォルダーを優先して読み込みます",
"伴奏人声分离": "伴奏とボーカルの分離",
"人声伴奏分离批量处理, 使用UVR5模型. <br>不带和声用HP2, 带和声且提取的人声不需要和声用HP5<br>合格的文件夹路径格式举例: E:\\codes\\py39\\vits_vc_gpu\\白鹭霜华测试样例(去文件管理器地址栏拷就行了)": "UVR5モデルを使用した、声帯分離バッチ処理です。<br>HP2はハーモニー、ハーモニーのあるボーカルとハーモニーのないボーカルを抽出したものはHP5を使ってください <br>フォルダーパスの形式例: E:\\codes\\py39\\vits_vc_gpu\\白鹭霜华测试样例(エクスプローラーのアドレスバーからコピーするだけです)",
"输入待处理音频文件夹路径": "処理するオーディオファイルのフォルダパスを入力してください",
"模型": "モデル",
"指定输出人声文件夹": "人の声を出力するフォルダを指定してください",
"指定输出乐器文件夹": "楽器の出力フォルダを指定してください",
"训练": "トレーニング",
"step1: 填写实验配置. 实验数据放在logs下, 每个实验一个文件夹, 需手工输入实验名路径, 内含实验配置, 日志, 训练得到的模型文件. ": "ステップ1:実験設定を入力します。実験データはlogsに保存され、各実験にはフォルダーがあります。実験名のパスを手動で入力する必要があり、実験設定、ログ、トレーニングされたモデルファイルが含まれます。",
"输入实验名": "実験名を入力してください",
"目标采样率": "目標サンプリングレート",
"模型是否带音高指导(唱歌一定要, 语音可以不要)": "モデルに音高ガイドがあるかどうか(歌唱には必要ですが、音声には必要ありません)",
"step2a: 自动遍历训练文件夹下所有可解码成音频的文件并进行切片归一化, 在实验目录下生成2个wav文件夹; 暂时只支持单人训练. ": "ステップ2a: 訓練フォルダー内のすべての音声ファイルを自動的に探索し、スライスと正規化を行い、2つのwavフォルダーを実験ディレクトリに生成します。現在は一人でのトレーニングのみをサポートしています。",
"输入训练文件夹路径": "トレーニング用フォルダのパスを入力してください",
"请指定说话人id": "話者IDを指定してください",
"处理数据": "データ処理",
"step2b: 使用CPU提取音高(如果模型带音高), 使用GPU提取特征(选择卡号)": "ステップ2b: CPUを使用して音高を抽出する(モデルに音高がある場合)、GPUを使用して特徴を抽出する(カード番号を選択する)",
"以-分隔输入使用的卡号, 例如 0-1-2 使用卡0和卡1和卡2": "ハイフンで区切って使用するカード番号を入力します。例えば0-1-2はカード0、カード1、カード2を使用します",
"显卡信息": "カード情報",
"提取音高使用的CPU进程数": "抽出に使用するCPUプロセス数",
"选择音高提取算法:输入歌声可用pm提速,高质量语音但CPU差可用dio提速,harvest质量更好但慢": "音高抽出アルゴリズムの選択:歌声を入力する場合は、pmを使用して速度を上げることができます。CPUが低い場合はdioを使用して速度を上げることができます。harvestは品質が高く、精度が高いですが、遅いです。",
"特征提取": "特徴抽出",
"step3: 填写训练设置, 开始训练模型和索引": "ステップ3: トレーニング設定を入力して、モデルとインデックスのトレーニングを開始します",
"保存频率save_every_epoch": "エポックごとの保存頻度",
"总训练轮数total_epoch": "総トレーニング回数",
"是否仅保存最新的ckpt文件以节省硬盘空间": "ハードディスク容量を節約するため、最新のckptファイルのみを保存するかどうか",
"是否缓存所有训练集至显存. 10min以下小数据可缓存以加速训练, 大数据缓存会炸显存也加不了多少速": "すべてのトレーニングデータをメモリにキャッシュするかどうか。10分以下の小さなデータはキャッシュしてトレーニングを高速化できますが、大きなデータをキャッシュするとメモリが破裂し、あまり速度が上がりません。",
"加载预训练底模G路径": "事前学習済みのGモデルのパスをロードしてください",
"加载预训练底模D路径": "事前学習済みのDモデルのパスをロードしてください",
"训练模型": "モデルのトレーニング",
"训练特征索引": "特徴インデックスのトレーニング",
"一键训练": "ワンクリックトレーニング",
"ckpt处理": "ckptファイルの処理",
"模型融合, 可用于测试音色融合": "モデルのマージ、音源のマージテストに使用できます",
"A模型路径": "Aモデルのパス",
"B模型路径": "Bモデルのパス",
"A模型权重": "Aモデルの重み",
"模型是否带音高指导": "モデルに音高ガイドを付けるかどうか",
"要置入的模型信息": "挿入するモデル情報",
"保存的模型名不带后缀": "拡張子のない保存するモデル名",
"融合": "フュージョン",
"修改模型信息(仅支持weights文件夹下提取的小模型文件)": "モデル情報の修正(weightsフォルダから抽出された小さなモデルファイルのみ対応)",
"模型路径": "モデルパス",
"要改的模型信息": "変更するモデル情報",
"保存的文件名, 默认空为和源文件同名": "保存するファイル名、デフォルトでは空欄で元のファイル名と同じ名前になります",
"修改": "変更",
"查看模型信息(仅支持weights文件夹下提取的小模型文件)": "モデル情報を表示する(小さいモデルファイルはweightsフォルダーからのみサポートされています)",
"查看": "表示",
"模型提取(输入logs文件夹下大文件模型路径),适用于训一半不想训了模型没有自动提取保存小文件模型,或者想测试中间模型的情况": "モデル抽出(ログフォルダー内の大きなファイルのモデルパスを入力)、モデルを半分までトレーニングし、自動的に小さいファイルモデルを保存しなかったり、中間モデルをテストしたい場合に適用されます。",
"保存名": "保存ファイル名",
"模型是否带音高指导,1是0否": "モデルに音高ガイドを付けるかどうか、1は付ける、0は付けない",
"提取": "抽出",
"Onnx导出": "Onnx",
"RVC模型路径": "RVCルパス",
"Onnx输出路径": "Onnx出力パス",
"MoeVS模型": "MoeSS",
"导出Onnx模型": "Onnxに変換",
"招募音高曲线前端编辑器": "音高曲線フロントエンドエディターを募集",
"加开发群联系我xxxxx": "開発グループに参加して私に連絡してくださいxxxxx",
"点击查看交流、问题反馈群号": "クリックして交流、問題フィードバックグループ番号を表示",
"xxxxx": "xxxxx",
"加载模型": "モデルをロード",
"Hubert模型": "Hubert模型",
"选择.pth文件": ".pthファイルを選択",
"选择.index文件": ".indexファイルを選択",
"选择.npy文件": ".npyファイルを選択",
"输入设备": "入力デバイス",
"输出设备": "出力デバイス",
"音频设备(请使用同种类驱动)": "オーディオデバイス(同じ種類のドライバーを使用してください)",
"响应阈值": "反応閾値",
"音调设置": "音程設定",
"Index Rate": "Index Rate",
"常规设置": "一般設定",
"采样长度": "サンプル長",
"淡入淡出长度": "フェードイン/フェードアウト長",
"额外推理时长": "追加推論時間",
"输入降噪": "入力ノイズの低減",
"输出降噪": "出力ノイズの低減",
"性能设置": "パフォーマンス設定",
"开始音频转换": "音声変換を開始",
"停止音频转换": "音声変換を停止",
"推理时间(ms):": "推論時間(ms):"
}

137
i18n/locale/en_US.json Normal file
View File

@ -0,0 +1,137 @@
{
">=3则使用对harvest音高识别的结果使用中值滤波数值为滤波半径使用可以削弱哑音": "If >=3: apply median filtering to the harvested pitch results. The value represents the filter radius and can reduce breathiness.",
"A模型权重": "Weight (w) for Model A:",
"A模型路径": "Path to Model A:",
"B模型路径": "Path to Model B:",
"E:\\语音音频+标注\\米津玄师\\src": "C:\\Users\\Desktop\\src",
"F0曲线文件, 可选, 一行一个音高, 代替默认F0及升降调": "F0 curve file (optional). One pitch per line. Replaces the default F0 and pitch modulation:",
"Index Rate": "Index Rate",
"Onnx导出": "Export Onnx",
"Onnx输出路径": "Onnx Export Path:",
"RVC模型路径": "RVC Model Path:",
"ckpt处理": "ckpt Processing",
"harvest进程数": "Number of CPU processes used for harvest pitch algorithm",
"index文件路径不可包含中文": "index文件路径不可包含中文",
"pth文件路径不可包含中文": "pth文件路径不可包含中文",
"rmvpe卡号配置以-分隔输入使用的不同进程卡号,例如0-0-1使用在卡0上跑2个进程并在卡1上跑1个进程": "Enter the GPU index(es) separated by '-', e.g., 0-0-1 to use 2 processes in GPU0 and 1 process in GPU1",
"step1: 填写实验配置. 实验数据放在logs下, 每个实验一个文件夹, 需手工输入实验名路径, 内含实验配置, 日志, 训练得到的模型文件. ": "Step 1: Fill in the experimental configuration. Experimental data is stored in the 'logs' folder, with each experiment having a separate folder. Manually enter the experiment name path, which contains the experimental configuration, logs, and trained model files.",
"step1:正在处理数据": "Step 1: Processing data",
"step2:正在提取音高&正在提取特征": "step2:Pitch extraction & feature extraction",
"step2a: 自动遍历训练文件夹下所有可解码成音频的文件并进行切片归一化, 在实验目录下生成2个wav文件夹; 暂时只支持单人训练. ": "Step 2a: Automatically traverse all files in the training folder that can be decoded into audio and perform slice normalization. Generates 2 wav folders in the experiment directory. Currently, only single-singer/speaker training is supported.",
"step2b: 使用CPU提取音高(如果模型带音高), 使用GPU提取特征(选择卡号)": "Step 2b: Use CPU to extract pitch (if the model has pitch), use GPU to extract features (select GPU index):",
"step3: 填写训练设置, 开始训练模型和索引": "Step 3: Fill in the training settings and start training the model and index",
"step3a:正在训练模型": "Step 3a: Model training started",
"一键训练": "One-click training",
"也可批量输入音频文件, 二选一, 优先读文件夹": "Multiple audio files can also be imported. If a folder path exists, this input is ignored.",
"人声伴奏分离批量处理, 使用UVR5模型。 <br>合格的文件夹路径格式举例: E:\\codes\\py39\\vits_vc_gpu\\白鹭霜华测试样例(去文件管理器地址栏拷就行了)。 <br>模型分为三类: <br>1、保留人声不带和声的音频选这个对主人声保留比HP5更好。内置HP2和HP3两个模型HP3可能轻微漏伴奏但对主人声保留比HP2稍微好一丁点 <br>2、仅保留主人声带和声的音频选这个对主人声可能有削弱。内置HP5一个模型 <br> 3、去混响、去延迟模型by FoxJoy<br>(1)MDX-Net(onnx_dereverb):对于双通道混响是最好的选择,不能去除单通道混响;<br>&emsp;(234)DeEcho:去除延迟效果。Aggressive比Normal去除得更彻底DeReverb额外去除混响可去除单声道混响但是对高频重的板式混响去不干净。<br>去混响/去延迟,附:<br>1、DeEcho-DeReverb模型的耗时是另外2个DeEcho模型的接近2倍<br>2、MDX-Net-Dereverb模型挺慢的<br>3、个人推荐的最干净的配置是先MDX-Net再DeEcho-Aggressive。": "Batch processing for vocal accompaniment separation using the UVR5 model.<br>Example of a valid folder path format: D:\\path\\to\\input\\folder (copy it from the file manager address bar).<br>The model is divided into three categories:<br>1. Preserve vocals: Choose this option for audio without harmonies. It preserves vocals better than HP5. It includes two built-in models: HP2 and HP3. HP3 may slightly leak accompaniment but preserves vocals slightly better than HP2.<br>2. Preserve main vocals only: Choose this option for audio with harmonies. It may weaken the main vocals. It includes one built-in model: HP5.<br>3. De-reverb and de-delay models (by FoxJoy):<br>(1) MDX-Net: The best choice for stereo reverb removal but cannot remove mono reverb;<br>&emsp;(234) DeEcho: Removes delay effects. Aggressive mode removes more thoroughly than Normal mode. DeReverb additionally removes reverb and can remove mono reverb, but not very effectively for heavily reverberated high-frequency content.<br>De-reverb/de-delay notes:<br>1. The processing time for the DeEcho-DeReverb model is approximately twice as long as the other two DeEcho models.<br>2. The MDX-Net-Dereverb model is quite slow.<br>3. The recommended cleanest configuration is to apply MDX-Net first and then DeEcho-Aggressive.",
"以-分隔输入使用的卡号, 例如 0-1-2 使用卡0和卡1和卡2": "Enter the GPU index(es) separated by '-', e.g., 0-1-2 to use GPU 0, 1, and 2:",
"伴奏人声分离&去混响&去回声": "Vocals/Accompaniment Separation & Reverberation Removal",
"使用模型采样率": "使用模型采样率",
"使用设备采样率": "使用设备采样率",
"保存名": "Save name:",
"保存的文件名, 默认空为和源文件同名": "Save file name (default: same as the source file):",
"保存的模型名不带后缀": "Saved model name (without extension):",
"保存频率save_every_epoch": "Save frequency (save_every_epoch):",
"保护清辅音和呼吸声防止电音撕裂等artifact拉满0.5不开启,调低加大保护力度但可能降低索引效果": "Protect voiceless consonants and breath sounds to prevent artifacts such as tearing in electronic music. Set to 0.5 to disable. Decrease the value to increase protection, but it may reduce indexing accuracy:",
"修改": "Modify",
"修改模型信息(仅支持weights文件夹下提取的小模型文件)": "Modify model information (only supported for small model files extracted from the 'weights' folder)",
"停止音频转换": "Stop audio conversion",
"全流程结束!": "All processes have been completed!",
"刷新音色列表和索引路径": "Refresh voice list and index path",
"加载模型": "Load model",
"加载预训练底模D路径": "Load pre-trained base model D path:",
"加载预训练底模G路径": "Load pre-trained base model G path:",
"单次推理": "Single Inference",
"卸载音色省显存": "Unload voice to save GPU memory:",
"变调(整数, 半音数量, 升八度12降八度-12)": "Transpose (integer, number of semitones, raise by an octave: 12, lower by an octave: -12):",
"后处理重采样至最终采样率0为不进行重采样": "Resample the output audio in post-processing to the final sample rate. Set to 0 for no resampling:",
"否": "No",
"启用相位声码器": "启用相位声码器",
"响应阈值": "Response threshold",
"响度因子": "loudness factor",
"处理数据": "Process data",
"导出Onnx模型": "Export Onnx Model",
"导出文件格式": "Export file format",
"常见问题解答": "FAQ (Frequently Asked Questions)",
"常规设置": "General settings",
"开始音频转换": "Start audio conversion",
"很遗憾您这没有能用的显卡来支持您训练": "Unfortunately, there is no compatible GPU available to support your training.",
"性能设置": "Performance settings",
"总训练轮数total_epoch": "Total training epochs (total_epoch):",
"批量推理": "Batch Inference",
"批量转换, 输入待转换音频文件夹, 或上传多个音频文件, 在指定文件夹(默认opt)下输出转换的音频. ": "Batch conversion. Enter the folder containing the audio files to be converted or upload multiple audio files. The converted audio will be output in the specified folder (default: 'opt').",
"指定输出主人声文件夹": "Specify the output folder for vocals:",
"指定输出文件夹": "Specify output folder:",
"指定输出非主人声文件夹": "Specify the output folder for accompaniment:",
"推理时间(ms):": "Inference time (ms):",
"推理音色": "Inferencing voice:",
"提取": "Extract",
"提取音高和处理数据使用的CPU进程数": "Number of CPU processes used for pitch extraction and data processing:",
"是": "Yes",
"是否仅保存最新的ckpt文件以节省硬盘空间": "Save only the latest '.ckpt' file to save disk space:",
"是否在每次保存时间点将最终小模型保存至weights文件夹": "Save a small final model to the 'weights' folder at each save point:",
"是否缓存所有训练集至显存. 10min以下小数据可缓存以加速训练, 大数据缓存会炸显存也加不了多少速": "Cache all training sets to GPU memory. Caching small datasets (less than 10 minutes) can speed up training, but caching large datasets will consume a lot of GPU memory and may not provide much speed improvement:",
"显卡信息": "GPU Information",
"本软件以MIT协议开源, 作者不对软件具备任何控制力, 使用软件者、传播软件导出的声音者自负全责. <br>如不认可该条款, 则不能使用或引用软件包内任何代码和文件. 详见根目录<b>LICENSE</b>.": "This software is open source under the MIT license. The author does not have any control over the software. Users who use the software and distribute the sounds exported by the software are solely responsible. <br>If you do not agree with this clause, you cannot use or reference any codes and files within the software package. See the root directory <b>Agreement-LICENSE.txt</b> for details.",
"查看": "View",
"查看模型信息(仅支持weights文件夹下提取的小模型文件)": "View model information (only supported for small model files extracted from the 'weights' folder)",
"检索特征占比": "Search feature ratio (controls accent strength, too high has artifacting):",
"模型": "Model",
"模型推理": "Model Inference",
"模型提取(输入logs文件夹下大文件模型路径),适用于训一半不想训了模型没有自动提取保存小文件模型,或者想测试中间模型的情况": "Model extraction (enter the path of the large file model under the 'logs' folder). This is useful if you want to stop training halfway and manually extract and save a small model file, or if you want to test an intermediate model:",
"模型是否带音高指导": "Whether the model has pitch guidance:",
"模型是否带音高指导(唱歌一定要, 语音可以不要)": "Whether the model has pitch guidance (required for singing, optional for speech):",
"模型是否带音高指导,1是0否": "Whether the model has pitch guidance (1: yes, 0: no):",
"模型版本型号": "Model architecture version:",
"模型融合, 可用于测试音色融合": "Model fusion, can be used to test timbre fusion",
"模型路径": "Path to Model:",
"每张显卡的batch_size": "Batch size per GPU:",
"淡入淡出长度": "Fade length",
"版本": "Version",
"特征提取": "Feature extraction",
"特征检索库文件路径,为空则使用下拉的选择结果": "Path to the feature index file. Leave blank to use the selected result from the dropdown:",
"独占 WASAPI 设备": "独占 WASAPI 设备",
"男转女推荐+12key, 女转男推荐-12key, 如果音域爆炸导致音色失真也可以自己调整到合适音域. ": "Recommended +12 key for male to female conversion, and -12 key for female to male conversion. If the sound range goes too far and the voice is distorted, you can also adjust it to the appropriate range by yourself.",
"目标采样率": "Target sample rate:",
"算法延迟(ms):": "Algorithmic delays(ms):",
"自动检测index路径,下拉式选择(dropdown)": "Auto-detect index path and select from the dropdown:",
"融合": "Fusion",
"要改的模型信息": "Model information to be modified:",
"要置入的模型信息": "Model information to be placed:",
"训练": "Train",
"训练模型": "Train model",
"训练特征索引": "Train feature index",
"训练结束, 您可查看控制台训练日志或实验文件夹下的train.log": "Training complete. You can check the training logs in the console or the 'train.log' file under the experiment folder.",
"设备类型": "设备类型",
"请指定说话人id": "Please specify the speaker/singer ID:",
"请选择index文件": "Please choose the .index file",
"请选择pth文件": "Please choose the .pth file",
"请选择说话人id": "Select Speaker/Singer ID:",
"转换": "Convert",
"输入实验名": "Enter the experiment name:",
"输入待处理音频文件夹路径": "Enter the path of the audio folder to be processed:",
"输入待处理音频文件夹路径(去文件管理器地址栏拷就行了)": "Enter the path of the audio folder to be processed (copy it from the address bar of the file manager):",
"输入待处理音频文件路径(默认是正确格式示例)": "Enter the path of the audio file to be processed (default is the correct format example):",
"输入源音量包络替换输出音量包络融合比例越靠近1越使用输出包络": "Adjust the volume envelope scaling. Closer to 0, the more it mimicks the volume of the original vocals. Can help mask noise and make volume sound more natural when set relatively low. Closer to 1 will be more of a consistently loud volume:",
"输入监听": "Input voice monitor",
"输入训练文件夹路径": "Enter the path of the training folder:",
"输入设备": "Input device",
"输入降噪": "Input noise reduction",
"输出信息": "Output information",
"输出变声": "Output converted voice",
"输出设备": "Output device",
"输出降噪": "Output noise reduction",
"输出音频(右下角三个点,点了可以下载)": "Export audio (click on the three dots in the lower right corner to download)",
"选择.index文件": "Select the .index file",
"选择.pth文件": "Select the .pth file",
"选择音高提取算法,输入歌声可用pm提速,harvest低音好但巨慢无比,crepe效果好但吃GPU": "选择音高提取算法,输入歌声可用pm提速,harvest低音好但巨慢无比,crepe效果好但吃GPU",
"选择音高提取算法,输入歌声可用pm提速,harvest低音好但巨慢无比,crepe效果好但吃GPU,rmvpe效果最好且微吃GPU": "Select the pitch extraction algorithm ('pm': faster extraction but lower-quality speech; 'harvest': better bass but extremely slow; 'crepe': better quality but GPU intensive), 'rmvpe': best quality, and little GPU requirement",
"选择音高提取算法:输入歌声可用pm提速,高质量语音但CPU差可用dio提速,harvest质量更好但慢,rmvpe效果最好且微吃CPU/GPU": "Select the pitch extraction algorithm: when extracting singing, you can use 'pm' to speed up. For high-quality speech with fast performance, but worse CPU usage, you can use 'dio'. 'harvest' results in better quality but is slower. 'rmvpe' has the best results and consumes less CPU/GPU",
"采样率:": "采样率:",
"采样长度": "Sample length",
"重载设备列表": "Reload device list",
"音调设置": "Pitch settings",
"音频设备": "Audio device",
"音高算法": "pitch detection algorithm",
"额外推理时长": "Extra inference time"
}

137
i18n/locale/es_ES.json Normal file
View File

@ -0,0 +1,137 @@
{
">=3则使用对harvest音高识别的结果使用中值滤波数值为滤波半径使用可以削弱哑音": "Si es >=3, entonces use el resultado del reconocimiento de tono de 'harvest' con filtro de mediana, el valor es el radio del filtro, su uso puede debilitar el sonido sordo",
"A模型权重": "Un peso modelo para el modelo A.",
"A模型路径": "Modelo A ruta.",
"B模型路径": "Modelo B ruta.",
"E:\\语音音频+标注\\米津玄师\\src": "E:\\语音音频+标注\\米津玄师\\src",
"F0曲线文件, 可选, 一行一个音高, 代替默认F0及升降调": "Archivo de curva F0, opcional, un tono por línea, en lugar de F0 predeterminado y cambio de tono",
"Index Rate": "Tasa de índice",
"Onnx导出": "Exportar Onnx",
"Onnx输出路径": "Ruta de salida Onnx",
"RVC模型路径": "Ruta del modelo RVC",
"ckpt处理": "Procesamiento de recibos",
"harvest进程数": "Número de procesos",
"index文件路径不可包含中文": "La ruta del archivo .index no debe contener caracteres chinos.",
"pth文件路径不可包含中文": "La ruta del archivo .pth no debe contener caracteres chinos.",
"rmvpe卡号配置以-分隔输入使用的不同进程卡号,例如0-0-1使用在卡0上跑2个进程并在卡1上跑1个进程": "Separe los números de identificación de la GPU con '-' al ingresarlos. Por ejemplo, '0-1-2' significa usar GPU 0, GPU 1 y GPU 2.",
"step1: 填写实验配置. 实验数据放在logs下, 每个实验一个文件夹, 需手工输入实验名路径, 内含实验配置, 日志, 训练得到的模型文件. ": "Paso 1: Complete la configuración del experimento. Los datos del experimento se almacenan en el directorio 'logs', con cada experimento en una carpeta separada. La ruta del nombre del experimento debe ingresarse manualmente y debe contener la configuración del experimento, los registros y los archivos del modelo entrenado.",
"step1:正在处理数据": "Paso 1: Procesando datos",
"step2:正在提取音高&正在提取特征": "Paso 2: Extracción del tono y extracción de características",
"step2a: 自动遍历训练文件夹下所有可解码成音频的文件并进行切片归一化, 在实验目录下生成2个wav文件夹; 暂时只支持单人训练. ": "Paso 2a: Recorra automáticamente la carpeta de capacitación y corte y normalice todos los archivos de audio que se pueden decodificar en audio. Se generarán dos carpetas 'wav' en el directorio del experimento. Actualmente, solo se admite la capacitación de una sola persona.",
"step2b: 使用CPU提取音高(如果模型带音高), 使用GPU提取特征(选择卡号)": "Paso 2b: Use la CPU para extraer el tono (si el modelo tiene guía de tono) y la GPU para extraer características (seleccione el número de tarjeta).",
"step3: 填写训练设置, 开始训练模型和索引": "Paso 3: Complete la configuración de entrenamiento y comience a entrenar el modelo y el índice.",
"step3a:正在训练模型": "Paso 3a: Entrenando el modelo",
"一键训练": "Entrenamiento con un clic",
"也可批量输入音频文件, 二选一, 优先读文件夹": "También se pueden importar varios archivos de audio. Si existe una ruta de carpeta, esta entrada se ignora.",
"人声伴奏分离批量处理, 使用UVR5模型。 <br>合格的文件夹路径格式举例: E:\\codes\\py39\\vits_vc_gpu\\白鹭霜华测试样例(去文件管理器地址栏拷就行了)。 <br>模型分为三类: <br>1、保留人声不带和声的音频选这个对主人声保留比HP5更好。内置HP2和HP3两个模型HP3可能轻微漏伴奏但对主人声保留比HP2稍微好一丁点 <br>2、仅保留主人声带和声的音频选这个对主人声可能有削弱。内置HP5一个模型 <br> 3、去混响、去延迟模型by FoxJoy<br>(1)MDX-Net(onnx_dereverb):对于双通道混响是最好的选择,不能去除单通道混响;<br>&emsp;(234)DeEcho:去除延迟效果。Aggressive比Normal去除得更彻底DeReverb额外去除混响可去除单声道混响但是对高频重的板式混响去不干净。<br>去混响/去延迟,附:<br>1、DeEcho-DeReverb模型的耗时是另外2个DeEcho模型的接近2倍<br>2、MDX-Net-Dereverb模型挺慢的<br>3、个人推荐的最干净的配置是先MDX-Net再DeEcho-Aggressive。": "Procesamiento por lotes para la separación de acompañamiento vocal utilizando el modelo UVR5.<br>Ejemplo de formato de ruta de carpeta válido: D:\\ruta\\a\\la\\carpeta\\de\\entrada (copiar desde la barra de direcciones del administrador de archivos).<br>El modelo se divide en tres categorías:<br>1. Preservar voces: Elija esta opción para audio sin armonías. Preserva las voces mejor que HP5. Incluye dos modelos incorporados: HP2 y HP3. HP3 puede filtrar ligeramente el acompañamiento pero conserva las voces un poco mejor que HP2.<br>2. Preservar solo voces principales: Elija esta opción para audio con armonías. Puede debilitar las voces principales. Incluye un modelo incorporado: HP5.<br>3. Modelos de des-reverberación y des-retardo (por FoxJoy):<br>(1) MDX-Net: La mejor opción para la eliminación de reverberación estéreo pero no puede eliminar la reverberación mono;<br>&emsp;(234) DeEcho: Elimina efectos de retardo. El modo Agresivo elimina más a fondo que el modo Normal. DeReverb adicionalmente elimina la reverberación y puede eliminar la reverberación mono, pero no muy efectivamente para contenido de alta frecuencia fuertemente reverberado.<br>Notas de des-reverberación/des-retardo:<br>1. El tiempo de procesamiento para el modelo DeEcho-DeReverb es aproximadamente el doble que los otros dos modelos DeEcho.<br>2. El modelo MDX-Net-Dereverb es bastante lento.<br>3. La configuración más limpia recomendada es aplicar primero MDX-Net y luego DeEcho-Agresivo.",
"以-分隔输入使用的卡号, 例如 0-1-2 使用卡0和卡1和卡2": "Separe los números de identificación de la GPU con '-' al ingresarlos. Por ejemplo, '0-1-2' significa usar GPU 0, GPU 1 y GPU 2.",
"伴奏人声分离&去混响&去回声": "Separación de voz acompañante & eliminación de reverberación & eco",
"使用模型采样率": "使用模型采样率",
"使用设备采样率": "使用设备采样率",
"保存名": "Guardar nombre",
"保存的文件名, 默认空为和源文件同名": "Nombre del archivo que se guardará, el valor predeterminado es el mismo que el nombre del archivo de origen",
"保存的模型名不带后缀": "Nombre del modelo guardado sin extensión.",
"保存频率save_every_epoch": "Frecuencia de guardado (save_every_epoch)",
"保护清辅音和呼吸声防止电音撕裂等artifact拉满0.5不开启,调低加大保护力度但可能降低索引效果": "Proteger las consonantes claras y la respiración, prevenir artefactos como la distorsión de sonido electrónico, 0.5 no está activado, reducir aumentará la protección pero puede reducir el efecto del índice",
"修改": "Modificar",
"修改模型信息(仅支持weights文件夹下提取的小模型文件)": "Modificar la información del modelo (solo admite archivos de modelos pequeños extraídos en la carpeta weights)",
"停止音频转换": "Detener la conversión de audio",
"全流程结束!": "¡Todo el proceso ha terminado!",
"刷新音色列表和索引路径": "Actualizar la lista de modelos e índice de rutas",
"加载模型": "Cargar modelo",
"加载预训练底模D路径": "Cargue la ruta del modelo D base pre-entrenada.",
"加载预训练底模G路径": "Cargue la ruta del modelo G base pre-entrenada.",
"单次推理": "单次推理",
"卸载音色省显存": "Descargue la voz para ahorrar memoria GPU",
"变调(整数, 半音数量, 升八度12降八度-12)": "Cambio de tono (entero, número de semitonos, subir una octava +12 o bajar una octava -12)",
"后处理重采样至最终采样率0为不进行重采样": "Remuestreo posterior al proceso a la tasa de muestreo final, 0 significa no remuestrear",
"否": "No",
"启用相位声码器": "启用相位声码器",
"响应阈值": "Umbral de respuesta",
"响度因子": "factor de sonoridad",
"处理数据": "Procesar datos",
"导出Onnx模型": "Exportar modelo Onnx",
"导出文件格式": "Formato de archivo de exportación",
"常见问题解答": "Preguntas frecuentes",
"常规设置": "Configuración general",
"开始音频转换": "Iniciar conversión de audio",
"很遗憾您这没有能用的显卡来支持您训练": "Lamentablemente, no tiene una tarjeta gráfica adecuada para soportar su entrenamiento",
"性能设置": "Configuración de rendimiento",
"总训练轮数total_epoch": "Total de épocas de entrenamiento (total_epoch)",
"批量推理": "批量推理",
"批量转换, 输入待转换音频文件夹, 或上传多个音频文件, 在指定文件夹(默认opt)下输出转换的音频. ": "Conversión por lotes, ingrese la carpeta que contiene los archivos de audio para convertir o cargue varios archivos de audio. El audio convertido se emitirá en la carpeta especificada (opción predeterminada).",
"指定输出主人声文件夹": "Especifique la carpeta de salida para la voz principal",
"指定输出文件夹": "Especificar carpeta de salida",
"指定输出非主人声文件夹": "Especifique la carpeta de salida para las voces no principales",
"推理时间(ms):": "Inferir tiempo (ms):",
"推理音色": "inferencia de voz",
"提取": "Extraer",
"提取音高和处理数据使用的CPU进程数": "Número de procesos de CPU utilizados para extraer el tono y procesar los datos",
"是": "Sí",
"是否仅保存最新的ckpt文件以节省硬盘空间": "Guardar solo el archivo ckpt más reciente para ahorrar espacio en disco",
"是否在每次保存时间点将最终小模型保存至weights文件夹": "Guardar pequeño modelo final en la carpeta 'weights' en cada punto de guardado",
"是否缓存所有训练集至显存. 10min以下小数据可缓存以加速训练, 大数据缓存会炸显存也加不了多少速": "Si almacenar en caché todos los conjuntos de entrenamiento en la memoria de la GPU. Los conjuntos de datos pequeños (menos de 10 minutos) se pueden almacenar en caché para acelerar el entrenamiento, pero el almacenamiento en caché de conjuntos de datos grandes puede causar errores de memoria en la GPU y no aumenta la velocidad de manera significativa.",
"显卡信息": "información de la GPU",
"本软件以MIT协议开源, 作者不对软件具备任何控制力, 使用软件者、传播软件导出的声音者自负全责. <br>如不认可该条款, 则不能使用或引用软件包内任何代码和文件. 详见根目录<b>LICENSE</b>.": "Este software es de código abierto bajo la licencia MIT, el autor no tiene ningún control sobre el software, y aquellos que usan el software y difunden los sonidos exportados por el software son los únicos responsables.<br>Si no está de acuerdo con esta cláusula , no puede utilizar ni citar ningún código ni archivo del paquete de software Consulte el directorio raíz <b>Agreement-LICENSE.txt</b> para obtener más información.",
"查看": "Ver",
"查看模型信息(仅支持weights文件夹下提取的小模型文件)": "Ver información del modelo (solo aplicable a archivos de modelos pequeños extraídos de la carpeta 'pesos')",
"检索特征占比": "Proporción de función de búsqueda",
"模型": "Modelo",
"模型推理": "inferencia del modelo",
"模型提取(输入logs文件夹下大文件模型路径),适用于训一半不想训了模型没有自动提取保存小文件模型,或者想测试中间模型的情况": "Extracción de modelo (ingrese la ruta de un archivo de modelo grande en la carpeta 'logs'), aplicable cuando desea extraer un archivo de modelo pequeño después de entrenar a mitad de camino y no se guardó automáticamente, o cuando desea probar un modelo intermedio",
"模型是否带音高指导": "Si el modelo tiene guía de tono.",
"模型是否带音高指导(唱歌一定要, 语音可以不要)": "Si el modelo tiene guía de tono (necesaria para cantar, pero no para hablar)",
"模型是否带音高指导,1是0否": "Si el modelo tiene guía de tono, 1 para sí, 0 para no",
"模型版本型号": "Versión y modelo del modelo",
"模型融合, 可用于测试音色融合": "Fusión de modelos, se puede utilizar para fusionar diferentes voces",
"模型路径": "Ruta del modelo",
"每张显卡的batch_size": "Tamaño del lote (batch_size) por tarjeta gráfica",
"淡入淡出长度": "Duración del fundido de entrada/salida",
"版本": "Versión",
"特征提取": "Extracción de características",
"特征检索库文件路径,为空则使用下拉的选择结果": "Ruta del archivo de la biblioteca de características, si está vacío, se utilizará el resultado de la selección desplegable",
"独占 WASAPI 设备": "独占 WASAPI 设备",
"男转女推荐+12key, 女转男推荐-12key, 如果音域爆炸导致音色失真也可以自己调整到合适音域. ": "Tecla +12 recomendada para conversión de voz de hombre a mujer, tecla -12 para conversión de voz de mujer a hombre. Si el rango de tono es demasiado amplio y causa distorsión, ajústelo usted mismo a un rango adecuado.",
"目标采样率": "Tasa de muestreo objetivo",
"算法延迟(ms):": "算法延迟(ms):",
"自动检测index路径,下拉式选择(dropdown)": "Detección automática de la ruta del índice, selección desplegable (dropdown)",
"融合": "Fusión",
"要改的模型信息": "Información del modelo a modificar",
"要置入的模型信息": "Información del modelo a colocar.",
"训练": "Entrenamiento",
"训练模型": "Entrenar Modelo",
"训练特征索引": "Índice de características",
"训练结束, 您可查看控制台训练日志或实验文件夹下的train.log": "Entrenamiento finalizado, puede ver el registro de entrenamiento en la consola o en el archivo train.log en la carpeta del experimento",
"设备类型": "设备类型",
"请指定说话人id": "ID del modelo",
"请选择index文件": "Seleccione el archivo .index",
"请选择pth文件": "Seleccione el archivo .pth",
"请选择说话人id": "Seleccione una identificación de altavoz",
"转换": "Conversión",
"输入实验名": "Ingrese el nombre del modelo",
"输入待处理音频文件夹路径": "Ingrese la ruta a la carpeta de audio que se procesará",
"输入待处理音频文件夹路径(去文件管理器地址栏拷就行了)": "Ingrese la ruta a la carpeta de audio que se procesará (simplemente cópiela desde la barra de direcciones del administrador de archivos)",
"输入待处理音频文件路径(默认是正确格式示例)": "Ingrese la ruta del archivo del audio que se procesará (el formato predeterminado es el ejemplo correcto)",
"输入源音量包络替换输出音量包络融合比例越靠近1越使用输出包络": "Proporción de fusión para reemplazar el sobre de volumen de entrada con el sobre de volumen de salida, cuanto más cerca de 1, más se utiliza el sobre de salida",
"输入监听": "输入监听",
"输入训练文件夹路径": "Introduzca la ruta de la carpeta de entrenamiento",
"输入设备": "Dispositivo de entrada",
"输入降噪": "Reducción de ruido de entrada",
"输出信息": "Información de salida",
"输出变声": "输出变声",
"输出设备": "Dispositivo de salida",
"输出降噪": "Reducción de ruido de salida",
"输出音频(右下角三个点,点了可以下载)": "Salida de audio (haga clic en los tres puntos en la esquina inferior derecha para descargar)",
"选择.index文件": "Seleccione el archivo .index",
"选择.pth文件": "Seleccione el archivo .pth",
"选择音高提取算法,输入歌声可用pm提速,harvest低音好但巨慢无比,crepe效果好但吃GPU": "Seleccione el algoritmo de extracción de tono, las voces de entrada se pueden acelerar con pm, harvest tiene buenos graves pero es muy lento, crepe es bueno pero se come las GPUs",
"选择音高提取算法,输入歌声可用pm提速,harvest低音好但巨慢无比,crepe效果好但吃GPU,rmvpe效果最好且微吃GPU": "Seleccione el algoritmo de extracción de tono, use 'pm' para acelerar la entrada de canto, 'harvest' es bueno para los graves pero extremadamente lento, 'crepe' tiene buenos resultados pero consume GPU",
"选择音高提取算法:输入歌声可用pm提速,高质量语音但CPU差可用dio提速,harvest质量更好但慢,rmvpe效果最好且微吃CPU/GPU": "Seleccione el algoritmo de extracción de tono: la canción de entrada se puede acelerar con pm, la voz de alta calidad pero CPU pobre se puede acelerar con dio, harvest es mejor pero más lento, rmvpe es el mejor y se come ligeramente la CPU/GPU",
"采样率:": "采样率:",
"采样长度": "Longitud de muestreo",
"重载设备列表": "Actualizar lista de dispositivos",
"音调设置": "Ajuste de tono",
"音频设备": "Dispositivo de audio",
"音高算法": "Algoritmo de tono",
"额外推理时长": "Tiempo de inferencia adicional"
}

137
i18n/locale/fr_FR.json Normal file
View File

@ -0,0 +1,137 @@
{
">=3则使用对harvest音高识别的结果使用中值滤波数值为滤波半径使用可以削弱哑音": "Si >=3 : appliquer un filtrage médian aux résultats de la reconnaissance de la hauteur de récolte. La valeur représente le rayon du filtre et peut réduire la respiration.",
"A模型权重": "Poids (w) pour le modèle A :",
"A模型路径": "Chemin d'accès au modèle A :",
"B模型路径": "Chemin d'accès au modèle B :",
"E:\\语音音频+标注\\米津玄师\\src": "E:\\语音音频+标注\\米津玄师\\src",
"F0曲线文件, 可选, 一行一个音高, 代替默认F0及升降调": "Fichier de courbe F0 (facultatif). Une hauteur par ligne. Remplace la fréquence fondamentale par défaut et la modulation de la hauteur :",
"Index Rate": "Taux d'indexation",
"Onnx导出": "Exporter en ONNX",
"Onnx输出路径": "Chemin d'exportation ONNX :",
"RVC模型路径": "Chemin du modèle RVC :",
"ckpt处理": "Traitement des fichiers .ckpt",
"harvest进程数": "Nombre de processus CPU utilisés pour l'algorithme de reconnaissance de la hauteur (pitch) dans le cadre de la récolte (harvest).",
"index文件路径不可包含中文": "Le chemin du fichier d'index ne doit pas contenir de caractères chinois.",
"pth文件路径不可包含中文": "Le chemin du fichier .pth ne doit pas contenir de caractères chinois.",
"rmvpe卡号配置以-分隔输入使用的不同进程卡号,例如0-0-1使用在卡0上跑2个进程并在卡1上跑1个进程": "Configuration des numéros de carte RMVPE : séparez les index GPU par des tirets \"-\", par exemple, 0-0-1 pour utiliser 2 processus sur GPU0 et 1 processus sur GPU1.",
"step1: 填写实验配置. 实验数据放在logs下, 每个实验一个文件夹, 需手工输入实验名路径, 内含实验配置, 日志, 训练得到的模型文件. ": "Étape 1 : Remplissez la configuration expérimentale. Les données expérimentales sont stockées dans le dossier 'logs', avec chaque expérience ayant un dossier distinct. Entrez manuellement le chemin du nom de l'expérience, qui contient la configuration expérimentale, les journaux et les fichiers de modèle entraînés.",
"step1:正在处理数据": "Étape 1 : Traitement des données en cours.",
"step2:正在提取音高&正在提取特征": "Étape 2 : Extraction de la hauteur et extraction des caractéristiques en cours.",
"step2a: 自动遍历训练文件夹下所有可解码成音频的文件并进行切片归一化, 在实验目录下生成2个wav文件夹; 暂时只支持单人训练. ": "Étape 2a : Parcours automatique de tous les fichiers du dossier d'entraînement qui peuvent être décodés en fichiers audio et réalisation d'une normalisation par tranches. Génère 2 dossiers wav dans le répertoire de l'expérience. Actuellement, seule la formation avec un seul chanteur/locuteur est prise en charge.",
"step2b: 使用CPU提取音高(如果模型带音高), 使用GPU提取特征(选择卡号)": "Étape 2b : Utilisez le CPU pour extraire la hauteur (si le modèle le permet), utilisez le GPU pour extraire les caractéristiques (sélectionnez l'index du GPU) :",
"step3: 填写训练设置, 开始训练模型和索引": "Étape 3 : Remplissez les paramètres d'entraînement et démarrez l'entraînement du modèle ainsi que l'indexation.",
"step3a:正在训练模型": "Étape 3a : L'entraînement du modèle a commencé.",
"一键训练": "Entraînement en un clic",
"也可批量输入音频文件, 二选一, 优先读文件夹": "Il est également possible d'importer plusieurs fichiers audio. Si un chemin de dossier existe, cette entrée est ignorée.",
"人声伴奏分离批量处理, 使用UVR5模型。 <br>合格的文件夹路径格式举例: E:\\codes\\py39\\vits_vc_gpu\\白鹭霜华测试样例(去文件管理器地址栏拷就行了)。 <br>模型分为三类: <br>1、保留人声不带和声的音频选这个对主人声保留比HP5更好。内置HP2和HP3两个模型HP3可能轻微漏伴奏但对主人声保留比HP2稍微好一丁点 <br>2、仅保留主人声带和声的音频选这个对主人声可能有削弱。内置HP5一个模型 <br> 3、去混响、去延迟模型by FoxJoy<br>(1)MDX-Net(onnx_dereverb):对于双通道混响是最好的选择,不能去除单通道混响;<br>&emsp;(234)DeEcho:去除延迟效果。Aggressive比Normal去除得更彻底DeReverb额外去除混响可去除单声道混响但是对高频重的板式混响去不干净。<br>去混响/去延迟,附:<br>1、DeEcho-DeReverb模型的耗时是另外2个DeEcho模型的接近2倍<br>2、MDX-Net-Dereverb模型挺慢的<br>3、个人推荐的最干净的配置是先MDX-Net再DeEcho-Aggressive。": "Traitement en lot pour la séparation de la voix et de l'accompagnement vocal à l'aide du modèle UVR5.<br>Exemple d'un format de chemin de dossier valide : D:\\chemin\\vers\\dossier\\d'entrée (copiez-le depuis la barre d'adresse du gestionnaire de fichiers).<br>Le modèle est divisé en trois catégories :<br>1. Préserver la voix : Choisissez cette option pour l'audio sans harmonies. Elle préserve la voix mieux que HP5. Il comprend deux modèles intégrés : HP2 et HP3. HP3 peut légèrement laisser passer l'accompagnement mais préserve légèrement mieux la voix que HP2.<br>2. Préserver uniquement la voix principale : Choisissez cette option pour l'audio avec harmonies. Cela peut affaiblir la voix principale. Il comprend un modèle intégré : HP5.<br>3. Modèles de suppression de la réverbération et du délai (par FoxJoy) :<br>(1) MDX-Net : Le meilleur choix pour la suppression de la réverbération stéréo, mais ne peut pas supprimer la réverbération mono.<br>(234) DeEcho : Supprime les effets de délai. Le mode Aggressive supprime plus efficacement que le mode Normal. DeReverb supprime également la réverbération et peut supprimer la réverbération mono, mais pas très efficacement pour les contenus à haute fréquence fortement réverbérés.<br>Notes sur la suppression de la réverbération et du délai :<br>1. Le temps de traitement pour le modèle DeEcho-DeReverb est environ deux fois plus long que pour les autres deux modèles DeEcho.<br>2. Le modèle MDX-Net-Dereverb est assez lent.<br>3. La configuration la plus propre recommandée est d'appliquer d'abord MDX-Net, puis DeEcho-Aggressive.",
"以-分隔输入使用的卡号, 例如 0-1-2 使用卡0和卡1和卡2": "Entrez le(s) index GPU séparé(s) par '-', par exemple, 0-1-2 pour utiliser les GPU 0, 1 et 2 :",
"伴奏人声分离&去混响&去回声": "Séparation des voix/accompagnement et suppression de la réverbération",
"使用模型采样率": "使用模型采样率",
"使用设备采样率": "使用设备采样率",
"保存名": "Nom de sauvegarde :",
"保存的文件名, 默认空为和源文件同名": "Nom du fichier de sauvegarde (par défaut : identique au nom du fichier source) :",
"保存的模型名不带后缀": "Nom du modèle enregistré (sans extension) :",
"保存频率save_every_epoch": "Fréquence de sauvegarde (save_every_epoch) :",
"保护清辅音和呼吸声防止电音撕裂等artifact拉满0.5不开启,调低加大保护力度但可能降低索引效果": "Protéger les consonnes sourdes et les bruits de respiration pour éviter les artefacts tels que le déchirement dans la musique électronique. Réglez à 0,5 pour désactiver. Diminuez la valeur pour renforcer la protection, mais cela peut réduire la précision de l'indexation :",
"修改": "Modifier",
"修改模型信息(仅支持weights文件夹下提取的小模型文件)": "Modifier les informations du modèle (uniquement pris en charge pour les petits fichiers de modèle extraits du dossier 'weights')",
"停止音频转换": "Arrêter la conversion audio",
"全流程结束!": "Toutes les étapes ont été terminées !",
"刷新音色列表和索引路径": "Actualiser la liste des voix et le vers l'index.",
"加载模型": "Charger le modèle.",
"加载预训练底模D路径": "Charger le chemin du modèle de base pré-entraîné D :",
"加载预训练底模G路径": "Charger le chemin du modèle de base pré-entraîné G :",
"单次推理": "单次推理",
"卸载音色省显存": "Décharger la voix pour économiser la mémoire GPU.",
"变调(整数, 半音数量, 升八度12降八度-12)": "Transposer (entier, nombre de demi-tons, monter d'une octave : 12, descendre d'une octave : -12) :",
"后处理重采样至最终采样率0为不进行重采样": "Rééchantillonner l'audio de sortie en post-traitement à la fréquence d'échantillonnage finale. Réglez sur 0 pour ne pas effectuer de rééchantillonnage :",
"否": "Non",
"启用相位声码器": "启用相位声码器",
"响应阈值": "Seuil de réponse",
"响度因子": "Facteur de volume sonore",
"处理数据": "Traitement des données",
"导出Onnx模型": "Exporter le modèle au format ONNX.",
"导出文件格式": "Format de fichier d'exportation",
"常见问题解答": "FAQ (Foire Aux Questions)",
"常规设置": "Paramètres généraux",
"开始音频转换": "Démarrer la conversion audio.",
"很遗憾您这没有能用的显卡来支持您训练": "Malheureusement, il n'y a pas de GPU compatible disponible pour prendre en charge votre entrainement.",
"性能设置": "Paramètres de performance",
"总训练轮数total_epoch": "Nombre total d'époques d'entraînement (total_epoch) :",
"批量推理": "批量推理",
"批量转换, 输入待转换音频文件夹, 或上传多个音频文件, 在指定文件夹(默认opt)下输出转换的音频. ": "Conversion en lot. Entrez le dossier contenant les fichiers audio à convertir ou téléchargez plusieurs fichiers audio. Les fichiers audio convertis seront enregistrés dans le dossier spécifié (par défaut : 'opt').",
"指定输出主人声文件夹": "Spécifiez le dossier de sortie pour les fichiers de voix :",
"指定输出文件夹": "Spécifiez le dossier de sortie :",
"指定输出非主人声文件夹": "Spécifiez le dossier de sortie pour l'accompagnement :",
"推理时间(ms):": "Temps d'inférence (ms) :",
"推理音色": "Voix pour l'inférence",
"提取": "Extraire",
"提取音高和处理数据使用的CPU进程数": "Nombre de processus CPU utilisés pour l'extraction de la hauteur et le traitement des données :",
"是": "Oui",
"是否仅保存最新的ckpt文件以节省硬盘空间": "Enregistrer uniquement le dernier fichier '.ckpt' pour économiser de l'espace disque :",
"是否在每次保存时间点将最终小模型保存至weights文件夹": "Enregistrer un petit modèle final dans le dossier 'weights' à chaque point de sauvegarde :",
"是否缓存所有训练集至显存. 10min以下小数据可缓存以加速训练, 大数据缓存会炸显存也加不了多少速": "Mettre en cache tous les ensembles d'entrainement dans la mémoire GPU. Mettre en cache de petits ensembles de données (moins de 10 minutes) peut accélérer l'entrainement, mais mettre en cache de grands ensembles de données consommera beaucoup de mémoire GPU et peut ne pas apporter beaucoup d'amélioration de vitesse :",
"显卡信息": "Informations sur la carte graphique (GPU)",
"本软件以MIT协议开源, 作者不对软件具备任何控制力, 使用软件者、传播软件导出的声音者自负全责. <br>如不认可该条款, 则不能使用或引用软件包内任何代码和文件. 详见根目录<b>LICENSE</b>.": "Ce logiciel est open source sous la licence MIT. L'auteur n'a aucun contrôle sur le logiciel. Les utilisateurs qui utilisent le logiciel et distribuent les sons exportés par le logiciel en sont entièrement responsables. <br>Si vous n'acceptez pas cette clause, vous ne pouvez pas utiliser ou faire référence à aucun code ni fichier contenu dans le package logiciel. Consultez le fichier <b>Agreement-LICENSE.txt</b> dans le répertoire racine pour plus de détails.",
"查看": "Voir",
"查看模型信息(仅支持weights文件夹下提取的小模型文件)": "Afficher les informations sur le modèle (uniquement pour les petits fichiers de modèle extraits du dossier \"weights\")",
"检索特征占比": "Rapport de recherche de caractéristiques (contrôle l'intensité de l'accent, un rapport trop élevé provoque des artefacts) :",
"模型": "Modèle",
"模型推理": "Inférence du modèle",
"模型提取(输入logs文件夹下大文件模型路径),适用于训一半不想训了模型没有自动提取保存小文件模型,或者想测试中间模型的情况": "Extraction du modèle (saisissez le chemin d'accès au modèle du grand fichier dans le dossier \"logs\"). Cette fonction est utile si vous souhaitez arrêter l'entrainement à mi-chemin et extraire et enregistrer manuellement un petit fichier de modèle, ou si vous souhaitez tester un modèle intermédiaire :",
"模型是否带音高指导": "Indique si le modèle dispose d'un guidage en hauteur :",
"模型是否带音高指导(唱歌一定要, 语音可以不要)": "Indique si le modèle dispose d'un système de guidage de la hauteur (obligatoire pour le chant, facultatif pour la parole) :",
"模型是否带音高指导,1是0否": "Le modèle dispose-t-il d'un guide de hauteur (1 : oui, 0 : non) ?",
"模型版本型号": "Version de l'architecture du modèle :",
"模型融合, 可用于测试音色融合": "Fusion de modèles, peut être utilisée pour tester la fusion de timbres",
"模型路径": "Le chemin vers le modèle :",
"每张显卡的batch_size": "Taille du batch par GPU :",
"淡入淡出长度": "Longueur de la transition",
"版本": "Version",
"特征提取": "Extraction des caractéristiques",
"特征检索库文件路径,为空则使用下拉的选择结果": "Chemin d'accès au fichier d'index des caractéristiques. Laisser vide pour utiliser le résultat sélectionné dans la liste déroulante :",
"独占 WASAPI 设备": "独占 WASAPI 设备",
"男转女推荐+12key, 女转男推荐-12key, 如果音域爆炸导致音色失真也可以自己调整到合适音域. ": "Il est recommandé d'utiliser la clé +12 pour la conversion homme-femme et la clé -12 pour la conversion femme-homme. Si la plage sonore est trop large et que la voix est déformée, vous pouvez également l'ajuster vous-même à la plage appropriée.",
"目标采样率": "Taux d'échantillonnage cible :",
"算法延迟(ms):": "Délais algorithmiques (ms):",
"自动检测index路径,下拉式选择(dropdown)": "Détecter automatiquement le chemin d'accès à l'index et le sélectionner dans la liste déroulante :",
"融合": "Fusion",
"要改的模型信息": "Informations sur le modèle à modifier :",
"要置入的模型信息": "Informations sur le modèle à placer :",
"训练": "Entraîner",
"训练模型": "Entraîner le modèle",
"训练特征索引": "Entraîner l'index des caractéristiques",
"训练结束, 您可查看控制台训练日志或实验文件夹下的train.log": "Entraînement terminé. Vous pouvez consulter les rapports d'entraînement dans la console ou dans le fichier 'train.log' situé dans le dossier de l'expérience.",
"设备类型": "设备类型",
"请指定说话人id": "Veuillez spécifier l'ID de l'orateur ou du chanteur :",
"请选择index文件": "Veuillez sélectionner le fichier d'index",
"请选择pth文件": "Veuillez sélectionner le fichier pth",
"请选择说话人id": "Sélectionner l'ID de l'orateur ou du chanteur :",
"转换": "Convertir",
"输入实验名": "Saisissez le nom de l'expérience :",
"输入待处理音频文件夹路径": "Entrez le chemin du dossier audio à traiter :",
"输入待处理音频文件夹路径(去文件管理器地址栏拷就行了)": "Entrez le chemin du dossier audio à traiter (copiez-le depuis la barre d'adresse du gestionnaire de fichiers) :",
"输入待处理音频文件路径(默认是正确格式示例)": "Entrez le chemin d'accès du fichier audio à traiter (par défaut, l'exemple de format correct) :",
"输入源音量包络替换输出音量包络融合比例越靠近1越使用输出包络": "Ajustez l'échelle de l'enveloppe de volume. Plus il est proche de 0, plus il imite le volume des voix originales. Cela peut aider à masquer les bruits et à rendre le volume plus naturel lorsqu'il est réglé relativement bas. Plus le volume est proche de 1, plus le volume sera fort et constant :",
"输入监听": "Moniteur vocal d'entrée",
"输入训练文件夹路径": "Indiquez le chemin d'accès au dossier d'entraînement :",
"输入设备": "Dispositif d'entrée",
"输入降噪": "Réduction du bruit d'entrée",
"输出信息": "Informations sur la sortie",
"输出变声": "Sortie voix convertie",
"输出设备": "Dispositif de sortie",
"输出降噪": "Réduction du bruit de sortie",
"输出音频(右下角三个点,点了可以下载)": "Exporter l'audio (cliquer sur les trois points dans le coin inférieur droit pour télécharger)",
"选择.index文件": "Sélectionner le fichier .index",
"选择.pth文件": "Sélectionner le fichier .pth",
"选择音高提取算法,输入歌声可用pm提速,harvest低音好但巨慢无比,crepe效果好但吃GPU": "Sélection de l'algorithme d'extraction de la hauteur, les voix d'entrée peuvent être accélérées avec pm, harvest a de bonnes basses mais est très lent, crepe est bon mais consomme beaucoup de ressources GPU.",
"选择音高提取算法,输入歌声可用pm提速,harvest低音好但巨慢无比,crepe效果好但吃GPU,rmvpe效果最好且微吃GPU": "Sélectionnez l'algorithme d'extraction de la hauteur de ton (\"pm\" : extraction plus rapide mais parole de moindre qualité ; \"harvest\" : meilleure basse mais extrêmement lente ; \"crepe\" : meilleure qualité mais utilisation intensive du GPU), \"rmvpe\" : meilleure qualité et peu d'utilisation du GPU.",
"选择音高提取算法:输入歌声可用pm提速,高质量语音但CPU差可用dio提速,harvest质量更好但慢,rmvpe效果最好且微吃CPU/GPU": "Sélection de l'algorithme d'extraction de la hauteur : la chanson d'entrée peut être traitée plus rapidement par pm, avec une voix de haute qualité mais un CPU médiocre, par dio, harvest est meilleur mais plus lent, rmvpe est le meilleur, mais consomme légèrement le CPU/GPU.",
"采样率:": "采样率:",
"采样长度": "Longueur de l'échantillon",
"重载设备列表": "Recharger la liste des dispositifs",
"音调设置": "Réglages de la hauteur",
"音频设备": "Périphérique audio",
"音高算法": "algorithme de détection de la hauteur",
"额外推理时长": "Temps d'inférence supplémentaire"
}

137
i18n/locale/it_IT.json Normal file
View File

@ -0,0 +1,137 @@
{
">=3则使用对harvest音高识别的结果使用中值滤波数值为滤波半径使用可以削弱哑音": "Se >=3: applica il filtro mediano ai risultati del pitch raccolto. ",
"A模型权重": "Peso (w) per il modello A:",
"A模型路径": "Percorso per il modello A:",
"B模型路径": "Percorso per il modello B:",
"E:\\语音音频+标注\\米津玄师\\src": "E:\\语音音频+标注\\米津玄师\\src",
"F0曲线文件, 可选, 一行一个音高, 代替默认F0及升降调": "File curva F0 (opzionale). ",
"Index Rate": "Tasso di indice",
"Onnx导出": "Esporta Onnx",
"Onnx输出路径": "Percorso di esportazione Onnx:",
"RVC模型路径": "Percorso modello RVC:",
"ckpt处理": "Elaborazione ckpt",
"harvest进程数": "harvest进程数",
"index文件路径不可包含中文": "index文件路径不可包含中文",
"pth文件路径不可包含中文": "pth è un'app per il futuro",
"rmvpe卡号配置以-分隔输入使用的不同进程卡号,例如0-0-1使用在卡0上跑2个进程并在卡1上跑1个进程": "rmvpe卡号配置以-分隔输入使用的不同进程卡号,例如0-0-1使用在卡0上跑2个进程并在卡1上跑1个进程",
"step1: 填写实验配置. 实验数据放在logs下, 每个实验一个文件夹, 需手工输入实验名路径, 内含实验配置, 日志, 训练得到的模型文件. ": "Passaggio 1: compilare la configurazione sperimentale. ",
"step1:正在处理数据": "Passaggio 1: elaborazione dei dati",
"step2:正在提取音高&正在提取特征": "step2:正在提取音高&正在提取特征",
"step2a: 自动遍历训练文件夹下所有可解码成音频的文件并进行切片归一化, 在实验目录下生成2个wav文件夹; 暂时只支持单人训练. ": "Passaggio 2a: attraversa automaticamente tutti i file nella cartella di addestramento che possono essere decodificati in audio ed esegui la normalizzazione delle sezioni. ",
"step2b: 使用CPU提取音高(如果模型带音高), 使用GPU提取特征(选择卡号)": "Passaggio 2b: utilizzare la CPU per estrarre il tono (se il modello ha il tono), utilizzare la GPU per estrarre le caratteristiche (selezionare l'indice GPU):",
"step3: 填写训练设置, 开始训练模型和索引": "Passaggio 3: compilare le impostazioni di addestramento e avviare l'addestramento del modello e dell'indice",
"step3a:正在训练模型": "Passaggio 3a: è iniziato l'addestramento del modello",
"一键训练": "Addestramento con un clic",
"也可批量输入音频文件, 二选一, 优先读文件夹": "也可批量输入音频文件, 二选一, 优先读文件夹",
"人声伴奏分离批量处理, 使用UVR5模型。 <br>合格的文件夹路径格式举例: E:\\codes\\py39\\vits_vc_gpu\\白鹭霜华测试样例(去文件管理器地址栏拷就行了)。 <br>模型分为三类: <br>1、保留人声不带和声的音频选这个对主人声保留比HP5更好。内置HP2和HP3两个模型HP3可能轻微漏伴奏但对主人声保留比HP2稍微好一丁点 <br>2、仅保留主人声带和声的音频选这个对主人声可能有削弱。内置HP5一个模型 <br> 3、去混响、去延迟模型by FoxJoy<br>(1)MDX-Net(onnx_dereverb):对于双通道混响是最好的选择,不能去除单通道混响;<br>&emsp;(234)DeEcho:去除延迟效果。Aggressive比Normal去除得更彻底DeReverb额外去除混响可去除单声道混响但是对高频重的板式混响去不干净。<br>去混响/去延迟,附:<br>1、DeEcho-DeReverb模型的耗时是另外2个DeEcho模型的接近2倍<br>2、MDX-Net-Dereverb模型挺慢的<br>3、个人推荐的最干净的配置是先MDX-Net再DeEcho-Aggressive。": "Elaborazione batch per la separazione dell'accompagnamento vocale utilizzando il modello UVR5.<br>Esempio di un formato di percorso di cartella valido: D:\\path\\to\\input\\folder (copialo dalla barra degli indirizzi del file manager).<br>Il modello è suddiviso in tre categorie:<br>1. Conserva la voce: scegli questa opzione per l'audio senza armonie. <br>2. Mantieni solo la voce principale: scegli questa opzione per l'audio con armonie. <br>3. Modelli di de-riverbero e de-delay (di FoxJoy):<br>(1) MDX-Net: la scelta migliore per la rimozione del riverbero stereo ma non può rimuovere il riverbero mono;<br><br>Note di de-riverbero/de-delay:<br>1. Il tempo di elaborazione per il modello DeEcho-DeReverb è circa il doppio rispetto agli altri due modelli DeEcho.<br>2. Il modello MDX-Net-Dereverb è piuttosto lento.<br>3. La configurazione più pulita consigliata consiste nell'applicare prima MDX-Net e poi DeEcho-Aggressive.",
"以-分隔输入使用的卡号, 例如 0-1-2 使用卡0和卡1和卡2": "Inserisci gli indici GPU separati da '-', ad esempio 0-1-2 per utilizzare GPU 0, 1 e 2:",
"伴奏人声分离&去混响&去回声": "Separazione voce/accompagnamento",
"使用模型采样率": "使用模型采样率",
"使用设备采样率": "使用设备采样率",
"保存名": "Salva nome:",
"保存的文件名, 默认空为和源文件同名": "Salva il nome del file (predefinito: uguale al file di origine):",
"保存的模型名不带后缀": "Nome del modello salvato (senza estensione):",
"保存频率save_every_epoch": "Frequenza di salvataggio (save_every_epoch):",
"保护清辅音和呼吸声防止电音撕裂等artifact拉满0.5不开启,调低加大保护力度但可能降低索引效果": "Proteggi le consonanti senza voce e i suoni del respiro per evitare artefatti come il tearing nella musica elettronica. ",
"修改": "Modificare",
"修改模型信息(仅支持weights文件夹下提取的小模型文件)": "Modifica le informazioni sul modello (supportato solo per i file di modello di piccole dimensioni estratti dalla cartella 'weights')",
"停止音频转换": "Arresta la conversione audio",
"全流程结束!": "Tutti i processi sono stati completati!",
"刷新音色列表和索引路径": "Aggiorna l'elenco delle voci e il percorso dell'indice",
"加载模型": "Carica modello",
"加载预训练底模D路径": "Carica il percorso D del modello base pre-addestrato:",
"加载预训练底模G路径": "Carica il percorso G del modello base pre-addestrato:",
"单次推理": "单次推理",
"卸载音色省显存": "Scarica la voce per risparmiare memoria della GPU:",
"变调(整数, 半音数量, 升八度12降八度-12)": "Trasposizione (numero intero, numero di semitoni, alza di un'ottava: 12, abbassa di un'ottava: -12):",
"后处理重采样至最终采样率0为不进行重采样": "Ricampiona l'audio di output in post-elaborazione alla frequenza di campionamento finale. ",
"否": "NO",
"启用相位声码器": "启用相位声码器",
"响应阈值": "Soglia di risposta",
"响度因子": "fattore di sonorità",
"处理数据": "Processa dati",
"导出Onnx模型": "Esporta modello Onnx",
"导出文件格式": "Formato file di esportazione",
"常见问题解答": "FAQ (Domande frequenti)",
"常规设置": "Impostazioni generali",
"开始音频转换": "Avvia la conversione audio",
"很遗憾您这没有能用的显卡来支持您训练": "Sfortunatamente, non è disponibile alcuna GPU compatibile per supportare l'addestramento.",
"性能设置": "Impostazioni delle prestazioni",
"总训练轮数total_epoch": "Epoch totali di addestramento (total_epoch):",
"批量推理": "批量推理",
"批量转换, 输入待转换音频文件夹, 或上传多个音频文件, 在指定文件夹(默认opt)下输出转换的音频. ": "Conversione massiva. Inserisci il percorso della cartella che contiene i file da convertire o carica più file audio. I file convertiti finiranno nella cartella specificata. (default: opt) ",
"指定输出主人声文件夹": "Specifica la cartella di output per le voci:",
"指定输出文件夹": "Specifica la cartella di output:",
"指定输出非主人声文件夹": "Specificare la cartella di output per l'accompagnamento:",
"推理时间(ms):": "Tempo di inferenza (ms):",
"推理音色": "Voce di inferenza:",
"提取": "Estrai",
"提取音高和处理数据使用的CPU进程数": "Numero di processi CPU utilizzati per l'estrazione del tono e l'elaborazione dei dati:",
"是": "SÌ",
"是否仅保存最新的ckpt文件以节省硬盘空间": "Salva solo l'ultimo file '.ckpt' per risparmiare spazio su disco:",
"是否在每次保存时间点将最终小模型保存至weights文件夹": "Salva un piccolo modello finale nella cartella \"weights\" in ogni punto di salvataggio:",
"是否缓存所有训练集至显存. 10min以下小数据可缓存以加速训练, 大数据缓存会炸显存也加不了多少速": "Memorizza nella cache tutti i set di addestramento nella memoria della GPU. ",
"显卡信息": "Informazioni GPU",
"本软件以MIT协议开源, 作者不对软件具备任何控制力, 使用软件者、传播软件导出的声音者自负全责. <br>如不认可该条款, 则不能使用或引用软件包内任何代码和文件. 详见根目录<b>LICENSE</b>.": "Questo software è open source con licenza MIT. <br>Se non si accetta questa clausola, non è possibile utilizzare o fare riferimento a codici e file all'interno del pacchetto software. <b>Contratto-LICENZA.txt</b> per dettagli.",
"查看": "Visualizzazione",
"查看模型信息(仅支持weights文件夹下提取的小模型文件)": "Visualizza le informazioni sul modello (supportato solo per file di modello piccoli estratti dalla cartella 'weights')",
"检索特征占比": "Rapporto funzionalità di ricerca (controlla la forza dell'accento, troppo alto ha artefatti):",
"模型": "Modello",
"模型推理": "Inferenza del modello",
"模型提取(输入logs文件夹下大文件模型路径),适用于训一半不想训了模型没有自动提取保存小文件模型,或者想测试中间模型的情况": "Estrazione del modello (inserire il percorso del modello di file di grandi dimensioni nella cartella \"logs\"). ",
"模型是否带音高指导": "Se il modello ha una guida del tono:",
"模型是否带音高指导(唱歌一定要, 语音可以不要)": "Se il modello ha una guida del tono (necessario per il canto, facoltativo per il parlato):",
"模型是否带音高指导,1是0否": "Se il modello ha una guida del tono (1: sì, 0: no):",
"模型版本型号": "Versione dell'architettura del modello:",
"模型融合, 可用于测试音色融合": "Model fusion, può essere utilizzato per testare la fusione timbrica",
"模型路径": "Percorso al modello:",
"每张显卡的batch_size": "Dimensione batch per GPU:",
"淡入淡出长度": "Lunghezza dissolvenza",
"版本": "Versione",
"特征提取": "Estrazione delle caratteristiche",
"特征检索库文件路径,为空则使用下拉的选择结果": "Percorso del file di indice delle caratteristiche. ",
"独占 WASAPI 设备": "独占 WASAPI 设备",
"男转女推荐+12key, 女转男推荐-12key, 如果音域爆炸导致音色失真也可以自己调整到合适音域. ": "Tonalità +12 consigliata per la conversione da maschio a femmina e tonalità -12 per la conversione da femmina a maschio. ",
"目标采样率": "Frequenza di campionamento target:",
"算法延迟(ms):": "算法延迟(ms):",
"自动检测index路径,下拉式选择(dropdown)": "Rileva automaticamente il percorso dell'indice e seleziona dal menu a tendina:",
"融合": "Fusione",
"要改的模型信息": "Informazioni sul modello da modificare:",
"要置入的模型信息": "Informazioni sul modello da posizionare:",
"训练": "Addestramento",
"训练模型": "Addestra modello",
"训练特征索引": "Addestra indice delle caratteristiche",
"训练结束, 您可查看控制台训练日志或实验文件夹下的train.log": "Addestramento completato. ",
"设备类型": "设备类型",
"请指定说话人id": "Si prega di specificare l'ID del locutore/cantante:",
"请选择index文件": "请选择index文件",
"请选择pth文件": "请选择pth 文件",
"请选择说话人id": "Seleziona ID locutore/cantante:",
"转换": "Convertire",
"输入实验名": "Inserisci il nome dell'esperimento:",
"输入待处理音频文件夹路径": "Immettere il percorso della cartella audio da elaborare:",
"输入待处理音频文件夹路径(去文件管理器地址栏拷就行了)": "Immettere il percorso della cartella audio da elaborare (copiarlo dalla barra degli indirizzi del file manager):",
"输入待处理音频文件路径(默认是正确格式示例)": "Immettere il percorso del file audio da elaborare (l'impostazione predefinita è l'esempio di formato corretto):",
"输入源音量包络替换输出音量包络融合比例越靠近1越使用输出包络": "Regola il ridimensionamento dell'inviluppo del volume. ",
"输入监听": "输入监听",
"输入训练文件夹路径": "Inserisci il percorso della cartella di addestramento:",
"输入设备": "Dispositivo di input",
"输入降噪": "Riduzione del rumore in ingresso",
"输出信息": "Informazioni sull'uscita",
"输出变声": "输出变声",
"输出设备": "Dispositivo di uscita",
"输出降噪": "Riduzione del rumore in uscita",
"输出音频(右下角三个点,点了可以下载)": "Esporta audio (clicca sui tre puntini in basso a destra per scaricarlo)",
"选择.index文件": "Seleziona il file .index",
"选择.pth文件": "Seleziona il file .pth",
"选择音高提取算法,输入歌声可用pm提速,harvest低音好但巨慢无比,crepe效果好但吃GPU": "选择音高提取算法,输入歌声可用pm提速,harvest低音好但巨慢无比,crepe效果好但吃GPU",
"选择音高提取算法,输入歌声可用pm提速,harvest低音好但巨慢无比,crepe效果好但吃GPU,rmvpe效果最好且微吃GPU": "Seleziona l'algoritmo di estrazione del tono (\"pm\": estrazione più veloce ma risultato di qualità inferiore; \"harvest\": bassi migliori ma estremamente lenti; \"crepe\": qualità migliore ma utilizzo intensivo della GPU):",
"选择音高提取算法:输入歌声可用pm提速,高质量语音但CPU差可用dio提速,harvest质量更好但慢,rmvpe效果最好且微吃CPU/GPU": "选择音高提取算法:输入歌声可用pm提速,高质量语音但CPU差可用dio提速,harvest质量更好但慢,rmvpe效果最好且微吃CPU/GPU",
"采样率:": "采样率:",
"采样长度": "Lunghezza del campione",
"重载设备列表": "Ricaricare l'elenco dei dispositivi",
"音调设置": "Impostazioni del tono",
"音频设备": "Dispositivo audio",
"音高算法": "音高算法",
"额外推理时长": "Tempo di inferenza extra"
}

137
i18n/locale/ja_JP.json Normal file
View File

@ -0,0 +1,137 @@
{
">=3则使用对harvest音高识别的结果使用中值滤波数值为滤波半径使用可以削弱哑音": ">=3 次に、harvestピッチの認識結果に対してメディアンフィルタを使用します。値はフィルター半径で、ミュートを減衰させるために使用します。",
"A模型权重": "Aモデルの重み",
"A模型路径": "Aモデルのパス",
"B模型路径": "Bモデルのパス",
"E:\\语音音频+标注\\米津玄师\\src": "E:\\语音音频+标注\\米津玄师\\src",
"F0曲线文件, 可选, 一行一个音高, 代替默认F0及升降调": "F0(最低共振周波数)カーブファイル(オプション、1行に1ピッチ、デフォルトのF0(最低共振周波数)とエレベーションを置き換えます。)",
"Index Rate": "Index Rate",
"Onnx导出": "Onnxエクスポート",
"Onnx输出路径": "Onnx出力パス",
"RVC模型路径": "RVCモデルパス",
"ckpt处理": "ckptファイルの処理",
"harvest进程数": "harvestプロセス数",
"index文件路径不可包含中文": "indexファイルのパスに漢字を含んではいけません",
"pth文件路径不可包含中文": "pthファイルのパスに漢字を含んではいけません",
"rmvpe卡号配置以-分隔输入使用的不同进程卡号,例如0-0-1使用在卡0上跑2个进程并在卡1上跑1个进程": "rmvpeカード番号設定異なるプロセスに使用するカード番号を入力する。例えば、0-0-1でカード0に2つのプロセス、カード1に1つのプロセスを実行する。",
"step1: 填写实验配置. 实验数据放在logs下, 每个实验一个文件夹, 需手工输入实验名路径, 内含实验配置, 日志, 训练得到的模型文件. ": "ステップ1:実験設定を入力します。実験データはlogsに保存され、各実験にはフォルダーがあります。実験名のパスを手動で入力する必要があり、実験設定、ログ、トレーニングされたモデルファイルが含まれます。",
"step1:正在处理数据": "step1:処理中のデータ",
"step2:正在提取音高&正在提取特征": "step2:ピッチ抽出と特徴抽出",
"step2a: 自动遍历训练文件夹下所有可解码成音频的文件并进行切片归一化, 在实验目录下生成2个wav文件夹; 暂时只支持单人训练. ": "ステップ2a: 訓練フォルダー内のすべての音声ファイルを自動的に探索し、スライスと正規化を行い、2つのwavフォルダーを実験ディレクトリに生成します。現在は一人でのトレーニングのみをサポートしています。",
"step2b: 使用CPU提取音高(如果模型带音高), 使用GPU提取特征(选择卡号)": "ステップ2b: CPUを使用して音高を抽出する(モデルに音高がある場合)、GPUを使用して特徴を抽出する(GPUの番号を選択する)",
"step3: 填写训练设置, 开始训练模型和索引": "ステップ3: トレーニング設定を入力して、モデルとインデックスのトレーニングを開始します",
"step3a:正在训练模型": "step3a:トレーニング中のモデル",
"一键训练": "ワンクリックトレーニング",
"也可批量输入音频文件, 二选一, 优先读文件夹": "複数のオーディオファイルをインポートすることもできます。フォルダパスが存在する場合、この入力は無視されます。",
"人声伴奏分离批量处理, 使用UVR5模型。 <br>合格的文件夹路径格式举例: E:\\codes\\py39\\vits_vc_gpu\\白鹭霜华测试样例(去文件管理器地址栏拷就行了)。 <br>模型分为三类: <br>1、保留人声不带和声的音频选这个对主人声保留比HP5更好。内置HP2和HP3两个模型HP3可能轻微漏伴奏但对主人声保留比HP2稍微好一丁点 <br>2、仅保留主人声带和声的音频选这个对主人声可能有削弱。内置HP5一个模型 <br> 3、去混响、去延迟模型by FoxJoy<br>(1)MDX-Net(onnx_dereverb):对于双通道混响是最好的选择,不能去除单通道混响;<br>&emsp;(234)DeEcho:去除延迟效果。Aggressive比Normal去除得更彻底DeReverb额外去除混响可去除单声道混响但是对高频重的板式混响去不干净。<br>去混响/去延迟,附:<br>1、DeEcho-DeReverb模型的耗时是另外2个DeEcho模型的接近2倍<br>2、MDX-Net-Dereverb模型挺慢的<br>3、个人推荐的最干净的配置是先MDX-Net再DeEcho-Aggressive。": "UVR5モデルを使用したボーカル伴奏の分離バッチ処理。<br>有効なフォルダーパスフォーマットの例: D:\\path\\to\\input\\folder (エクスプローラーのアドレスバーからコピーします)。<br>モデルは三つのカテゴリに分かれています:<br>1. ボーカルを保持: ハーモニーのないオーディオに対してこれを選択します。HP5よりもボーカルをより良く保持します。HP2とHP3の二つの内蔵モデルが含まれています。HP3は伴奏をわずかに漏らす可能性がありますが、HP2よりもわずかにボーカルをより良く保持します。<br>2. 主なボーカルのみを保持: ハーモニーのあるオーディオに対してこれを選択します。主なボーカルを弱める可能性があります。HP5の一つの内蔵モデルが含まれています。<br>3. ディリバーブとディレイモデル (by FoxJoy):<br>(1) MDX-Net: ステレオリバーブの除去に最適な選択肢ですが、モノリバーブは除去できません;<br>&emsp;(234) DeEcho: ディレイ効果を除去します。AggressiveモードはNormalモードよりも徹底的に除去します。DeReverbはさらにリバーブを除去し、モリバーブを除去することができますが、高周波のリバーブが強い内容に対しては非常に効果的ではありません。<br>ディリバーブ/ディレイに関する注意点:<br>1. DeEcho-DeReverbモデルの処理時間は、他の二つのDeEchoモデルの約二倍です。<br>2. MDX-Net-Dereverbモデルは非常に遅いです。<br>3. 推奨される最もクリーンな設定は、最初にMDX-Netを適用し、その後にDeEcho-Aggressiveを適用することです。",
"以-分隔输入使用的卡号, 例如 0-1-2 使用卡0和卡1和卡2": "ハイフンで区切って使用するGPUの番号を入力します。例えば0-1-2はGPU0、GPU1、GPU2を使用します",
"伴奏人声分离&去混响&去回声": "伴奏ボーカル分離&残響除去&エコー除去",
"使用模型采样率": "使用模型采样率",
"使用设备采样率": "使用设备采样率",
"保存名": "保存ファイル名",
"保存的文件名, 默认空为和源文件同名": "保存するファイル名、デフォルトでは空欄で元のファイル名と同じ名前になります",
"保存的模型名不带后缀": "拡張子のない保存するモデル名",
"保存频率save_every_epoch": "エポックごとの保存頻度",
"保护清辅音和呼吸声防止电音撕裂等artifact拉满0.5不开启,调低加大保护力度但可能降低索引效果": "明確な子音と呼吸音を保護し、電子音の途切れやその他のアーティファクトを防止します。0.5でオフになります。下げると保護が強化されますが、indexの効果が低下する可能性があります。",
"修改": "変更",
"修改模型信息(仅支持weights文件夹下提取的小模型文件)": "モデル情報の修正(weightsフォルダから抽出された小さなモデルファイルのみ対応)",
"停止音频转换": "音声変換を停止",
"全流程结束!": "全工程が完了!",
"刷新音色列表和索引路径": "音源リストとインデックスパスの更新",
"加载模型": "モデルをロード",
"加载预训练底模D路径": "事前学習済みのDモデルのパス",
"加载预训练底模G路径": "事前学習済みのGモデルのパス",
"单次推理": "单次推理",
"卸载音色省显存": "音源を削除してメモリを節約",
"变调(整数, 半音数量, 升八度12降八度-12)": "ピッチ変更(整数、半音数、上下オクターブ12-12)",
"后处理重采样至最终采样率0为不进行重采样": "最終的なサンプリングレートへのポストプロセッシングのリサンプリング リサンプリングしない場合は0",
"否": "いいえ",
"启用相位声码器": "启用相位声码器",
"响应阈值": "反応閾値",
"响度因子": "ラウドネス係数",
"处理数据": "データ処理",
"导出Onnx模型": "Onnxに変換",
"导出文件格式": "エクスポート形式",
"常见问题解答": "よくある質問",
"常规设置": "一般設定",
"开始音频转换": "音声変換を開始",
"很遗憾您这没有能用的显卡来支持您训练": "トレーニングに対応したGPUが動作しないのは残念です。",
"性能设置": "パフォーマンス設定",
"总训练轮数total_epoch": "総エポック数",
"批量推理": "批量推理",
"批量转换, 输入待转换音频文件夹, 或上传多个音频文件, 在指定文件夹(默认opt)下输出转换的音频. ": "一括変換、変換する音声フォルダを入力、または複数の音声ファイルをアップロードし、指定したフォルダ(デフォルトのopt)に変換した音声を出力します。",
"指定输出主人声文件夹": "マスターの出力音声フォルダーを指定する",
"指定输出文件夹": "出力フォルダを指定してください",
"指定输出非主人声文件夹": "マスター以外の出力音声フォルダーを指定する",
"推理时间(ms):": "推論時間(ms):",
"推理音色": "音源推論",
"提取": "抽出",
"提取音高和处理数据使用的CPU进程数": "ピッチの抽出やデータ処理に使用するCPUスレッド数",
"是": "はい",
"是否仅保存最新的ckpt文件以节省硬盘空间": "ハードディスク容量を節約するため、最新のckptファイルのみを保存しますか",
"是否在每次保存时间点将最终小模型保存至weights文件夹": "各保存時点の小モデルを全部weightsフォルダに保存するかどうか",
"是否缓存所有训练集至显存. 10min以下小数据可缓存以加速训练, 大数据缓存会炸显存也加不了多少速": "すべてのトレーニングデータをメモリにキャッシュするかどうか。10分以下の小さなデータはキャッシュしてトレーニングを高速化できますが、大きなデータをキャッシュするとメモリが破裂し、あまり速度が上がりません。",
"显卡信息": "GPU情報",
"本软件以MIT协议开源, 作者不对软件具备任何控制力, 使用软件者、传播软件导出的声音者自负全责. <br>如不认可该条款, 则不能使用或引用软件包内任何代码和文件. 详见根目录<b>LICENSE</b>.": "本ソフトウェアはMITライセンスに基づくオープンソースであり、製作者は本ソフトウェアに対していかなる責任を持ちません。本ソフトウェアの利用者および本ソフトウェアから派生した音源(成果物)を配布する者は、本ソフトウェアに対して自身で責任を負うものとします。 <br>この条項に同意しない場合、パッケージ内のコードやファイルを使用や参照を禁じます。詳しくは<b>LICENSE</b>をご覧ください。",
"查看": "表示",
"查看模型信息(仅支持weights文件夹下提取的小模型文件)": "モデル情報を表示する(小さいモデルファイルはweightsフォルダーからのみサポートされています)",
"检索特征占比": "検索特徴率",
"模型": "モデル",
"模型推理": "モデル推論",
"模型提取(输入logs文件夹下大文件模型路径),适用于训一半不想训了模型没有自动提取保存小文件模型,或者想测试中间模型的情况": "モデル抽出(ログフォルダー内の大きなファイルのモデルパスを入力)、モデルを半分までトレーニングし、自動的に小さいファイルモデルを保存しなかったり、中間モデルをテストしたい場合に適用されます。",
"模型是否带音高指导": "モデルに音高ガイドを付けるかどうか",
"模型是否带音高指导(唱歌一定要, 语音可以不要)": "モデルに音高ガイドがあるかどうか(歌唱には必要ですが、音声には必要ありません)",
"模型是否带音高指导,1是0否": "モデルに音高ガイドを付けるかどうか、1は付ける、0は付けない",
"模型版本型号": "モデルのバージョン",
"模型融合, 可用于测试音色融合": "モデルのマージ、音源のマージテストに使用できます",
"模型路径": "モデルパス",
"每张显卡的batch_size": "GPUごとのバッチサイズ",
"淡入淡出长度": "フェードイン/フェードアウト長",
"版本": "バージョン",
"特征提取": "特徴抽出",
"特征检索库文件路径,为空则使用下拉的选择结果": "特徴検索ライブラリへのパス 空の場合はドロップダウンで選択",
"独占 WASAPI 设备": "独占 WASAPI 设备",
"男转女推荐+12key, 女转男推荐-12key, 如果音域爆炸导致音色失真也可以自己调整到合适音域. ": "男性から女性へは+12キーをお勧めします。女性から男性へは-12キーをお勧めします。音域が広すぎて音質が劣化した場合は、適切な音域に自分で調整してください。",
"目标采样率": "目標サンプリングレート",
"算法延迟(ms):": "算法延迟(ms):",
"自动检测index路径,下拉式选择(dropdown)": "インデックスパスの自動検出 ドロップダウンで選択",
"融合": "マージ",
"要改的模型信息": "変更するモデル情報",
"要置入的模型信息": "挿入するモデル情報",
"训练": "トレーニング",
"训练模型": "モデルのトレーニング",
"训练特征索引": "特徴インデックスのトレーニング",
"训练结束, 您可查看控制台训练日志或实验文件夹下的train.log": "トレーニング終了時に、トレーニングログやフォルダ内のtrain.logを確認することができます",
"设备类型": "设备类型",
"请指定说话人id": "話者IDを指定してください",
"请选择index文件": "indexファイルを選択してください",
"请选择pth文件": "pthファイルを選択してください",
"请选择说话人id": "話者IDを選択してください",
"转换": "変換",
"输入实验名": "モデル名",
"输入待处理音频文件夹路径": "処理するオーディオファイルのフォルダパスを入力してください",
"输入待处理音频文件夹路径(去文件管理器地址栏拷就行了)": "処理対象音声フォルダーのパスを入力してください(エクスプローラーのアドレスバーからコピーしてください)",
"输入待处理音频文件路径(默认是正确格式示例)": "処理対象音声ファイルのパスを入力してください(デフォルトは正しいフォーマットの例です)",
"输入源音量包络替换输出音量包络融合比例越靠近1越使用输出包络": "入力ソースの音量エンベロープと出力音量エンベロープの融合率 1に近づくほど、出力音量エンベロープの割合が高くなる",
"输入监听": "输入监听",
"输入训练文件夹路径": "トレーニング用フォルダのパスを入力してください",
"输入设备": "入力デバイス",
"输入降噪": "入力ノイズの低減",
"输出信息": "出力情報",
"输出变声": "输出变声",
"输出设备": "出力デバイス",
"输出降噪": "出力ノイズの低減",
"输出音频(右下角三个点,点了可以下载)": "出力音声(右下の三点をクリックしてダウンロードできます)",
"选择.index文件": ".indexファイルを選択",
"选择.pth文件": ".pthファイルを選択",
"选择音高提取算法,输入歌声可用pm提速,harvest低音好但巨慢无比,crepe效果好但吃GPU": "ピッチ抽出アルゴリズムの選択、歌声はpmで高速化でき、harvestは低音が良いが信じられないほど遅く、crepeは良く動くがGPUを食います。",
"选择音高提取算法,输入歌声可用pm提速,harvest低音好但巨慢无比,crepe效果好但吃GPU,rmvpe效果最好且微吃GPU": "ピッチ抽出アルゴリズムの選択、歌声はpmで高速化でき、harvestは低音が良いが信じられないほど遅く、crepeは良く動くがGPUを喰います",
"选择音高提取算法:输入歌声可用pm提速,高质量语音但CPU差可用dio提速,harvest质量更好但慢,rmvpe效果最好且微吃CPU/GPU": "ピッチ抽出アルゴリズムの選択歌声はpmで高速化でき、入力した音声が高音質でCPUが貧弱な場合はdioで高速化でき、harvestの方が良いが遅く、rmvpeがベストだがCPU/GPUを若干食います。",
"采样率:": "采样率:",
"采样长度": "サンプル長",
"重载设备列表": "デバイスリストをリロードする",
"音调设置": "音程設定",
"音频设备": "オーディオデバイス",
"音高算法": "ピッチアルゴリズム",
"额外推理时长": "追加推論時間"
}

137
i18n/locale/ko_KR.json Normal file
View File

@ -0,0 +1,137 @@
{
">=3则使用对harvest音高识别的结果使用中值滤波数值为滤波半径使用可以削弱哑音": ">=3인 경우 harvest 피치 인식 결과에 중간값 필터 적용, 필터 반경은 값으로 지정, 사용 시 무성음 감소 가능",
"A模型权重": "A 모델 가중치",
"A模型路径": "A 모델 경로",
"B模型路径": "B 모델 경로",
"E:\\语音音频+标注\\米津玄师\\src": "E:\\음성 오디오+표시\\米津玄师\\src",
"F0曲线文件, 可选, 一行一个音高, 代替默认F0及升降调": "F0 곡선 파일, 선택적, 한 줄에 하나의 피치, 기본 F0 및 음높이 조절 대체",
"Index Rate": "인덱스 비율",
"Onnx导出": "Onnx 내보내기",
"Onnx输出路径": "Onnx 출력 경로",
"RVC模型路径": "RVC 모델 경로",
"ckpt处理": "ckpt 처리",
"harvest进程数": "harvest 프로세스 수",
"index文件路径不可包含中文": "index 파일 경로는 중국어를 포함할 수 없음",
"pth文件路径不可包含中文": "pth 파일 경로는 중국어를 포함할 수 없음",
"rmvpe卡号配置以-分隔输入使用的不同进程卡号,例如0-0-1使用在卡0上跑2个进程并在卡1上跑1个进程": "rmvpe 카드 번호 설정: -로 구분된 입력 사용 카드 번호, 예: 0-0-1은 카드 0에서 2개 프로세스, 카드 1에서 1개 프로세스 실행",
"step1: 填写实验配置. 实验数据放在logs下, 每个实验一个文件夹, 需手工输入实验名路径, 内含实验配置, 日志, 训练得到的模型文件. ": "step1: 실험 구성 작성. 실험 데이터는 logs에 저장, 각 실험은 하나의 폴더, 수동으로 실험 이름 경로 입력 필요, 실험 구성, 로그, 훈련된 모델 파일 포함.",
"step1:正在处理数据": "step1: 데이터 처리 중",
"step2:正在提取音高&正在提取特征": "step2: 음높이 추출 & 특징 추출 중",
"step2a: 自动遍历训练文件夹下所有可解码成音频的文件并进行切片归一化, 在实验目录下生成2个wav文件夹; 暂时只支持单人训练. ": "step2a: 훈련 폴더 아래 모든 오디오로 디코딩 가능한 파일을 자동 순회하며 슬라이스 정규화 진행, 실험 디렉토리 아래 2개의 wav 폴더 생성; 현재 단일 사용자 훈련만 지원.",
"step2b: 使用CPU提取音高(如果模型带音高), 使用GPU提取特征(选择卡号)": "step2b: CPU를 사용하여 음높이 추출(모델이 음높이 포함 시), GPU를 사용하여 특징 추출(카드 번호 선택)",
"step3: 填写训练设置, 开始训练模型和索引": "step3: 훈련 설정 작성, 모델 및 인덱스 훈련 시작",
"step3a:正在训练模型": "step3a: 모델 훈련 중",
"一键训练": "원클릭 훈련",
"也可批量输入音频文件, 二选一, 优先读文件夹": "여러 오디오 파일을 일괄 입력할 수도 있음, 둘 중 하나 선택, 폴더 우선 읽기",
"人声伴奏分离批量处理, 使用UVR5模型。 <br>合格的文件夹路径格式举例: E:\\codes\\py39\\vits_vc_gpu\\白鹭霜华测试样例(去文件管理器地址栏拷就行了)。 <br>模型分为三类: <br>1、保留人声不带和声的音频选这个对主人声保留比HP5更好。内置HP2和HP3两个模型HP3可能轻微漏伴奏但对主人声保留比HP2稍微好一丁点 <br>2、仅保留主人声带和声的音频选这个对主人声可能有削弱。内置HP5一个模型 <br> 3、去混响、去延迟模型by FoxJoy<br>(1)MDX-Net(onnx_dereverb):对于双通道混响是最好的选择,不能去除单通道混响;<br>&emsp;(234)DeEcho:去除延迟效果。Aggressive比Normal去除得更彻底DeReverb额外去除混响可去除单声道混响但是对高频重的板式混响去不干净。<br>去混响/去延迟,附:<br>1、DeEcho-DeReverb模型的耗时是另外2个DeEcho模型的接近2倍<br>2、MDX-Net-Dereverb模型挺慢的<br>3、个人推荐的最干净的配置是先MDX-Net再DeEcho-Aggressive。": "인간 목소리와 반주 분리 배치 처리, UVR5 모델 사용. <br>적절한 폴더 경로 예시: E:\\codes\\py39\\vits_vc_gpu\\白鹭霜华测试样例(파일 관리자 주소 표시줄에서 복사하면 됨). <br>모델은 세 가지 유형으로 나뉨: <br>1. 인간 목소리 보존: 화음이 없는 오디오에 이것을 선택, HP5보다 주된 인간 목소리 보존에 더 좋음. 내장된 HP2와 HP3 두 모델, HP3는 약간의 반주 누락 가능성이 있지만 HP2보다 주된 인간 목소리 보존이 약간 더 좋음; <br>2. 주된 인간 목소리만 보존: 화음이 있는 오디오에 이것을 선택, 주된 인간 목소리에 약간의 약화 가능성 있음. 내장된 HP5 모델 하나; <br>3. 혼효음 제거, 지연 제거 모델(by FoxJoy):<br>(1)MDX-Net(onnx_dereverb): 이중 채널 혼효음에는 최선의 선택, 단일 채널 혼효음은 제거할 수 없음;<br>&emsp;(234)DeEcho: 지연 제거 효과. Aggressive는 Normal보다 더 철저하게 제거, DeReverb는 추가로 혼효음을 제거, 단일 채널 혼효음은 제거 가능하지만 고주파 중심의 판 혼효음은 완전히 제거하기 어려움.<br>혼효음/지연 제거, 부록: <br>1. DeEcho-DeReverb 모델의 처리 시간은 다른 두 개의 DeEcho 모델의 거의 2배임;<br>2. MDX-Net-Dereverb 모델은 상당히 느림;<br>3. 개인적으로 추천하는 가장 깨끗한 구성은 MDX-Net 다음에 DeEcho-Aggressive 사용.",
"以-分隔输入使用的卡号, 例如 0-1-2 使用卡0和卡1和卡2": "-로 구분하여 입력하는 카드 번호, 예: 0-1-2는 카드 0, 카드 1, 카드 2 사용",
"伴奏人声分离&去混响&去回声": "반주 인간 목소리 분리 & 혼효음 제거 & 에코 제거",
"使用模型采样率": "모델 샘플링 레이트 사용",
"使用设备采样率": "장치 샘플링 레이트 사용",
"保存名": "저장 이름",
"保存的文件名, 默认空为和源文件同名": "저장될 파일명, 기본적으로 빈 공간은 원본 파일과 동일한 이름으로",
"保存的模型名不带后缀": "저장된 모델명은 접미사 없음",
"保存频率save_every_epoch": "저장 빈도 save_every_epoch",
"保护清辅音和呼吸声防止电音撕裂等artifact拉满0.5不开启,调低加大保护力度但可能降低索引效果": "청자음과 호흡 소리를 보호, 전자음 찢김 등의 아티팩트 방지, 0.5까지 올려서 비활성화, 낮추면 보호 강도 증가하지만 인덱스 효과 감소 가능성 있음",
"修改": "수정",
"修改模型信息(仅支持weights文件夹下提取的小模型文件)": "모델 정보 수정(오직 weights 폴더 아래에서 추출된 작은 모델 파일만 지원)",
"停止音频转换": "오디오 변환 중지",
"全流程结束!": "전체 과정 완료!",
"刷新音色列表和索引路径": "음색 목록 및 인덱스 경로 새로고침",
"加载模型": "모델 로드",
"加载预训练底模D路径": "미리 훈련된 베이스 모델 D 경로 로드",
"加载预训练底模G路径": "미리 훈련된 베이스 모델 G 경로 로드",
"单次推理": "단일 추론",
"卸载音色省显存": "음색 언로드로 디스플레이 메모리 절약",
"变调(整数, 半音数量, 升八度12降八度-12)": "키 변경(정수, 반음 수, 옥타브 상승 12, 옥타브 하강 -12)",
"后处理重采样至最终采样率0为不进行重采样": "후처리 재샘플링을 최종 샘플링 레이트로, 0은 재샘플링하지 않음",
"否": "아니오",
"启用相位声码器": "위상 보코더 활성화",
"响应阈值": "응답 임계값",
"响度因子": "음량 인자",
"处理数据": "데이터 처리",
"导出Onnx模型": "Onnx 모델 내보내기",
"导出文件格式": "내보낼 파일 형식",
"常见问题解答": "자주 묻는 질문",
"常规设置": "일반 설정",
"开始音频转换": "오디오 변환 시작",
"很遗憾您这没有能用的显卡来支持您训练": "사용 가능한 그래픽 카드가 없어 훈련을 지원할 수 없습니다",
"性能设置": "성능 설정",
"总训练轮数total_epoch": "총 훈련 라운드 수 total_epoch",
"批量推理": "일괄 추론",
"批量转换, 输入待转换音频文件夹, 或上传多个音频文件, 在指定文件夹(默认opt)下输出转换的音频. ": "일괄 변환, 변환할 오디오 파일 폴더 입력 또는 여러 오디오 파일 업로드, 지정된 폴더(기본값 opt)에 변환된 오디오 출력.",
"指定输出主人声文件夹": "주된 목소리 출력 폴더 지정",
"指定输出文件夹": "출력 파일 폴더 지정",
"指定输出非主人声文件夹": "주된 목소리가 아닌 출력 폴더 지정",
"推理时间(ms):": "추론 시간(ms):",
"推理音色": "추론 음색",
"提取": "추출",
"提取音高和处理数据使用的CPU进程数": "음높이 추출 및 데이터 처리에 사용되는 CPU 프로세스 수",
"是": "예",
"是否仅保存最新的ckpt文件以节省硬盘空间": "디스크 공간을 절약하기 위해 최신 ckpt 파일만 저장할지 여부",
"是否在每次保存时间点将最终小模型保存至weights文件夹": "저장 시마다 최종 소형 모델을 weights 폴더에 저장할지 여부",
"是否缓存所有训练集至显存. 10min以下小数据可缓存以加速训练, 大数据缓存会炸显存也加不了多少速": "모든 훈련 세트를 VRAM에 캐시할지 여부. 10분 미만의 소량 데이터는 캐시하여 훈련 속도를 높일 수 있지만, 대량 데이터 캐시는 VRAM을 과부하시키고 속도를 크게 향상시키지 못함",
"显卡信息": "그래픽 카드 정보",
"本软件以MIT协议开源, 作者不对软件具备任何控制力, 使用软件者、传播软件导出的声音者自负全责. <br>如不认可该条款, 则不能使用或引用软件包内任何代码和文件. 详见根目录<b>LICENSE</b>.": "이 소프트웨어는 MIT 라이선스로 공개되며, 저자는 소프트웨어에 대해 어떠한 통제권도 가지지 않습니다. 모든 귀책사유는 소프트웨어 사용자 및 소프트웨어에서 생성된 결과물을 사용하는 당사자에게 있습니다. <br>해당 조항을 인정하지 않는 경우, 소프트웨어 패키지의 어떠한 코드나 파일도 사용하거나 인용할 수 없습니다. 자세한 내용은 루트 디렉토리의 <b>LICENSE</b>를 참조하세요.",
"查看": "보기",
"查看模型信息(仅支持weights文件夹下提取的小模型文件)": "모델 정보 보기(오직 weights 폴더에서 추출된 소형 모델 파일만 지원)",
"检索特征占比": "검색 특징 비율",
"模型": "모델",
"模型推理": "모델 추론",
"模型提取(输入logs文件夹下大文件模型路径),适用于训一半不想训了模型没有自动提取保存小文件模型,或者想测试中间模型的情况": "모델 추출(logs 폴더 아래의 큰 파일 모델 경로 입력), 훈련 중간에 중단한 모델의 자동 추출 및 소형 파일 모델 저장이 안 되거나 중간 모델을 테스트하고 싶은 경우에 적합",
"模型是否带音高指导": "모델이 음높이 지도를 포함하는지 여부",
"模型是否带音高指导(唱歌一定要, 语音可以不要)": "모델이 음높이 지도를 포함하는지 여부(노래에는 반드시 필요, 음성에는 필요 없음)",
"模型是否带音高指导,1是0否": "모델이 음높이 지도를 포함하는지 여부, 1은 예, 0은 아니오",
"模型版本型号": "모델 버전 및 모델",
"模型融合, 可用于测试音色融合": "모델 융합, 음색 융합 테스트에 사용 가능",
"模型路径": "모델 경로",
"每张显卡的batch_size": "각 그래픽 카드의 batch_size",
"淡入淡出长度": "페이드 인/아웃 길이",
"版本": "버전",
"特征提取": "특징 추출",
"特征检索库文件路径,为空则使用下拉的选择结果": "특징 검색 라이브러리 파일 경로, 비어 있으면 드롭다운 선택 결과 사용",
"独占 WASAPI 设备": "独占 WASAPI 设备",
"男转女推荐+12key, 女转男推荐-12key, 如果音域爆炸导致音色失真也可以自己调整到合适音域. ": "남성에서 여성으로 변경 시 +12 키 권장, 여성에서 남성으로 변경 시 -12 키 권장, 음역대 폭발로 음색이 왜곡되면 적절한 음역대로 조정 가능.",
"目标采样率": "목표 샘플링률",
"算法延迟(ms):": "알고리즘 지연(ms):",
"自动检测index路径,下拉式选择(dropdown)": "자동으로 index 경로 감지, 드롭다운 선택(dropdown)",
"融合": "융합",
"要改的模型信息": "변경할 모델 정보",
"要置入的模型信息": "삽입할 모델 정보",
"训练": "훈련",
"训练模型": "모델 훈련",
"训练特征索引": "특징 인덱스 훈련",
"训练结束, 您可查看控制台训练日志或实验文件夹下的train.log": "훈련 완료, 콘솔 훈련 로그 또는 실험 폴더 내의 train.log 확인 가능",
"设备类型": "设备类型",
"请指定说话人id": "화자 ID 지정 필요",
"请选择index文件": "index 파일 선택",
"请选择pth文件": "pth 파일 선택",
"请选择说话人id": "화자 ID 선택",
"转换": "변환",
"输入实验名": "실험명 입력",
"输入待处理音频文件夹路径": "처리할 오디오 파일 폴더 경로 입력",
"输入待处理音频文件夹路径(去文件管理器地址栏拷就行了)": "처리할 오디오 파일 폴더 경로 입력(파일 탐색기 주소 표시줄에서 복사)",
"输入待处理音频文件路径(默认是正确格式示例)": "처리할 오디오 파일 경로 입력(기본적으로 올바른 형식 예시)",
"输入源音量包络替换输出音量包络融合比例越靠近1越使用输出包络": "입력 소스 볼륨 엔벨로프와 출력 볼륨 엔벨로프의 결합 비율 입력, 1에 가까울수록 출력 엔벨로프 사용",
"输入监听": "입력 모니터링",
"输入训练文件夹路径": "훈련 파일 폴더 경로 입력",
"输入设备": "입력 장치",
"输入降噪": "입력 노이즈 감소",
"输出信息": "출력 정보",
"输出变声": "출력 음성 변조",
"输出设备": "출력 장치",
"输出降噪": "출력 노이즈 감소",
"输出音频(右下角三个点,点了可以下载)": "출력 오디오(오른쪽 하단 세 개의 점, 클릭하면 다운로드 가능)",
"选择.index文件": ".index 파일 선택",
"选择.pth文件": ".pth 파일 선택",
"选择音高提取算法,输入歌声可用pm提速,harvest低音好但巨慢无比,crepe效果好但吃GPU": "음높이 추출 알고리즘 선택, 노래 입력 시 pm으로 속도 향상, harvest는 저음이 좋지만 매우 느림, crepe는 효과가 좋지만 GPU 사용",
"选择音高提取算法,输入歌声可用pm提速,harvest低音好但巨慢无比,crepe效果好但吃GPU,rmvpe效果最好且微吃GPU": "음높이 추출 알고리즘 선택, 노래 입력 시 pm으로 속도 향상, harvest는 저음이 좋지만 매우 느림, crepe는 효과가 좋지만 GPU 사용, rmvpe는 효과가 가장 좋으며 GPU를 적게 사용",
"选择音高提取算法:输入歌声可用pm提速,高质量语音但CPU差可用dio提速,harvest质量更好但慢,rmvpe效果最好且微吃CPU/GPU": "음높이 추출 알고리즘 선택: 노래 입력 시 pm으로 속도 향상, 고품질 음성에는 CPU가 부족할 때 dio 사용, harvest는 품질이 더 좋지만 느림, rmvpe는 효과가 가장 좋으며 CPU/GPU를 적게 사용",
"采样率:": "샘플링률:",
"采样长度": "샘플링 길이",
"重载设备列表": "장치 목록 재로드",
"音调设置": "음조 설정",
"音频设备": "音频设备",
"音高算法": "음높이 알고리즘",
"额外推理时长": "추가 추론 시간"
}

137
i18n/locale/pt_BR.json Normal file
View File

@ -0,0 +1,137 @@
{
">=3则使用对harvest音高识别的结果使用中值滤波数值为滤波半径使用可以削弱哑音": ">=3, use o filtro mediano para o resultado do reconhecimento do tom da heverst, e o valor é o raio do filtro, que pode enfraquecer o mudo.",
"A模型权重": "Peso (w) para o modelo A:",
"A模型路径": "Caminho para o Modelo A:",
"B模型路径": "Caminho para o Modelo B:",
"E:\\语音音频+标注\\米津玄师\\src": "E:\\meu-dataset",
"F0曲线文件, 可选, 一行一个音高, 代替默认F0及升降调": "Arquivo de curva F0 (opcional). Um arremesso por linha. Substitui a modulação padrão F0 e tom:",
"Index Rate": "Taxa do Index",
"Onnx导出": "Exportar Onnx",
"Onnx输出路径": "Caminho de exportação ONNX:",
"RVC模型路径": "Caminho do Modelo RVC:",
"ckpt处理": "processamento ckpt",
"harvest进程数": "Número de processos harvest",
"index文件路径不可包含中文": "O caminho do arquivo de Index não pode conter caracteres chineses",
"pth文件路径不可包含中文": "o caminho do arquivo pth não pode conter caracteres chineses",
"rmvpe卡号配置以-分隔输入使用的不同进程卡号,例如0-0-1使用在卡0上跑2个进程并在卡1上跑1个进程": "Configuração do número do cartão rmvpe: Use - para separar os números dos cartões de entrada de diferentes processos. Por exemplo, 0-0-1 é usado para executar 2 processos no cartão 0 e 1 processo no cartão 1.",
"step1: 填写实验配置. 实验数据放在logs下, 每个实验一个文件夹, 需手工输入实验名路径, 内含实验配置, 日志, 训练得到的模型文件. ": "Etapa 1: Preencha a configuração experimental. Os dados experimentais são armazenados na pasta 'logs', com cada experimento tendo uma pasta separada. Digite manualmente o caminho do nome do experimento, que contém a configuração experimental, os logs e os arquivos de modelo treinados.",
"step1:正在处理数据": "Etapa 1: Processamento de dados",
"step2:正在提取音高&正在提取特征": "step2:正在提取音高&正在提取特征",
"step2a: 自动遍历训练文件夹下所有可解码成音频的文件并进行切片归一化, 在实验目录下生成2个wav文件夹; 暂时只支持单人训练. ": "Etapa 2a: Percorra automaticamente todos os arquivos na pasta de treinamento que podem ser decodificados em áudio e execute a normalização da fatia. Gera 2 pastas wav no diretório do experimento. Atualmente, apenas o treinamento de um único cantor/palestrante é suportado.",
"step2b: 使用CPU提取音高(如果模型带音高), 使用GPU提取特征(选择卡号)": "Etapa 2b: Use a CPU para extrair o tom (se o modelo tiver tom), use a GPU para extrair recursos (selecione o índice da GPU):",
"step3: 填写训练设置, 开始训练模型和索引": "Etapa 3: Preencha as configurações de treinamento e comece a treinar o modelo e o Index",
"step3a:正在训练模型": "Etapa 3a: Treinamento do modelo iniciado",
"一键训练": "Treinamento com um clique",
"也可批量输入音频文件, 二选一, 优先读文件夹": "Você também pode inserir arquivos de áudio em lotes. Escolha uma das duas opções. É dada prioridade à leitura da pasta.",
"人声伴奏分离批量处理, 使用UVR5模型。 <br>合格的文件夹路径格式举例: E:\\codes\\py39\\vits_vc_gpu\\白鹭霜华测试样例(去文件管理器地址栏拷就行了)。 <br>模型分为三类: <br>1、保留人声不带和声的音频选这个对主人声保留比HP5更好。内置HP2和HP3两个模型HP3可能轻微漏伴奏但对主人声保留比HP2稍微好一丁点 <br>2、仅保留主人声带和声的音频选这个对主人声可能有削弱。内置HP5一个模型 <br> 3、去混响、去延迟模型by FoxJoy<br>(1)MDX-Net(onnx_dereverb):对于双通道混响是最好的选择,不能去除单通道混响;<br>&emsp;(234)DeEcho:去除延迟效果。Aggressive比Normal去除得更彻底DeReverb额外去除混响可去除单声道混响但是对高频重的板式混响去不干净。<br>去混响/去延迟,附:<br>1、DeEcho-DeReverb模型的耗时是另外2个DeEcho模型的接近2倍<br>2、MDX-Net-Dereverb模型挺慢的<br>3、个人推荐的最干净的配置是先MDX-Net再DeEcho-Aggressive。": "Processamento em lote para separação de acompanhamento vocal usando o modelo UVR5.<br>Exemplo de um formato de caminho de pasta válido: D:\\caminho\\para a pasta\\entrada\\ (copie-o da barra de endereços do gerenciador de arquivos).<br>O modelo é dividido em três categorias:<br>1. Preservar vocais: Escolha esta opção para áudio sem harmonias. Ele preserva os vocais melhor do que o HP5. Inclui dois modelos integrados: HP2 e HP3. O HP3 pode vazar ligeiramente o acompanhamento, mas preserva os vocais um pouco melhor do que o HP2.<br>2 Preservar apenas os vocais principais: Escolha esta opção para áudio com harmonias. Isso pode enfraquecer os vocais principais. Ele inclui um modelo embutido: HP5.<br>3. Modelos de de-reverb e de-delay (por FoxJoy):<br>(1) MDX-Net: A melhor escolha para remoção de reverb estéreo, mas não pode remover reverb mono;<br>&emsp;(234) DeEcho: Remove efeitos de atraso. O modo agressivo remove mais completamente do que o modo normal. O DeReverb também remove reverb e pode remover reverb mono, mas não de forma muito eficaz para conteúdo de alta frequência fortemente reverberado.<br>Notas de de-reverb/de-delay:<br>1. O tempo de processamento para o modelo DeEcho-DeReverb é aproximadamente duas vezes maior que os outros dois modelos DeEcho.<br>2 O modelo MDX-Net-Dereverb é bastante lento.<br>3. A configuração mais limpa recomendada é aplicar MDX-Net primeiro e depois DeEcho-Aggressive.",
"以-分隔输入使用的卡号, 例如 0-1-2 使用卡0和卡1和卡2": "Digite o (s) índice(s) da GPU separados por '-', por exemplo, 0-1-2 para usar a GPU 0, 1 e 2:",
"伴奏人声分离&去混响&去回声": "UVR5",
"使用模型采样率": "使用模型采样率",
"使用设备采样率": "使用设备采样率",
"保存名": "Salvar nome",
"保存的文件名, 默认空为和源文件同名": "Salvar nome do arquivo (padrão: igual ao arquivo de origem):",
"保存的模型名不带后缀": "Nome do modelo salvo (sem extensão):",
"保存频率save_every_epoch": "Faça backup a cada # de Epoch:",
"保护清辅音和呼吸声防止电音撕裂等artifact拉满0.5不开启,调低加大保护力度但可能降低索引效果": "Proteja consoantes sem voz e sons respiratórios, evite artefatos como quebra de som eletrônico e desligue-o quando estiver cheio de 0,5. Diminua-o para aumentar a proteção, mas pode reduzir o efeito de indexação:",
"修改": "Editar",
"修改模型信息(仅支持weights文件夹下提取的小模型文件)": "Modificar informações do modelo (suportado apenas para arquivos de modelo pequenos extraídos da pasta 'weights')",
"停止音频转换": "Conversão de áudio",
"全流程结束!": "Todos os processos foram concluídos!",
"刷新音色列表和索引路径": "Atualizar lista de voz e caminho do Index",
"加载模型": "Modelo",
"加载预训练底模D路径": "Carregue o caminho D do modelo base pré-treinado:",
"加载预训练底模G路径": "Carregue o caminho G do modelo base pré-treinado:",
"单次推理": "Único",
"卸载音色省显存": "Descarregue a voz para liberar a memória da GPU:",
"变调(整数, 半音数量, 升八度12降八度-12)": "Mude o tom aqui. Se a voz for do mesmo sexo, não é necessario alterar (12 caso seja Masculino para feminino, -12 caso seja ao contrário).",
"后处理重采样至最终采样率0为不进行重采样": "Reamostragem pós-processamento para a taxa de amostragem final, 0 significa sem reamostragem:",
"否": "Não",
"启用相位声码器": "启用相位声码器",
"响应阈值": "Limiar de resposta",
"响度因子": "Fator de volume",
"处理数据": "Processar o Conjunto de Dados",
"导出Onnx模型": "Exportar Modelo Onnx",
"导出文件格式": "Qual formato de arquivo você prefere?",
"常见问题解答": "FAQ (Perguntas frequentes)",
"常规设置": "Configurações gerais",
"开始音频转换": "Iniciar conversão de áudio",
"很遗憾您这没有能用的显卡来支持您训练": "Infelizmente, não há GPU compatível disponível para apoiar o seu treinamento.",
"性能设置": "Configurações de desempenho.",
"总训练轮数total_epoch": "Número total de ciclos(epoch) de treino (se escolher um valor alto demais, o seu modelo parecerá terrivelmente sobretreinado):",
"批量推理": "Conversão em Lote",
"批量转换, 输入待转换音频文件夹, 或上传多个音频文件, 在指定文件夹(默认opt)下输出转换的音频. ": "Conversão em Massa.",
"指定输出主人声文件夹": "Especifique a pasta de saída para vocais:",
"指定输出文件夹": "Especifique a pasta de saída:",
"指定输出非主人声文件夹": "Informar a pasta de saída para acompanhamento:",
"推理时间(ms):": "Tempo de inferência (ms):",
"推理音色": "Escolha o seu Modelo:",
"提取": "Extrato",
"提取音高和处理数据使用的CPU进程数": "Número de processos de CPU usados para extração de tom e processamento de dados:",
"是": "Sim",
"是否仅保存最新的ckpt文件以节省硬盘空间": "Só deve salvar apenas o arquivo ckpt mais recente para economizar espaço em disco:",
"是否在每次保存时间点将最终小模型保存至weights文件夹": "Salve um pequeno modelo final na pasta 'weights' em cada ponto de salvamento:",
"是否缓存所有训练集至显存. 10min以下小数据可缓存以加速训练, 大数据缓存会炸显存也加不了多少速": "Se deve armazenar em cache todos os conjuntos de treinamento na memória de vídeo. Pequenos dados com menos de 10 minutos podem ser armazenados em cache para acelerar o treinamento, e um cache de dados grande irá explodir a memória de vídeo e não aumentar muito a velocidade:",
"显卡信息": "Informações da GPU",
"本软件以MIT协议开源, 作者不对软件具备任何控制力, 使用软件者、传播软件导出的声音者自负全责. <br>如不认可该条款, 则不能使用或引用软件包内任何代码和文件. 详见根目录<b>LICENSE</b>.": "<center>The Mangio-RVC 💻 | Tradução por Krisp e Rafael Godoy Ebert | AI HUB BRASIL<br> Este software é de código aberto sob a licença MIT. O autor não tem qualquer controle sobre o software. Aqueles que usam o software e divulgam os sons exportados pelo software são totalmente responsáveis. <br>Se você não concorda com este termo, você não pode usar ou citar nenhum código e arquivo no pacote de software. Para obter detalhes, consulte o diretório raiz <b>O acordo a ser seguido para uso <a href='https://raw.githubusercontent.com/RVC-Project/Retrieval-based-Voice-Conversion-WebUI/main/LICENSE' target='_blank'>LICENSE</a></b></center>",
"查看": "Visualizar",
"查看模型信息(仅支持weights文件夹下提取的小模型文件)": "Exibir informações do modelo (suportado apenas para arquivos de modelo pequenos extraídos da pasta 'weights')",
"检索特征占比": "Taxa de recurso de recuperação:",
"模型": "Modelo",
"模型推理": "Inference",
"模型提取(输入logs文件夹下大文件模型路径),适用于训一半不想训了模型没有自动提取保存小文件模型,或者想测试中间模型的情况": "Extração do modelo (insira o caminho do modelo de arquivo grande na pasta 'logs'). Isso é útil se você quiser interromper o treinamento no meio do caminho e extrair e salvar manualmente um arquivo de modelo pequeno, ou se quiser testar um modelo intermediário:",
"模型是否带音高指导": "Se o modelo tem orientação de tom:",
"模型是否带音高指导(唱歌一定要, 语音可以不要)": "Se o modelo tem orientação de tom (necessário para cantar, opcional para fala):",
"模型是否带音高指导,1是0否": "Se o modelo tem orientação de passo (1: sim, 0: não):",
"模型版本型号": "Versão:",
"模型融合, 可用于测试音色融合": "A fusão modelo, pode ser usada para testar a fusão do timbre",
"模型路径": "Caminho para o Modelo:",
"每张显卡的batch_size": "Batch Size (DEIXE COMO ESTÁ a menos que saiba o que está fazendo, no Colab pode deixar até 20!):",
"淡入淡出长度": "Comprimento de desvanecimento",
"版本": "Versão",
"特征提取": "Extrair Tom",
"特征检索库文件路径,为空则使用下拉的选择结果": "Caminho para o arquivo de Index. Deixe em branco para usar o resultado selecionado no menu debaixo:",
"独占 WASAPI 设备": "独占 WASAPI 设备",
"男转女推荐+12key, 女转男推荐-12key, 如果音域爆炸导致音色失真也可以自己调整到合适音域. ": "Recomendado +12 chave para conversão de homem para mulher e -12 chave para conversão de mulher para homem. Se a faixa de som for muito longe e a voz estiver distorcida, você também pode ajustá-la à faixa apropriada por conta própria.",
"目标采样率": "Taxa de amostragem:",
"算法延迟(ms):": "Atrasos algorítmicos (ms):",
"自动检测index路径,下拉式选择(dropdown)": "Detecte automaticamente o caminho do Index e selecione no menu suspenso:",
"融合": "Fusão",
"要改的模型信息": "Informações do modelo a ser modificado:",
"要置入的模型信息": "Informações do modelo a ser colocado:",
"训练": "Treinar",
"训练模型": "Treinar Modelo",
"训练特征索引": "Treinar Index",
"训练结束, 您可查看控制台训练日志或实验文件夹下的train.log": "Após o término do treinamento, você pode verificar o log de treinamento do console ou train.log na pasta de experimentos",
"设备类型": "设备类型",
"请指定说话人id": "Especifique o ID do locutor/cantor:",
"请选择index文件": "Selecione o arquivo de Index",
"请选择pth文件": "Selecione o arquivo pth",
"请选择说话人id": "Selecione Palestrantes/Cantores ID:",
"转换": "Converter",
"输入实验名": "Nome da voz:",
"输入待处理音频文件夹路径": "Caminho da pasta de áudio a ser processada:",
"输入待处理音频文件夹路径(去文件管理器地址栏拷就行了)": "Caminho da pasta de áudio a ser processada (copie-o da barra de endereços do gerenciador de arquivos):",
"输入待处理音频文件路径(默认是正确格式示例)": "Caminho para o seu conjunto de dados (áudios, não zipado):",
"输入源音量包络替换输出音量包络融合比例越靠近1越使用输出包络": "O envelope de volume da fonte de entrada substitui a taxa de fusão do envelope de volume de saída, quanto mais próximo de 1, mais o envelope de saída é usado:",
"输入监听": "Monitoramento de entrada",
"输入训练文件夹路径": "Caminho da pasta de treinamento:",
"输入设备": "Dispositivo de entrada",
"输入降噪": "Redução de ruído de entrada",
"输出信息": "Informação de saída",
"输出变声": "Mudança de voz de saída",
"输出设备": "Dispositivo de saída",
"输出降噪": "Redução de ruído de saída",
"输出音频(右下角三个点,点了可以下载)": "Exportar áudio (clique nos três pontos no canto inferior direito para baixar)",
"选择.index文件": "Selecione o Index",
"选择.pth文件": "Selecione o Arquivo",
"选择音高提取算法,输入歌声可用pm提速,harvest低音好但巨慢无比,crepe效果好但吃GPU": "选择音高提取算法,输入歌声可用pm提速,harvest低音好但巨慢无比,crepe效果好但吃GPU",
"选择音高提取算法,输入歌声可用pm提速,harvest低音好但巨慢无比,crepe效果好但吃GPU,rmvpe效果最好且微吃GPU": "Selecione o algoritmo de extração de tom \n'pm': extração mais rápida, mas discurso de qualidade inferior; \n'harvest': graves melhores, mas extremamente lentos; \n'harvest': melhor qualidade, mas extração mais lenta); 'crepe': melhor qualidade, mas intensivo em GPU; 'magio-crepe': melhor opção; 'RMVPE': um modelo robusto para estimativa de afinação vocal em música polifônica;",
"选择音高提取算法:输入歌声可用pm提速,高质量语音但CPU差可用dio提速,harvest质量更好但慢,rmvpe效果最好且微吃CPU/GPU": "Selecione o algoritmo de extração de tom \n'pm': extração mais rápida, mas discurso de qualidade inferior; \n'harvest': graves melhores, mas extremamente lentos; \n'crepe': melhor qualidade (mas intensivo em GPU);\n rmvpe tem o melhor efeito e consome menos CPU/GPU.",
"采样率:": "采样率:",
"采样长度": "Comprimento da Amostra",
"重载设备列表": "Recarregar lista de dispositivos",
"音调设置": "Configurações de tom",
"音频设备": "音频设备",
"音高算法": "Algoritmo de detecção de pitch",
"额外推理时长": "Tempo extra de inferência"
}

137
i18n/locale/ru_RU.json Normal file
View File

@ -0,0 +1,137 @@
{
">=3则使用对harvest音高识别的结果使用中值滤波数值为滤波半径使用可以削弱哑音": "Если значение больше 3: применить медианную фильтрацию к вытащенным тональностям. Значение контролирует радиус фильтра и может уменьшить излишнее дыхание.",
"A模型权重": "Весы (w) модели А:",
"A模型路径": "Путь к модели А:",
"B模型路径": "Путь к модели Б:",
"E:\\语音音频+标注\\米津玄师\\src": "E:\\语音音频+标注\\米津玄师\\src",
"F0曲线文件, 可选, 一行一个音高, 代替默认F0及升降调": "Файл дуги F0 (не обязательно). Одна тональность на каждую строчку. Заменяет обычный F0 и модуляцию тональности:",
"Index Rate": "Темп индекса",
"Onnx导出": "Экспорт ONNX",
"Onnx输出路径": "Путь для сохранения модели в формате ONNX:",
"RVC模型路径": "Путь к модели RVC:",
"ckpt处理": "Обработка ckpt",
"harvest进程数": "Количество процессор harvest",
"index文件路径不可包含中文": "Путь к файлу индекса",
"pth文件路径不可包含中文": "Путь к файлу pth",
"rmvpe卡号配置以-分隔输入使用的不同进程卡号,例如0-0-1使用在卡0上跑2个进程并在卡1上跑1个进程": "Введите номера графических процессоров, разделенные символом «-», например, 0-0-1, чтобы запустить два процесса на GPU 0 и один процесс на GPU 1:",
"step1: 填写实验配置. 实验数据放在logs下, 每个实验一个文件夹, 需手工输入实验名路径, 内含实验配置, 日志, 训练得到的模型文件. ": "Шаг 1. Конфигурирование модели. Данные обучения модели сохраняются в папку 'logs', и для каждой модели создаётся отдельная папка. Введите вручную путь к настройкам для модели, в которой находятся логи и тренировочные файлы.",
"step1:正在处理数据": "Шаг 1. Переработка данных",
"step2:正在提取音高&正在提取特征": "step2:正在提取音高&正在提取特征",
"step2a: 自动遍历训练文件夹下所有可解码成音频的文件并进行切片归一化, 在实验目录下生成2个wav文件夹; 暂时只支持单人训练. ": "Шаг 2А. Автоматическая обработка исходных аудиозаписей для обучения и выполнение нормализации среза. Создаст 2 папки wav в папке модели. В данный момент поддерживается обучение только на одноголосных записях.",
"step2b: 使用CPU提取音高(如果模型带音高), 使用GPU提取特征(选择卡号)": "Шаг 2Б. Оценка и извлечение тональности в аудиофайлах с помощью процессора (если включена поддержка изменения высоты звука), извлечение черт с помощью GPU (выберите номер GPU):",
"step3: 填写训练设置, 开始训练模型和索引": "Шаг 3. Заполнение дополнительных настроек обучения и запуск обучения модели и индекса",
"step3a:正在训练模型": "Шаг 3. Запуск обучения модели",
"一键训练": "Обучение в одно нажатие",
"也可批量输入音频文件, 二选一, 优先读文件夹": "Можно также импортировать несколько аудиофайлов. Если путь к папке существует, то этот ввод игнорируется.",
"人声伴奏分离批量处理, 使用UVR5模型。 <br>合格的文件夹路径格式举例: E:\\codes\\py39\\vits_vc_gpu\\白鹭霜华测试样例(去文件管理器地址栏拷就行了)。 <br>模型分为三类: <br>1、保留人声不带和声的音频选这个对主人声保留比HP5更好。内置HP2和HP3两个模型HP3可能轻微漏伴奏但对主人声保留比HP2稍微好一丁点 <br>2、仅保留主人声带和声的音频选这个对主人声可能有削弱。内置HP5一个模型 <br> 3、去混响、去延迟模型by FoxJoy<br>(1)MDX-Net(onnx_dereverb):对于双通道混响是最好的选择,不能去除单通道混响;<br>&emsp;(234)DeEcho:去除延迟效果。Aggressive比Normal去除得更彻底DeReverb额外去除混响可去除单声道混响但是对高频重的板式混响去不干净。<br>去混响/去延迟,附:<br>1、DeEcho-DeReverb模型的耗时是另外2个DeEcho模型的接近2倍<br>2、MDX-Net-Dereverb模型挺慢的<br>3、个人推荐的最干净的配置是先MDX-Net再DeEcho-Aggressive。": "Пакетная обработка для разделения вокального сопровождения с использованием модели UVR5.<br>Пример допустимого формата пути к папке: D:\\path\\to\\input\\folder<br> Модель разделена на три категории:<br>1. Сохранить вокал: выберите этот вариант для звука без гармоний. Он сохраняет вокал лучше, чем HP5. Он включает в себя две встроенные модели: HP2 и HP3. HP3 может немного пропускать инструментал, но сохраняет вокал немного лучше, чем HP2.<br>2. Сохранить только основной вокал: выберите этот вариант для звука с гармониями. Это может ослабить основной вокал. Он включает одну встроенную модель: HP5.<br>3. Модели удаления реверберации и задержки (от FoxJoy):<br>(1) MDX-Net: лучший выбор для удаления стереореверберации, но он не может удалить монореверберацию;<br>&emsp;(234) DeEcho: удаляет эффекты задержки. Агрессивный режим удаляет более тщательно, чем Нормальный режим. DeReverb дополнительно удаляет реверберацию и может удалять монореверберацию, но не очень эффективно для сильно реверберированного высокочастотного контента.<br>Примечания по удалению реверберации/задержки:<br>1. Время обработки для модели DeEcho-DeReverb примерно в два раза больше, чем для двух других моделей DeEcho.<br>2. Модель MDX-Net-Dereverb довольно медленная.<br>3. Рекомендуемая самая чистая конфигурация — сначала применить MDX-Net, а затем DeEcho-Aggressive.",
"以-分隔输入使用的卡号, 例如 0-1-2 使用卡0和卡1和卡2": "Введите, какие(-ую) GPU(-у) хотите использовать через '-', например 0-1-2, чтобы использовать GPU с номерами 0, 1 и 2:",
"伴奏人声分离&去混响&去回声": "Разделение вокала/аккомпанемента и удаление эхо",
"使用模型采样率": "使用模型采样率",
"使用设备采样率": "使用设备采样率",
"保存名": "Имя файла для сохранения:",
"保存的文件名, 默认空为和源文件同名": "Название сохранённого файла (по умолчанию: такое же, как и у входного):",
"保存的模型名不带后缀": "Имя файла модели для сохранения (без расширения):",
"保存频率save_every_epoch": "Частота сохранения (save_every_epoch):",
"保护清辅音和呼吸声防止电音撕裂等artifact拉满0.5不开启,调低加大保护力度但可能降低索引效果": "Защитить глухие согласные и звуки дыхания для предотвращения артефактов, например, разрывания в электронной музыке. Поставьте на 0.5, чтобы выключить. Уменьшите значение для повышения защиты, но учтите, что при этом может ухудшиться точность индексирования:",
"修改": "Изменить",
"修改模型信息(仅支持weights文件夹下提取的小模型文件)": "Изменить информацию о модели (работает только с маленькими моделями, взятыми из папки 'weights')",
"停止音频转换": "Закончить конвертацию аудио",
"全流程结束!": "Все процессы завершены!",
"刷新音色列表和索引路径": "Обновить список голосов и индексов",
"加载模型": "Загрузить модель",
"加载预训练底模D路径": "Путь к предварительно обученной базовой модели D:",
"加载预训练底模G路径": "Путь к предварительно обученной базовой модели G:",
"单次推理": "单次推理",
"卸载音色省显存": "Выгрузить модель из памяти GPU для освобождения ресурсов",
"变调(整数, 半音数量, 升八度12降八度-12)": "Изменить высоту голоса (укажите количество полутонов; чтобы поднять голос на октаву, выберите 12, понизить на октаву — -12):",
"后处理重采样至最终采样率0为不进行重采样": "Изменить частоту дискретизации в выходном файле на финальную. Поставьте 0, чтобы ничего не изменялось:",
"否": "Нет",
"启用相位声码器": "启用相位声码器",
"响应阈值": "Порог ответа",
"响度因子": "коэффициент громкости",
"处理数据": "Обработать данные",
"导出Onnx模型": "Экспортировать модель",
"导出文件格式": "Формат выходных файлов",
"常见问题解答": "ЧаВо (часто задаваемые вопросы)",
"常规设置": "Основные настройки",
"开始音频转换": "Начать конвертацию аудио",
"很遗憾您这没有能用的显卡来支持您训练": "К сожалению, у вас нету графического процессора, который поддерживает обучение моделей.",
"性能设置": "Настройки быстроты",
"总训练轮数total_epoch": "Полное количество эпох (total_epoch):",
"批量推理": "批量推理",
"批量转换, 输入待转换音频文件夹, 或上传多个音频文件, 在指定文件夹(默认opt)下输出转换的音频. ": "Массовое преобразование. Введите путь к папке, в которой находятся файлы для преобразования голоса или выгрузите несколько аудиофайлов. Сконвертированные файлы будут сохранены в указанной папке (по умолчанию: 'opt').",
"指定输出主人声文件夹": "Путь к папке для сохранения вокала:",
"指定输出文件夹": "Папка для результатов:",
"指定输出非主人声文件夹": "Путь к папке для сохранения аккомпанемента:",
"推理时间(ms):": "Время переработки (мс):",
"推理音色": "Желаемый голос:",
"提取": "Создать модель",
"提取音高和处理数据使用的CPU进程数": "Число процессов ЦП, используемое для оценки высоты голоса и обработки данных:",
"是": "Да",
"是否仅保存最新的ckpt文件以节省硬盘空间": "Сохранять только последний файл '.ckpt', чтобы сохранить место на диске:",
"是否在每次保存时间点将最终小模型保存至weights文件夹": "Сохранять маленькую финальную модель в папку 'weights' на каждой точке сохранения:",
"是否缓存所有训练集至显存. 10min以下小数据可缓存以加速训练, 大数据缓存会炸显存也加不了多少速": "Кэшировать все тренировочные сеты в видеопамять. Кэширование маленький датасетов (меньше 10 минут) может ускорить тренировку, но кэширование больших, наоборот, займёт много видеопамяти и не сильно ускорит тренировку:",
"显卡信息": "Информация о графических процессорах (GPUs):",
"本软件以MIT协议开源, 作者不对软件具备任何控制力, 使用软件者、传播软件导出的声音者自负全责. <br>如不认可该条款, 则不能使用或引用软件包内任何代码和文件. 详见根目录<b>LICENSE</b>.": "Это программное обеспечение с открытым исходным кодом распространяется по лицензии MIT. Автор никак не контролирует это программное обеспечение. Пользователи, которые используют эту программу и распространяют аудиозаписи, полученные с помощью этой программы, несут полную ответственность за это. Если вы не согласны с этим, вы не можете использовать какие-либо коды и файлы в рамках этой программы или ссылаться на них. Подробнее в файле <b>Agreement-LICENSE.txt</b> в корневом каталоге программы.",
"查看": "Просмотреть информацию",
"查看模型信息(仅支持weights文件夹下提取的小模型文件)": "Просмотреть информацию о модели (работает только с маленькими моделями, взятыми из папки 'weights')",
"检索特征占比": "Соотношение поиска черт:",
"模型": "Модели",
"模型推理": "Изменение голоса",
"模型提取(输入logs文件夹下大文件模型路径),适用于训一半不想训了模型没有自动提取保存小文件模型,或者想测试中间模型的情况": "Создание модели из данных, полученных в процессе обучения (введите путь к большому файлу модели в папке 'logs'). Может пригодиться, если вам нужно завершить обучение и получить маленький файл готовой модели, или если вам нужно проверить недообученную модель:",
"模型是否带音高指导": "Поддерживает ли модель изменение высоты голоса (1: да, 0: нет):",
"模型是否带音高指导(唱歌一定要, 语音可以不要)": "Поддержка изменения высоты звука (обязательно для пения, необязательно для речи):",
"模型是否带音高指导,1是0否": "Поддерживает ли модель изменение высоты голоса (1: да, 0: нет):",
"模型版本型号": "Версия архитектуры модели:",
"模型融合, 可用于测试音色融合": "Слияние моделей, может быть использовано для проверки слияния тембра",
"模型路径": "Путь к папке:",
"每张显卡的batch_size": "Размер пачки для GPU:",
"淡入淡出长度": "Длина затухания",
"版本": "Версия архитектуры модели:",
"特征提取": "Извлечь черты",
"特征检索库文件路径,为空则使用下拉的选择结果": "Путь к файлу индекса черт. Оставьте пустым, чтобы использовать выбранный вариант из списка ниже:",
"独占 WASAPI 设备": "独占 WASAPI 设备",
"男转女推荐+12key, 女转男推荐-12key, 如果音域爆炸导致音色失真也可以自己调整到合适音域. ": "Рекомендуется выбрать +12 для конвертирования мужского голоса в женский и -12 для конвертирования женского в мужской. Если диапазон голоса слишком велик, и голос искажается, можно выбрать значение на свой вкус.",
"目标采样率": "Частота дискретизации аудио:",
"算法延迟(ms):": "算法延迟(ms):",
"自动检测index路径,下拉式选择(dropdown)": "Автоматически найденные файлы индексов черт (выберите вариант из списка):",
"融合": "Запустить слияние",
"要改的模型信息": "Информация, которая будет изменена:",
"要置入的模型信息": "Информация о модели:",
"训练": "Обучение модели",
"训练模型": "Обучить модель",
"训练特征索引": "Обучить индекс черт",
"训练结束, 您可查看控制台训练日志或实验文件夹下的train.log": "Обучение модели завершено. Журнал обучения можно просмотреть в консоли или в файле 'train.log' в папке с моделью.",
"设备类型": "设备类型",
"请指定说话人id": "Номер говорящего/поющего:",
"请选择index文件": "Пожалуйста, выберите файл индекса",
"请选择pth文件": "Пожалуйста, выберите файл pth",
"请选择说话人id": "Номер говорящего:",
"转换": "Преобразовать",
"输入实验名": "Название модели:",
"输入待处理音频文件夹路径": "Путь к папке с аудиофайлами для обработки:",
"输入待处理音频文件夹路径(去文件管理器地址栏拷就行了)": "Путь к папке с аудиофайлами для переработки (можно скопировать путь из адресной строки файлового менеджера):",
"输入待处理音频文件路径(默认是正确格式示例)": "Путь к аудиофайлу, который хотите обработать (ниже указан пример пути к файлу):",
"输入源音量包络替换输出音量包络融合比例越靠近1越使用输出包络": "Использовать громкость входного файла для замены или перемешивания с громкостью выходного файла. Чем ближе соотношение к 1, тем больше используется звука из выходного файла:",
"输入监听": "输入监听",
"输入训练文件夹路径": "Путь к папке с аудиозаписями, на которых будет обучаться модель:",
"输入设备": "Входное устройство",
"输入降噪": "Уменьшение входного шума",
"输出信息": "Статистика",
"输出变声": "输出变声",
"输出设备": "Выходное устройство",
"输出降噪": "Уменьшение выходного шума",
"输出音频(右下角三个点,点了可以下载)": "Аудиофайл (чтобы скачать, нажмите на три точки справа в плеере)",
"选择.index文件": "Выбрать файл .index",
"选择.pth文件": "Выбрать файл .pth",
"选择音高提取算法,输入歌声可用pm提速,harvest低音好但巨慢无比,crepe效果好但吃GPU": "选择音高提取算法,输入歌声可用pm提速,harvest低音好但巨慢无比,crepe效果好但吃GPU",
"选择音高提取算法,输入歌声可用pm提速,harvest低音好但巨慢无比,crepe效果好但吃GPU,rmvpe效果最好且微吃GPU": "Выберите алгоритм оценки высоты голоса ('pm': работает быстро, но даёт низкое качество речи; 'harvest': басы лучше, но работает очень медленно; 'crepe': лучшее качество, но сильно нагружает GPU; 'rmvpe': лучшее качество и минимальная нагрузка на GPU):",
"选择音高提取算法:输入歌声可用pm提速,高质量语音但CPU差可用dio提速,harvest质量更好但慢,rmvpe效果最好且微吃CPU/GPU": "选择音高提取算法:输入歌声可用pm提速,高质量语音但CPU差可用dio提速,harvest质量更好但慢,rmvpe效果最好且微吃CPU/GPU",
"采样率:": "采样率:",
"采样长度": "Длина сэмпла",
"重载设备列表": "Обновить список устройств",
"音调设置": "Настройка высоты звука",
"音频设备": "Аудиоустройство",
"音高算法": "Алгоритм оценки высоты звука",
"额外推理时长": "Доп. время переработки"
}

137
i18n/locale/tr_TR.json Normal file
View File

@ -0,0 +1,137 @@
{
">=3则使用对harvest音高识别的结果使用中值滤波数值为滤波半径使用可以削弱哑音": "Eğer >=3 ise, elde edilen pitch sonuçlarına median filtreleme uygula. Bu değer, filtre yarıçapını temsil eder ve nefesliliği azaltabilir.",
"A模型权重": "A Modeli Ağırlığı:",
"A模型路径": "A Modeli Yolu:",
"B模型路径": "B Modeli Yolu:",
"E:\\语音音频+标注\\米津玄师\\src": "E:\\语音音频+标注\\米津玄师\\src",
"F0曲线文件, 可选, 一行一个音高, 代替默认F0及升降调": "F0 eğrisi dosyası (isteğe bağlı). Her satırda bir pitch değeri bulunur. Varsayılan F0 ve pitch modülasyonunu değiştirir:",
"Index Rate": "Index Oranı",
"Onnx导出": "Onnx Dışa Aktar",
"Onnx输出路径": "Onnx Dışa Aktarım Yolu:",
"RVC模型路径": "RVC Model Yolu:",
"ckpt处理": "ckpt İşleme",
"harvest进程数": "harvest进程数",
"index文件路径不可包含中文": ".index dosya yolu Çince karakter içeremez",
"pth文件路径不可包含中文": ".pth dosya yolu Çince karakter içeremez",
"rmvpe卡号配置以-分隔输入使用的不同进程卡号,例如0-0-1使用在卡0上跑2个进程并在卡1上跑1个进程": "rmvpe卡号配置以-分隔输入使用的不同进程卡号,例如0-0-1使用在卡0上跑2个进程并在卡1上跑1个进程",
"step1: 填写实验配置. 实验数据放在logs下, 每个实验一个文件夹, 需手工输入实验名路径, 内含实验配置, 日志, 训练得到的模型文件. ": "Adım 1: Deneysel yapılandırmayı doldurun. Deneysel veriler 'logs' klasöründe saklanır ve her bir deney için ayrı bir klasör vardır. Deneysel adı yolu manuel olarak girin; bu yol, deneysel yapılandırmayı, günlükleri ve eğitilmiş model dosyalarını içerir.",
"step1:正在处理数据": "Adım 1: Veri işleme",
"step2:正在提取音高&正在提取特征": "step2:正在提取音高&正在提取特征",
"step2a: 自动遍历训练文件夹下所有可解码成音频的文件并进行切片归一化, 在实验目录下生成2个wav文件夹; 暂时只支持单人训练. ": "Adım 2a: Eğitim klasöründe ses dosyalarını otomatik olarak gezinerek dilimleme normalizasyonu yapın. Deney dizini içinde 2 wav klasörü oluşturur. Şu anda sadece tek kişilik eğitim desteklenmektedir.",
"step2b: 使用CPU提取音高(如果模型带音高), 使用GPU提取特征(选择卡号)": "Adım 2b: Ses yüksekliği (Pitch) çıkartmak için CPU kullanın (eğer model ses yüksekliği içeriyorsa), özellikleri çıkartmak için GPU kullanın (GPU indeksini seçin):",
"step3: 填写训练设置, 开始训练模型和索引": "Adım 3: Eğitim ayarlarını doldurun ve modeli ve dizini eğitmeye başlayın",
"step3a:正在训练模型": "Adım 3a: Model eğitimi başladı",
"一键训练": "Tek Tuşla Eğit",
"也可批量输入音频文件, 二选一, 优先读文件夹": "Ses dosyaları ayrıca toplu olarak, iki seçimle, öncelikli okuma klasörüyle içe aktarılabilir",
"人声伴奏分离批量处理, 使用UVR5模型。 <br>合格的文件夹路径格式举例: E:\\codes\\py39\\vits_vc_gpu\\白鹭霜华测试样例(去文件管理器地址栏拷就行了)。 <br>模型分为三类: <br>1、保留人声不带和声的音频选这个对主人声保留比HP5更好。内置HP2和HP3两个模型HP3可能轻微漏伴奏但对主人声保留比HP2稍微好一丁点 <br>2、仅保留主人声带和声的音频选这个对主人声可能有削弱。内置HP5一个模型 <br> 3、去混响、去延迟模型by FoxJoy<br>(1)MDX-Net(onnx_dereverb):对于双通道混响是最好的选择,不能去除单通道混响;<br>&emsp;(234)DeEcho:去除延迟效果。Aggressive比Normal去除得更彻底DeReverb额外去除混响可去除单声道混响但是对高频重的板式混响去不干净。<br>去混响/去延迟,附:<br>1、DeEcho-DeReverb模型的耗时是另外2个DeEcho模型的接近2倍<br>2、MDX-Net-Dereverb模型挺慢的<br>3、个人推荐的最干净的配置是先MDX-Net再DeEcho-Aggressive。": "Batch işleme kullanarak vokal eşlik ayrımı için UVR5 modeli kullanılır.<br>Geçerli bir klasör yol formatı örneği: D:\\path\\to\\input\\folder (dosya yöneticisi adres çubuğundan kopyalanır).<br>Model üç kategoriye ayrılır:<br>1. Vokalleri koru: Bu seçeneği, harmoni içermeyen sesler için kullanın. HP5'ten daha iyi bir şekilde vokalleri korur. İki dahili model içerir: HP2 ve HP3. HP3, eşlik sesini hafifçe sızdırabilir, ancak vokalleri HP2'den biraz daha iyi korur.<br>2. Sadece ana vokalleri koru: Bu seçeneği, harmoni içeren sesler için kullanın. Ana vokalleri zayıflatabilir. Bir dahili model içerir: HP5.<br>3. Reverb ve gecikme modelleri (FoxJoy tarafından):<br>(1) MDX-Net: Stereo reverb'i kaldırmak için en iyi seçenek, ancak mono reverb'i kaldıramaz;<br>(234) DeEcho: Gecikme efektlerini kaldırır. Agresif mod, Normal moda göre daha kapsamlı bir şekilde kaldırma yapar. DeReverb ayrıca reverb'i kaldırır ve mono reverb'i kaldırabilir, ancak yoğun yankılı yüksek frekanslı içerikler için çok etkili değildir.<br>Reverb/gecikme notları:<br>1. DeEcho-DeReverb modelinin işleme süresi diğer iki DeEcho modeline göre yaklaşık olarak iki kat daha uzundur.<br>2. MDX-Net-Dereverb modeli oldukça yavaştır.<br>3. Tavsiye edilen en temiz yapılandırma önce MDX-Net'i uygulamak ve ardından DeEcho-Aggressive uygulamaktır.",
"以-分隔输入使用的卡号, 例如 0-1-2 使用卡0和卡1和卡2": "GPU indekslerini '-' ile ayırarak girin, örneğin 0-1-2, GPU 0, 1 ve 2'yi kullanmak için:",
"伴奏人声分离&去混响&去回声": "Vokal/Müzik Ayrıştırma ve Yankı Giderme",
"使用模型采样率": "使用模型采样率",
"使用设备采样率": "使用设备采样率",
"保存名": "Kaydetme Adı:",
"保存的文件名, 默认空为和源文件同名": "Kaydedilecek dosya adı (varsayılan: kaynak dosya ile aynı):",
"保存的模型名不带后缀": "Kaydedilecek model adı (uzantı olmadan):",
"保存频率save_every_epoch": "Kaydetme sıklığı (save_every_epoch):",
"保护清辅音和呼吸声防止电音撕裂等artifact拉满0.5不开启,调低加大保护力度但可能降低索引效果": "Sessiz ünsüzleri ve nefes seslerini koruyarak elektronik müzikte yırtılma gibi sanal hataların oluşmasını engeller. 0.5 olarak ayarlandığında devre dışı kalır. Değerin azaltılması korumayı artırabilir, ancak indeksleme doğruluğunu azaltabilir:",
"修改": "Düzenle",
"修改模型信息(仅支持weights文件夹下提取的小模型文件)": "Model bilgilerini düzenle (sadece 'weights' klasöründen çıkarılan küçük model dosyaları desteklenir)",
"停止音频转换": "Ses dönüştürmeyi durdur",
"全流程结束!": "Tüm işlemler tamamlandı!",
"刷新音色列表和索引路径": "Ses listesini ve indeks yolunu yenile",
"加载模型": "Model yükle",
"加载预训练底模D路径": "Önceden eğitilmiş temel D modelini yükleme yolu:",
"加载预训练底模G路径": "Önceden eğitilmiş temel G modelini yükleme yolu:",
"单次推理": "单次推理",
"卸载音色省显存": "GPU bellek kullanımını azaltmak için sesi kaldır",
"变调(整数, 半音数量, 升八度12降八度-12)": "Transpoze et (tamsayı, yarıton sayısıyla; bir oktav yükseltmek için: 12, bir oktav düşürmek için: -12):",
"后处理重采样至最终采样率0为不进行重采样": "Son işleme aşamasında çıktı sesini son örnekleme hızına yeniden örnekle. 0 değeri için yeniden örnekleme yapılmaz:",
"否": "Hayır",
"启用相位声码器": "启用相位声码器",
"响应阈值": "Tepki eşiği",
"响度因子": "ses yüksekliği faktörü",
"处理数据": "Verileri işle",
"导出Onnx模型": "Onnx Modeli Dışa Aktar",
"导出文件格式": "Dışa aktarma dosya formatı",
"常见问题解答": "Sıkça Sorulan Sorular (SSS)",
"常规设置": "Genel ayarlar",
"开始音频转换": "Ses dönüştürmeyi başlat",
"很遗憾您这没有能用的显卡来支持您训练": "Maalesef, eğitiminizi desteklemek için uyumlu bir GPU bulunmamaktadır.",
"性能设置": "Performans ayarları",
"总训练轮数total_epoch": "Toplam eğitim turu (total_epoch):",
"批量推理": "批量推理",
"批量转换, 输入待转换音频文件夹, 或上传多个音频文件, 在指定文件夹(默认opt)下输出转换的音频. ": "Toplu dönüştür. Dönüştürülecek ses dosyalarının bulunduğu klasörü girin veya birden çok ses dosyasını yükleyin. Dönüştürülen ses dosyaları belirtilen klasöre ('opt' varsayılan olarak) dönüştürülecektir",
"指定输出主人声文件夹": "Vokal için çıkış klasörünü belirtin:",
"指定输出文件夹": ıkış klasörünü belirt:",
"指定输出非主人声文件夹": "Müzik ve diğer sesler için çıkış klasörünü belirtin:",
"推理时间(ms):": ıkarsama süresi (ms):",
"推理音色": "Ses çıkartma (Inference):",
"提取": ıkart",
"提取音高和处理数据使用的CPU进程数": "Ses yüksekliği çıkartmak (Pitch) ve verileri işlemek için kullanılacak CPU işlemci sayısı:",
"是": "Evet",
"是否仅保存最新的ckpt文件以节省硬盘空间": "Sadece en son '.ckpt' dosyasını kaydet:",
"是否在每次保存时间点将最终小模型保存至weights文件夹": "Her kaydetme noktasında son küçük bir modeli 'weights' klasörüne kaydetmek için:",
"是否缓存所有训练集至显存. 10min以下小数据可缓存以加速训练, 大数据缓存会炸显存也加不了多少速": "Tüm eğitim verilerini GPU belleğine önbelleğe alıp almayacağınızı belirtin. Küçük veri setlerini (10 dakikadan az) önbelleğe almak eğitimi hızlandırabilir, ancak büyük veri setlerini önbelleğe almak çok fazla GPU belleği tüketir ve çok fazla hız artışı sağlamaz:",
"显卡信息": "GPU Bilgisi",
"本软件以MIT协议开源, 作者不对软件具备任何控制力, 使用软件者、传播软件导出的声音者自负全责. <br>如不认可该条款, 则不能使用或引用软件包内任何代码和文件. 详见根目录<b>LICENSE</b>.": "Bu yazılım, MIT lisansı altında açık kaynaklıdır. Yazarın yazılım üzerinde herhangi bir kontrolü yoktur. Yazılımı kullanan ve yazılım tarafından dışa aktarılan sesleri dağıtan kullanıcılar sorumludur. <br>Eğer bu maddeyle aynı fikirde değilseniz, yazılım paketi içindeki herhangi bir kod veya dosyayı kullanamaz veya referans göremezsiniz. Detaylar için kök dizindeki <b>Agreement-LICENSE.txt</b> dosyasına bakınız.",
"查看": "Görüntüle",
"查看模型信息(仅支持weights文件夹下提取的小模型文件)": "Model bilgilerini görüntüle (sadece 'weights' klasöründen çıkarılan küçük model dosyaları desteklenir)",
"检索特征占比": "Arama özelliği oranı (vurgu gücünü kontrol eder, çok yüksek olması sanal etkilere neden olur)",
"模型": "Model",
"模型推理": "Model çıkartma (Inference)",
"模型提取(输入logs文件夹下大文件模型路径),适用于训一半不想训了模型没有自动提取保存小文件模型,或者想测试中间模型的情况": "Model çıkartma (büyük dosya modeli yolunu 'logs' klasöründe girin). Bu, eğitimi yarıda bırakmak istediğinizde ve manuel olarak küçük bir model dosyası çıkartmak ve kaydetmek istediğinizde veya bir ara modeli test etmek istediğinizde kullanışlıdır:",
"模型是否带音高指导": "Modelin ses yüksekliği rehberi içerip içermediği:",
"模型是否带音高指导(唱歌一定要, 语音可以不要)": "Modelin ses yüksekliği (Pitch) rehberliği içerip içermediği (şarkı söyleme için şarttır, konuşma için isteğe bağlıdır):",
"模型是否带音高指导,1是0否": "Modelin ses yüksekliği rehberi içerip içermediği (1: evet, 0: hayır):",
"模型版本型号": "Model mimari versiyonu:",
"模型融合, 可用于测试音色融合": "Model birleştirme, ses rengi birleştirmesi için kullanılabilir",
"模型路径": "Model Yolu:",
"每张显卡的batch_size": "Her GPU için yığın boyutu (batch_size):",
"淡入淡出长度": "Geçiş (Fade) uzunluğu",
"版本": "Sürüm",
"特征提取": "Özellik çıkartma",
"特征检索库文件路径,为空则使用下拉的选择结果": "Özellik indeksi dosyasının yolunu belirtin. Seçilen sonucu kullanmak için boş bırakın veya açılır menüden seçim yapın.",
"独占 WASAPI 设备": "独占 WASAPI 设备",
"男转女推荐+12key, 女转男推荐-12key, 如果音域爆炸导致音色失真也可以自己调整到合适音域. ": "Erkekten kadına çevirmek için +12 tuş önerilir, kadından erkeğe çevirmek için ise -12 tuş önerilir. Eğer ses aralığı çok fazla genişler ve ses bozulursa, isteğe bağlı olarak uygun aralığa kendiniz de ayarlayabilirsiniz.",
"目标采样率": "Hedef örnekleme oranı:",
"算法延迟(ms):": "算法延迟(ms):",
"自动检测index路径,下拉式选择(dropdown)": "İndeks yolunu otomatik olarak tespit et ve açılır menüden seçim yap.",
"融合": "Birleştir",
"要改的模型信息": "Düzenlenecek model bilgileri:",
"要置入的模型信息": "Eklemek için model bilgileri:",
"训练": "Eğitim",
"训练模型": "Modeli Eğit",
"训练特征索引": "Özellik Dizinini Eğit",
"训练结束, 您可查看控制台训练日志或实验文件夹下的train.log": "Eğitim tamamlandı. Eğitim günlüklerini konsolda veya deney klasörü altındaki train.log dosyasında kontrol edebilirsiniz.",
"设备类型": "设备类型",
"请指定说话人id": "Lütfen konuşmacı/sanatçı no belirtin:",
"请选择index文件": "Lütfen .index dosyası seçin",
"请选择pth文件": "Lütfen .pth dosyası seçin",
"请选择说话人id": "Konuşmacı/Şarkıcı No seçin:",
"转换": "Dönüştür",
"输入实验名": "Deneysel adı girin:",
"输入待处理音频文件夹路径": "İşlenecek ses klasörünün yolunu girin:",
"输入待处理音频文件夹路径(去文件管理器地址栏拷就行了)": "İşlenecek ses klasörünün yolunu girin (dosya yöneticisinin adres çubuğundan kopyalayın):",
"输入待处理音频文件路径(默认是正确格式示例)": "İşlenecek ses dosyasının yolunu girin (varsayılan doğru format örneğidir):",
"输入源音量包络替换输出音量包络融合比例越靠近1越使用输出包络": "Sesin hacim zarfını ayarlayın. 0'a yakın değerler, sesin orijinal vokallerin hacmine benzer olmasını sağlar. Düşük bir değerle ses gürültüsünü maskeleyebilir ve hacmi daha doğal bir şekilde duyulabilir hale getirebilirsiniz. 1'e yaklaştıkça sürekli bir yüksek ses seviyesi elde edilir:",
"输入监听": "输入监听",
"输入训练文件夹路径": "Eğitim klasörünün yolunu girin:",
"输入设备": "Giriş cihazı",
"输入降噪": "Giriş gürültü azaltma",
"输出信息": ıkış bilgisi",
"输出变声": "输出变声",
"输出设备": ıkış cihazı",
"输出降噪": ıkış gürültü azaltma",
"输出音频(右下角三个点,点了可以下载)": "Ses dosyasını dışa aktar (indirmek için sağ alt köşedeki üç noktaya tıklayın)",
"选择.index文件": ".index dosyası seç",
"选择.pth文件": ".pth dosyası seç",
"选择音高提取算法,输入歌声可用pm提速,harvest低音好但巨慢无比,crepe效果好但吃GPU": "选择音高提取算法,输入歌声可用pm提速,harvest低音好但巨慢无比,crepe效果好但吃GPU",
"选择音高提取算法,输入歌声可用pm提速,harvest低音好但巨慢无比,crepe效果好但吃GPU,rmvpe效果最好且微吃GPU": "Pitch algoritmasını seçin ('pm': daha hızlı çıkarır ancak daha düşük kaliteli konuşma; 'harvest': daha iyi konuşma sesi ancak son derece yavaş; 'crepe': daha da iyi kalite ancak GPU yoğunluğu gerektirir):",
"选择音高提取算法:输入歌声可用pm提速,高质量语音但CPU差可用dio提速,harvest质量更好但慢,rmvpe效果最好且微吃CPU/GPU": "选择音高提取算法:输入歌声可用pm提速,高质量语音但CPU差可用dio提速,harvest质量更好但慢,rmvpe效果最好且微吃CPU/GPU",
"采样率:": "采样率:",
"采样长度": "Örnekleme uzunluğu",
"重载设备列表": "Cihaz listesini yeniden yükle",
"音调设置": "Pitch ayarları",
"音频设备": "Ses cihazı",
"音高算法": "音高算法",
"额外推理时长": "Ekstra çıkartma süresi"
}

Some files were not shown because too many files have changed in this diff Show More